CRC-16 procedure or xop?
cheney
I am writing a procedure to communicate with an Eurotherm temperature controller (3204), via RS232 using VDT2.xop. The controller uses the MODBUS-RTU protocol. Under this protocol, each frame of command requires a 16 bit CRC (cyclic redundancy code) check for error detection. There is a in-built function in Igor, WaveCRC (or StrCRC), that can generate a 32 bit CRC code instead of 16 bit.
It seems not possible to implement the CRC algorithm in Igor programming. Has anyone created an XOP for getting CRC-16 codes? Aslo, I guess someone has already realized MODBUS-RTU communication with Igor. It would be much appreciated if some example codes can be shared.
Cheers, Cheney
I very much doubt that. Igor's programming capabilities are quite broad. The bit manipulation capabilities can be somewhat cumbersome, but they exist. As a starting point, at least, check out the Wikipedia article: http://en.wikipedia.org/wiki/Cyclic_redundancy_check
The polynomial is given for "CRC-16-IBM x^16 + x^15 + x^2 + 1 (Bisync, Modbus, USB, ANSI X3.28, many others; also known as CRC-16 and CRC-16-ANSI)". Along with the prescription in the article for calculating a CRC, and a lot of work, I think it ought to be possible to code an Igor CRC-16 function.
February 25, 2012 at 06:24 am - Permalink
http://code.google.com/p/libext2fs-wii/source/browse/trunk/source/crc16…
The polynomial used appears to be the one you want for the MODBUS protocol. The choice you have is to convert this to an XOP, or translate the C code into Igor. A handy hex-to-dec conversion you can use in Igor is
sscanf HexString,"%i", DecVariable
, where DecVariable becomes the converted numeric value of the hexadecimal string (starting with prefix 0x).February 25, 2012 at 11:29 am - Permalink
edit2: now correct (forgot that ^ is bitwiseXOR in C), but it's not the modbus one.
variable crc
string buf
variable ii, buflen
buflen = strlen(buf)
make/free/n=256/u/w LUT
LUT[0,7]={ 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241}
LUT[8,15]={ 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440}
LUT[16,23]={ 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40}
LUT[24,31]={ 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841}
LUT[32,39]={ 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40}
LUT[40,47]={ 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41}
LUT[48,55]={ 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641}
LUT[56,63]={ 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040}
LUT[64,71]={ 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240}
LUT[72,79]={ 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441}
LUT[80,87]={ 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41}
LUT[88,95]={ 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840}
LUT[96,103]={ 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41}
LUT[104,111]={ 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40}
LUT[112,119]={ 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640}
LUT[120,127]={ 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041}
LUT[128,135]={ 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240}
LUT[136,143]={ 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441}
LUT[144,151]={ 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41}
LUT[152,159]={ 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840}
LUT[160,167]={ 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41}
LUT[168,175]={ 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40}
LUT[176,183]={ 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640}
LUT[184,191]={ 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041}
LUT[192,199]={ 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241}
LUT[200,207]={ 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440}
LUT[208,215]={ 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40}
LUT[216,223]={ 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841}
LUT[224,231]={ 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40}
LUT[232,239]={ 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41}
LUT[240,247]={ 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641}
LUT[248,255]={ 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040}
for(ii = 0; ii < buflen ; ii += 1)
crc = (((crc / 256 ) & 0xff) %^ LUT[(crc %^ char2num(buf[ii])) & 0xff]) & 0x0000ffff;
endfor
return crc
end
February 26, 2012 at 12:46 am - Permalink
string buf
variable ii, buflen
buflen = strlen(buf)
make/free/n=256/u/w LUT
make/n=1/u/w/free crctemp = 0
make/n=1/w/U/free ntemp = 0
LUT[0,7]={ 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241}
LUT[8,15]={ 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440}
LUT[16,23]={ 0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40}
LUT[24,31]={ 0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841}
LUT[32,39]={ 0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40}
LUT[40,47]={ 0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41}
LUT[48,55]={ 0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641}
LUT[56,63]={ 0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040}
LUT[64,71]={ 0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240}
LUT[72,79]={ 0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441}
LUT[80,87]={ 0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41}
LUT[88,95]={ 0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840}
LUT[96,103]={ 0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41}
LUT[104,111]={ 0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40}
LUT[112,119]={ 0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640}
LUT[120,127]={ 0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041}
LUT[128,135]={ 0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240}
LUT[136,143]={ 0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441}
LUT[144,151]={ 0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41}
LUT[152,159]={ 0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840}
LUT[160,167]={ 0x7800, 0xB8C1, 0xB981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41}
LUT[168,175]={ 0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40}
LUT[176,183]={ 0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640}
LUT[184,191]={ 0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041}
LUT[192,199]={ 0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241}
LUT[200,207]={ 0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440}
LUT[208,215]={ 0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40}
LUT[216,223]={ 0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841}
LUT[224,231]={ 0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40}
LUT[232,239]={ 0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41}
LUT[240,247]={ 0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641}
LUT[248,255]={ 0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040}
crctemp[0] = 0xFFFF
for(ii = 0; ii < buflen ; ii += 1)
ntemp[0] = crctemp[0] %^ char2num(buf[ii])
crctemp[0] = (crctemp[0]/256) %^ LUT[ntemp[0] & 0x00FF]
endfor
return crctemp[0]
end
February 26, 2012 at 01:33 am - Permalink
Actually I also searched similar topics in Igor Mailing List. From there I have found similar prodecures written by Tony Withers (http://talc.geo.umn.edu/people/researchers/withe012/software.htm). His prodecure includes a delicate function for CRC16, as attached below. I was not sure how to do bitwise operation on a wave.
February 26, 2012 at 03:24 am - Permalink