
For this example we create a small data set that has a Poisson distribution
Make/O/N=50 data1=30+poissonNoise(5)
To run bootstrap, in each iteration we draw (with replacement) 100 numbers and compute standard WaveStats on the drawn sample.
StatsResample/N=100 /ws=2/ITER=5 data1
The results for five iterations are shown in the table:
numPoints | 100 | 100 | 100 | 100 | 100 |
avg | 35.09 | 35.23 | 34.95 | 35.28 | 35.61 |
sdev | 2.19317 | 2.19667 | 2.20365 | 1.85363 | 2.14568 |
rms | 35.1578 | 35.2977 | 35.0187 | 35.3282 | 35.6739 |
adev | 1.83 | 1.8116 | 1.832 | 1.5144 | 1.6914 |
skew | -0.306796 | -0.171549 | 0.107583 | -0.276227 | -0.483667 |
kurt | -0.637302 | -0.595613 | -0.468839 | -0.173923 | -0.162058 |
sum | 3509 | 3523 | 3495 | 3528 | 3561 |
meanL1 | 34.6548 | 34.7941 | 34.5127 | 34.9122 | 35.1843 |
meanL2 | 35.5252 | 35.6659 | 35.3873 | 35.6478 | 36.0357 |
Increasing the number of samples does not change the results substantially:
StatsResample/N=10000 /ws=2/ITER=5 data1
The results for five iterations are shown in the table:
numPoints | 10000 | 10000 | 10000 | 10000 | 10000 |
avg | 35.2169 | 35.2089 | 35.2312 | 35.1799 | 35.2257 |
sdev | 2.04217 | 2.05121 | 2.06934 | 2.05897 | 2.04572 |
rms | 35.2761 | 35.2686 | 35.2919 | 35.2401 | 35.285 |
adev | 1.70327 | 1.71884 | 1.72827 | 1.71993 | 1.71226 |
skew | -0.212116 | -0.199756 | -0.192836 | -0.177744 | -0.215313 |
kurt | -0.424137 | -0.473013 | -0.439945 | -0.458874 | -0.450679 |
sum | 352169 | 352089 | 352312 | 351799 | 352257 |
meanL1 | 35.1769 | 35.1687 | 35.1906 | 35.1395 | 35.1856 |
meanL2 | 35.2569 | 35.2491 | 35.2718 | 35.2203 | 35.2658 |
Jacknife Example
We can use the Jacknife test to analyze the standard deviation of the same data. For this application our user function can be written in the form:
Function jackFunc(inWave) Wave inWave WaveStats/Q inWave return V_sdev End
To run the Jacknife test execute:
StatsResample/jckn=jackFunc data1
The results are displayed in the table:
N | 50 |
stdEstimate | 1.72 |
JKEstimate | 1.71928 |
JKTEstimate | 1.7551 |
sigmaJKEstimate | 0.165026 |
It is interesting to observe the differences between the standard deviation obtained by the bootstrap approach (above) to the oen obtained here.

Forum

Support

Gallery
Igor Pro 10
Learn More
Igor XOP Toolkit
Learn More
Igor NIDAQ Tools MX
Learn More