Igor Here is an example: 1. Create a 3 parameter set of data and divide it into 4 classesmake/n=(3,500) ddd ddd[][0,99]=enoise(1) ddd[][100,300]=10+enoise(1) ddd[][300,399]=20+enoise(1) ddd[][400,499]=30+enoise(1) Now execute the KMeans command:KMeans/init=1/out=1/ter=1/dead=1/tern=1000/ncls=4 ddd An even better clustering calculation is:MatrixOP/o ddt=ddd^t FPClustering/CM/CAC/MAXC=(4) ddt Log in or register to post comments June 8, 2016 at 03:55 pm - Permalink
1. Create a 3 parameter set of data and divide it into 4 classes
ddd[][0,99]=enoise(1)
ddd[][100,300]=10+enoise(1)
ddd[][300,399]=20+enoise(1)
ddd[][400,499]=30+enoise(1)
Now execute the KMeans command:
An even better clustering calculation is:
FPClustering/CM/CAC/MAXC=(4) ddt
June 8, 2016 at 03:55 pm - Permalink