Cluster a correlation matrix
RGerkin
// Create a correlation matrix from fake data, in this case with 2 embedded patterns and
// relative noise of 0.25.
FakeCorrelationMatrix(2,0.25)
// Cluster the correlation matrix with 2 expected patterns.
// Picks starting cluster guesses randomly and for high values of noise it might give a poor
// result. The /SEED=(ticks) flag makes it give random initial guesses on each run.
CorrelationClustering(2,Fake_Corr_Matrix)
// Display the data with cluster assignment, the original correlation matrix, and the clustered correlation matrix.
Graph0(); Graph1(); Graph2()
// Create fake data and a correlation matrix from it.
Function FakeCorrelationMatrix(num_patterns,relative_noise)
Variable num_patterns // The number of patterns in the fake data.
Variable relative_noise // The standard deviation of the noise relative to the signal.
Variable length=50 // Each pattern should have this length.
Variable num_signals=30 // The number of cells/channels/signals in the fake data.
Make /o/n=(length,num_patterns) Base_Patterns=gnoise(1) // Make a bunch of canonical patterns.
Make /o/n=(length,num_signals) Data // The matrix of fake data.
Make /o/n=(length,num_signals) Waterfall_Colors=q // Colors for the waterfall plot.
Make /o/n=(num_signals) Pattern_Values=floor(abs(enoise(num_patterns))) // The true pattern identities, chosen as an integer 0 to num_patterns-1.
Variable i
for(i=0;i<num_signals;i+=1)
Data[][i]=Base_Patterns[p][Pattern_Values[i]] // Each row will be a different pattern.
Data+=gnoise(relative_noise) // Add noise to everything.
endfor
MatrixOp /O Fake_Corr_Matrix=syncCorrelation(Data) // Compute the covariance matrix.
MatrixOp /O Variances=varcols(Data)
Fake_Corr_Matrix/=sqrt(Variances[p]*Variances[q]) // Convert to degree of correlation.
KillWaves /Z Base_Patterns,Variances // Cleanup.
End
// Cluster a correlation matrix by swapping rows (and columns).
Function CorrelationClustering(num_patterns,Corr_Matrix)
Variable num_patterns // Number of patterns that you expect to find.
Wave Corr_Matrix // The correlation (or covariance) matrix.
KMeans /INIT=1 /NCLS=(num_patterns) /OUT=2 /SEED=(ticks) Corr_Matrix // K-Means clustering.
Duplicate /o Corr_Matrix Clustered_Matrix // Prepared the clustered correlation matrix.
Duplicate /o W_KMMembers Sorting_Index; Sorting_Index=p
Sort W_KMMembers,Sorting_Index // Create a sorting index to use to swap out rows (and columns).
Clustered_Matrix=Corr_Matrix[Sorting_Index[p]][Sorting_Index[q]] // Shuffle rows (and columns).
Wave /Z Waterfall_Colors
if(WaveExists(Waterfall_Colors))
Wave W_KMMembers // The pattern number that each signal most represents (the K-Means clustering result).
Waterfall_Colors=W_KMMembers[q] // Color the waterfall plot according to the clustering result.
endif
KillWaves /Z M_KMClasses,W_KMMembers // Cleanup.
End
Window Graph0() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(509.25,50,924,358.25) as "Raw Correlation Matrix"
AppendImage/T Fake_Corr_Matrix
ModifyImage Fake_Corr_Matrix ctab= {-1,*,RedWhiteBlue,0}
ModifyGraph margin(left)=14,margin(bottom)=14,margin(top)=14,margin(right)=14
ModifyGraph mirror=2
ModifyGraph nticks=4
ModifyGraph minor=1
ModifyGraph fSize=9
ModifyGraph standoff=0
ModifyGraph tkLblRot(left)=90
ModifyGraph btLen=3
ModifyGraph tlOffset=-2
SetAxis/A/R left
EndMacro
Window Graph1() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(2.25,386.75,438.75,743.75) as "Clustered Correlation Matrix"
AppendImage/T Clustered_Matrix
ModifyImage Clustered_Matrix ctab= {-1,1,RedWhiteBlue,0}
ModifyGraph margin(left)=14,margin(bottom)=14,margin(top)=14,margin(right)=14
ModifyGraph mirror=2
ModifyGraph nticks=3
ModifyGraph minor=1
ModifyGraph fSize=9
ModifyGraph standoff=0
ModifyGraph tkLblRot(left)=90
ModifyGraph btLen=3
ModifyGraph tlOffset=-2
SetAxis/A/R left
EndMacro
Window Graph2() : Graph
PauseUpdate; Silent 1 // building window...
NewWaterfall /W=(-0.75,47,510.75,362.75)Data as "Data"
ModifyWaterfall angle=45, axlen= 0.6, hidden= 0
ModifyGraph negRGB=(0,0,65535)
ModifyGraph zColor(Data)={Waterfall_Colors,*,*,Rainbow}
EndMacro
// relative noise of 0.25.
FakeCorrelationMatrix(2,0.25)
// Cluster the correlation matrix with 2 expected patterns.
// Picks starting cluster guesses randomly and for high values of noise it might give a poor
// result. The /SEED=(ticks) flag makes it give random initial guesses on each run.
CorrelationClustering(2,Fake_Corr_Matrix)
// Display the data with cluster assignment, the original correlation matrix, and the clustered correlation matrix.
Graph0(); Graph1(); Graph2()
// Create fake data and a correlation matrix from it.
Function FakeCorrelationMatrix(num_patterns,relative_noise)
Variable num_patterns // The number of patterns in the fake data.
Variable relative_noise // The standard deviation of the noise relative to the signal.
Variable length=50 // Each pattern should have this length.
Variable num_signals=30 // The number of cells/channels/signals in the fake data.
Make /o/n=(length,num_patterns) Base_Patterns=gnoise(1) // Make a bunch of canonical patterns.
Make /o/n=(length,num_signals) Data // The matrix of fake data.
Make /o/n=(length,num_signals) Waterfall_Colors=q // Colors for the waterfall plot.
Make /o/n=(num_signals) Pattern_Values=floor(abs(enoise(num_patterns))) // The true pattern identities, chosen as an integer 0 to num_patterns-1.
Variable i
for(i=0;i<num_signals;i+=1)
Data[][i]=Base_Patterns[p][Pattern_Values[i]] // Each row will be a different pattern.
Data+=gnoise(relative_noise) // Add noise to everything.
endfor
MatrixOp /O Fake_Corr_Matrix=syncCorrelation(Data) // Compute the covariance matrix.
MatrixOp /O Variances=varcols(Data)
Fake_Corr_Matrix/=sqrt(Variances[p]*Variances[q]) // Convert to degree of correlation.
KillWaves /Z Base_Patterns,Variances // Cleanup.
End
// Cluster a correlation matrix by swapping rows (and columns).
Function CorrelationClustering(num_patterns,Corr_Matrix)
Variable num_patterns // Number of patterns that you expect to find.
Wave Corr_Matrix // The correlation (or covariance) matrix.
KMeans /INIT=1 /NCLS=(num_patterns) /OUT=2 /SEED=(ticks) Corr_Matrix // K-Means clustering.
Duplicate /o Corr_Matrix Clustered_Matrix // Prepared the clustered correlation matrix.
Duplicate /o W_KMMembers Sorting_Index; Sorting_Index=p
Sort W_KMMembers,Sorting_Index // Create a sorting index to use to swap out rows (and columns).
Clustered_Matrix=Corr_Matrix[Sorting_Index[p]][Sorting_Index[q]] // Shuffle rows (and columns).
Wave /Z Waterfall_Colors
if(WaveExists(Waterfall_Colors))
Wave W_KMMembers // The pattern number that each signal most represents (the K-Means clustering result).
Waterfall_Colors=W_KMMembers[q] // Color the waterfall plot according to the clustering result.
endif
KillWaves /Z M_KMClasses,W_KMMembers // Cleanup.
End
Window Graph0() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(509.25,50,924,358.25) as "Raw Correlation Matrix"
AppendImage/T Fake_Corr_Matrix
ModifyImage Fake_Corr_Matrix ctab= {-1,*,RedWhiteBlue,0}
ModifyGraph margin(left)=14,margin(bottom)=14,margin(top)=14,margin(right)=14
ModifyGraph mirror=2
ModifyGraph nticks=4
ModifyGraph minor=1
ModifyGraph fSize=9
ModifyGraph standoff=0
ModifyGraph tkLblRot(left)=90
ModifyGraph btLen=3
ModifyGraph tlOffset=-2
SetAxis/A/R left
EndMacro
Window Graph1() : Graph
PauseUpdate; Silent 1 // building window...
Display /W=(2.25,386.75,438.75,743.75) as "Clustered Correlation Matrix"
AppendImage/T Clustered_Matrix
ModifyImage Clustered_Matrix ctab= {-1,1,RedWhiteBlue,0}
ModifyGraph margin(left)=14,margin(bottom)=14,margin(top)=14,margin(right)=14
ModifyGraph mirror=2
ModifyGraph nticks=3
ModifyGraph minor=1
ModifyGraph fSize=9
ModifyGraph standoff=0
ModifyGraph tkLblRot(left)=90
ModifyGraph btLen=3
ModifyGraph tlOffset=-2
SetAxis/A/R left
EndMacro
Window Graph2() : Graph
PauseUpdate; Silent 1 // building window...
NewWaterfall /W=(-0.75,47,510.75,362.75)Data as "Data"
ModifyWaterfall angle=45, axlen= 0.6, hidden= 0
ModifyGraph negRGB=(0,0,65535)
ModifyGraph zColor(Data)={Waterfall_Colors,*,*,Rainbow}
EndMacro
Forum
Support
Gallery
Igor Pro 9
Learn More
Igor XOP Toolkit
Learn More
Igor NIDAQ Tools MX
Learn More
July 9, 2009 at 02:11 am - Permalink