The inverse cumulative distribution functions return the values at which their respective CDFs attain a given level. This value is typically used in hypothesis testing as a critical value.
There are very few functions for which the inverse CDF can be written in closed form. In most situations the inverse is computed numerically from the CDF.
Function | Distribution |
StatsInvBetaCDF | Beta |
StatsInvBinomialCDF | Binomial |
StatsInvCauchyCDF | Cauchy |
StatsInvChiCDF | Chi-squared |
StatsInvCMSSDCDF | C (mean square successive difference) |
StatsInvDExpCDF | Double-exponential |
StatsInvEValueCDF | Extreme-value (type I Gumble) |
StatsInvExpCDF | Exponential |
StatsInvFCDF | F |
StatsInvFriedmanCDF | Friedman |
StatsInvGammaCDF | Gamma |
StatsInvGeometricCDF | Geometric |
StatsInvKuiperCDF | Kuiper |
StatsInvLogisticCDF | Logistic |
StatsInvLogNormalCDF | Lognormal |
StatsInvMaxwellCDF | Maxwell |
StatsInvMooreCDF | Moore |
StatsInvNBinomialCDF | Negative-binomial |
StatsInvNCFCDF | Non-central F |
StatsInvNormalCDF | Normal (Gaussian) |
StatsInvParetoCDF | Pareto |
StatsInvPoissonCDF | Poisson |
StatsInvPowerCDF | Power |
StatsInvQCDF | Q |
StatsInvQpCDF | Modified Q |
StatsInvRayleighCDF | Rayleigh |
StatsInvRectangularCDF | Uniform |
StatsInvSpearmanCDF | Spearman rho |
StatsInvStudentCDF | Student-T |
StatsInvTopDownCDF | Top Down |
StatsInvTriangularCDF | Triangular |
StatsInvUSquaredCDF | Watson's U-squared |
StatsInvVonMisesCDF | von Mises |
StatsInvWeibullCDF | Weibull |
Forum
Support
Gallery
Igor Pro 9
Learn More
Igor XOP Toolkit
Learn More
Igor NIDAQ Tools MX
Learn More