Probability distribution functions (PDF) are sometimes known as probability densities. In the case of continuous distributions, the area under the curve of the PDF for each interval equals the probability for the random variable to fall within that interval. The PDFs are useful in calculating event probabilities, characteristic functions and moments of a distribution.
Igor Function | Probability Distribution |
StatsBetaPDF | Beta |
StatsBinomialPDF | Binomial |
StatsCauchyPDF | Cauchy |
StatsChiPDF | Chi-squared |
StatsDExpPDF | Double-exponential |
StatsErlangPDF | Erlang |
StatsErrorPDF | Error |
StatsEValuePDF | Extreme-value (type I, Gumbel) |
StatsExpPDF | Exponential |
StatsFPDF | F |
StatsGammaPDF | Gamma |
StatsGeometricPDF | Geometric |
StatsHyperGPDF | Hyper-geometric |
StatsLogNormalPDF | Lognormal |
StatsMaxwellPDF | Maxwell |
StatsNBinomialPDF | Negative binomial |
StatsNCChiPDF | Non-central Chi-squared |
StatsNCFPDF | Non-central F |
StatsNCTPDF | Non-central Student T |
StatsNormalPDF | Normal (Gaussian) |
StatsParetoPDF | Pareto |
StatsPoissonPDF | Poisson |
StatsPowerPDF | Power |
StatsRayleighPDF | Rayleigh |
StatsRectangularPDF | Uniform |
StatsStudentPDF | Student T |
StatsTriangularPDF | Triangular |
StatsVonMisesPDF | von-Mises |
StatsWaldPDF | Wald |
StatsWeibullPDF | Weibull |
Forum
Support
Gallery
Igor Pro 9
Learn More
Igor XOP Toolkit
Learn More
Igor NIDAQ Tools MX
Learn More