
Genetic optimization using Differential Evolution
with GPU acceleration

Pawel Wzietek, Feb 2025
pawel.wzietek@universite-paris-saclay.fr

1 Introduction

Many years ago, while searching how to solve my fitting problems, I stumbled on a
fitting procedure using a genetic algorithm, posted by Andrew Nelson. The current ver-
sion can be found here: https://www.wavemetrics.com/project/gencurvefit.
This version is in XOP form, however at the time I had discovered it was all in an ipf
file and I started using it adding my own modifications. At the same time I had some
complex fits that were taking hours and days to run and I was thinking how to speed
up the calculations (actually the critical part was in my code calculating the curves, so
that using the XOP version instead of ipf would not help much). Then, some time later,
I discovered this project:
https://www.wavemetrics.com/project/IgorCL
This XOP by Peter Dedecker (also at https://github.com/pdedecker/IgorCL, GPL li-
cense) provides an Igor interface to the OpenCL framework allowing to write and call
functions running on GPU. I then started to adapt the genetic code to be able to use
this interface. Recently I have asked Andrew his permission to publish my (quite a lot)
modified version of his original code, and so here it is.

To understand what this code does and where the OpenCL coding can be helpful, let
me first shortly recall some curve fitting basics. Consider a set of experimental data
{xi, yi} and a model f(x, c) parametrized by a set of coefficients c ≡ {c1, c2, ...}. The
fitting consists in finding the set c that maximizes the probability of having obtained
the experimental values {yi(xi)} (maximum likelihood estimator). If we suppose that
the noise in the data follows the normal (gaussian) distribution it is easy to show that
to maximize this probability we need to minimize the fitness function

χ2(c) =
∑
i

(
yi − f(xi, c)

σi

)2

in the configuration space c = {ck} (”least squares method”). The fitting task thus
boils down to the problem of function minimization in multidimensional space. Note
that normal distribution cannot always be assumed (experimental artifacts etc.), there-
fore sometimes it is better to consider some other form of χ2 (e.g. ”robust fitting”
where the square is replaced by the absolute value).

Usually fitting routines and packages take care of the χ2 calculation so that we supply
the dataset and the model function and run the fit (e.g. CurveFit and FuncFit in Igor).

The standard and widely used least-squares fitting routine is based on the Marquardt-
Levenberg (ML) minimization algorithm. This algorithm uses the derivatives (gradient

1



and second derivatives) of the fitness function to find a local minimum nearest to a
given starting point and is optimized for the least squares problem. ”Local” means that
the solution may depend on the starting point, hence it is important to select this point
carefully (”guesses” for the fit coefficients). For simple models with few parameters it
is easy to find the right guesses however it may be difficult for more complex functions
with many parameters or when the fitness function has many local minima. For such
cases the nearest local minimum is not a guarantee of the best fit, in fact it is often
very difficult to find a starting point such that the algorithm will converge to the true
solution.

For more complex fits we would like to be able to find the global minimum of the
fitness function, however this is more difficult as there is no deterministic algorithm and
only heuristic methods are available. A large class of such methods are the so called
evolutionary algorithms. Here, instead of moving a point in the configuration space
towards the minimum, we consider a population of points (trial vectors) submitted to
some evolution strategy. The method called differential evolution (DE) which mimics,
in some way, the darwinian evolution, is considered as one of the most powerful among
them.

Here are some references for the DE algorithm and its applications:

[1] R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces, Journal of global optimization 11, 341
(1997).
(original algorithm by Storn and Price)

[2] S. Das and P. N. Suganthan, Differential evolution: A survey of the state-of-the-art,
IEEE transactions on evolutionary computation 15, 4 (2010).
(Review of different strategies and comparison with other methods.)

[3] M. Wormington, C. Panaccione, K. M. Matney, and D. K.Bowen, Characterization
of structures from x-ray scattering data using genetic algorithms, Philosophical Trans-
actions of the Royal Society of London, Series A 357, 2827 (1999).
(applications in x-ray studies)

[4] https://en.wikipedia.org/wiki/Differential_evolution

Evolutionary algorithms are rather computationally expensive, a DE fit will usually re-
quire many times more function evaluations compared to the classical ML approach
(however, as I already said, in complex cases we may have no choice). On the other
hand, evaluating the fitness function for a population of points in the configuration
space can be easily parallelized since the calculations for different points are indepen-
dent of each other. This independence is especially attractive in the context of GPU
programming where the means of thread synchronization are very limited.

Adaptation for parallel processing and OpenCL

The Figure 1 shows the outline of the DE algorithm. At each iteration a new popu-
lation of trial points is generated via mutation and genetic recombination, then better
candidates are retained in the offspring population. The process is repeated until a
convergence criterion is met. The DE algorithm is constructed in such a way that the
whole population will converge towards a single point, considered as the final solution.

2



Figure 1: Differential Evolution

The Igor optimization function proposed here (see reference in the last section) per-
forms all steps of the algorithm except the χ2 calculation on the population, for which
a user-defined function has to be supplied. The generation of trial vectors can be done
either with Igor code or on GPU (see function parameters in the reference).

In the figure 1 the colored zones show the parts of the process that can be done by
independent parallel threads. In order to easily adapt the method for such parallel
calculations with maximum performance and flexibility, the function provided in the
package is a mere optimization function (like Optimize operation in Igor rather than
than the CurveFit operation) so that the user has to provide the code for χ2 calculation.
But I think that, since using the package requires some coding anyway, it shouldn’t be
a big deal to add a few extra lines of code to calculate the fitness function (see demo
experiments). On the other hand this also makes the program more general (it can
easily be adapted for, e.g. simultaneous fitting of several data sets, a different form of
χ2, adding penalties to implement constraints etc.).

The idea is therefore to calculate the χ2 of the whole population in a single call to a
user-supplied Igor function, if you need speed this function can use multithreading or
call a GPU code so that the calculations for different members of the population run in
parallel.

As in the original code the function opens a window to display the evolution of the
whole population in the form of a ”color table”: the coefficients are mapped to rainbow
colors in function of their values with respect to the bounds (red for the lower bound).

Using OpenCL requires installing the IgorCL XOP. Then first run the function IgorCLInfo
to check which platforms are available and how they are numbered (see XOP docu-
mentation). However you can also use the procedure without it, with all-Igor code
(NB. conditional compilation directives are used to avoid errors when the XOP is not
installed). In order to double check my calculations I usually code two equivalent ver-
sions of the χ2 function: one in Igor code only and one calling an OpenCL kernel (see
demo experiments). The Igor version is of course slower but much easier to debug.

3



OpenCL defines a language and a standard interface to compile and run code on GPU.
It is similar to NVidia’s CUDA however it is multi-platform (e.g. I could use it on Intel
chipsets). The OpenCL language is basically C with some restrictions (e.g. memory
layout and allocation) but also additional features (e.g. vector types and operations).
The philosophy of the interface is sketched on Figure 2. The IgorCL XOP provides a
simplified interface, even if it has some limitations compared to a complete interface it
is very simple to use with Igor since it does all the memory allocation based on Igor
waves provided to the XOP operation.

Figure 2: CPU/GPU code layout

2 Demo experiments

The demos, developed under Igor Pro 8, are rather simple examples, I tried to make
the code well structured and clear so the demos can be used as an easy starting point
for your own projects. All demos provide two equivalent versions of the fitting and χ2

functions, one in Igor and one in OpenCL, so you can use them with or without the
XOP (the mode is selected by two flags as explained below). Since I wanted the two
versions to be similar I don’t use very much the Igor wave scaling in the calculations.
The demos are rather academic examples that I invented and tried to make simple so I
won’t discuss here the performance and effectiveness of the DE code vs., e.g. a simple
FuncFit. And in general the performance greatly depends on the size of the population,
initial guesses, the type of GPU etc. Actually I’m using this code to fit my NMR and
X-ray data, often involving more than 10 fit parameters and requiring more complex
code (convolution, matrix diagonalization etc.), so that GPU speedup is essential (can
be a factor of hundreds compared to Igor code, on my gaming GPU).

The fitdemo1a and fitdemo1b experiments fit a curve to a sum of a gaussian and
a lorentzian. It is a simple fit but I put the two curves quite close and overlapping so
that the algorithm may miss the best fit if the population size is too small (or if the
guesses are too far in case of FuncFit). Both versions deal with the same data but in
fitdemo1b the fit function is written in the "all-at-once" form. The latter is useless
here since we have a simple expression for the function but I wanted to show how to
write an equivalent OpenCL code (compare the code of the fit function in the procedure

4



proc_model_Igor and the one in the notebook nbcl_model). Note that actually
the OpenCL code of the second version will be slower : here the calculations are simple
and fast so that allocating a local buffer necessary for this version can slow things a bit.

The fitdemo2 example involves a Fourier transform and is actually inspired from one
of my projects. The problem consists of evaluating an approximate form of an aperture
function from the Fraunhoffer diffraction pattern. The diffraction image is given by the
squared magnitude of the Fourier transform of the aperture function, but we obviously
cannot use the inverse transform with no information on the phase, we have therefore
to make some guesses about the general form of the aperture function and fit it. This
demo shows an example of a ”difficult” fit: a) χ2 may exhibit an oscillatory behavior
with many local minima and b) it is not easy to find the right guesses.

Here how the Igor code is structured in all demo experiments.

The function fit in the main procedure prepares the data (a simulated data set, using
the wave ”coeftrue”), then configures the parameters, the initial coefficients and
calls the library fit function GEN_optimise_CL. The coefficient waves are also dis-
played in a table for easy editing. If you don’t use OpenCL you should set the pldev
variable to -1.

The procedure Proc_fit defines two functions that have to be supplied as parame-
ters to the main routine of the library (GEN_optimize_CL, see reference in the last
section) : one function to calculate χ2 and another that will be called periodically dur-
ing the fitting process and which receives the current best coefficient set (to update the
status of the fit e.g. refresh a curve on a graph according to the current best solution).
Both functions can either use an Igor code or call an equivalent OpenCL module, I de-
fine the constants mode_chi2 and mode_model used to select which code is used
for each task, in the procedure fit :

constant mode_model=1 //0 for igor code , 1 for cl
constant mode_chi2=1 //0 for igor code, 1 for cl

The Igor versions are defined in the procedure proc_model_Igor and the OpenCL
ones in proc_model_CL. The demos will work too if the XOP is not installed, then
you have to set these constants to zero.

All Igor functions interacting with the IgorCLXOP are in the procedure proc_model_CL.
Using the OpenCL versions requires one extra step : before running the fit we need to
send the source code to the compiler and store the obtained binaries. This is done via
the operation IgorCompileCL of the XOP.

I’m using notebooks to edit the OpenCL code, this allows to keep everything in the
same place and I found it very handy – thanks to Igor’s powerful set of operations
on notebooks I can turn Igor into an OpenCL IDE :). There is also a procedure file
coming with the XOP that provides a code editor window but here I use my own (very
simple) code because I prefer to have different parts of the OpenCL code edited in dif-
ferent notebooks (think of different .c and .h files making a C project). The function
GetCLcode then combines them into a single string variable that will be passed to the
compiler (it also pastes the string to another notebook so that the whole assembled code
can be inspected). Edit this function following your needs. The function CompileCL

5



gets the code string and passes it to the compiler, if there are errors then another note-
book is created to display the build log. Well, it’s not VScode yet (and no debugger)
but I like it.

For example, in the demo1 experiments the code is in two portions: nbcl_model (the
fit function) and nbcl_kernels (main routines). For a simple curve fitting there is
no need to change anything in the kernels when modifying the fitting function. For
such simple fits you don’t even need to know much about OpenCL, if you are fluent in
C it will be easy to write your own fit functions. You can look at the quick reference
guide: https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf to check for
the data types and math functions.

When I tested the demo1 experiments on my two GPUs installed (Intel UHD Graphics
770 and NVidia GTX 3060) I found that they were was running faster on the Intel
platform even though the other one is more powerful. The main difference here is the
number of cores (you can check it using the utility ”GPU Caps Viewer”), however with
a relatively small population we might not use the full potential of the gaming board.
On the other hand, the Intel integrated GPU shares the memory with CPU, so it seems
that data transfer speed can be a dominant factor when calculations are simple.

3 Library reference

Here is the list of functions exported by the module GeneticOptimisation_CL.ipf
:

GEN_optimise_CL(...) main function: runs the fit, see parameters below
GEN_clear() discards some of internal data (may be used before saving the pxp file
to disk to save space)
GEN_chi2best() returns the value of the fitness function for the last best vector
GEN_chi2avg() returns the average of the fitness function for the last population
GEN_chi2dev() returns the std.dev. of the fitness function for the last population
GEN_maxdist() returns the maximum euclidean distance for the last population

The following functions do some statistics on the current population. In principle error
estimation and covariance matrix calculation can (should?) be done using an ML step
after the fit (as Andrew’s XOP does, this can also be done calling FuncFit after the fit).
However, due to the ”self-calibrating” nature of the DE algorithm [2] the statistics done
on the last population should give a relevant information about the uncertainty. It also
allows error estimation in cases where derivative calculation suffers from numerical
problems (e.g. the model need evaluating a histogram). Note that since these functions
operate on the last population matrix they can’t be used (and will return NaN) after
GEN_Clear was executed (population matrix discarded) :

GEN_coefdev(i) returns the std.dev. of the coefficient number i for the last popu-
lation (error estimation)
GEN_coefcov(i,j) returns the covariance matrix element i,j calculated on the last
population
GEN_coefcorr(i,j) returns the correlation coefficient (cov(i,j)/(sdev(i)*sdev(j))

6



exported function templates:

GEN_func_chi2array, GEN_func_updmodel

Description of the main function :

Function GEN_optimise_CL(f_chi2array, f_updmodel, coefs, limits,
[holdwave, refwave, popmul, k_m,recomb,bfrac, iters, updrate_ct,
updrate_m ,q, chi2tol,xtol, pldev,maxCLthreads])

This main routine requires the following mandatory parameters:

f_chi2array, f_updmodel : external functions to be supplied, the syntax has
to follow the following templates:

Function GEN_func_chi2array(popmatrix, chi2array, [refwave])
wave popmatrix //(input) matrix of coefficient vectors :

// popmatrix[parameter number][vector number]
wave chi2array // output : 1D wave containing results
wave/wave refwave // (input) : references of other waves
End

The optional parameter refwave is passed if it was specified in the call of GEN_optimise_CL,
it allows to pass any other waves that may be needed without need for runtime lookup.
Typically, it will be the waves representing the experimental data (e.g. x and y coordi-
nates of data points) and the wave to be filled with results.

Function GEN_func_updmodel(coefs, [refwave])
Wave coefs //(input) : current best vector

wave/wave refwave // (input) : references of other waves
End

This function will be called periodically : every updrate_m iterations (unless the
best vector didn’t change since last call), and at the end. refwave (same as for the
previus function) will typically also contain the reference of a wave to fill with the
modeled data (fit output).

For example, in the demo1 I use a refwave specified as:
Wave/WAVE wr = ListToWaveRefWave("xdata;ydata;fitgen_ydata")

So the GEN_func_chi2array function uses the first two and GEN_func_updmodel
uses xdata and fitgen_ydata.

coefs : (input/output) this parameter is a 1D wave containing the initial coefficients
(these will be used as a member of the initial population, the remaining members are
generated randomly within bounds), and will receive results after the fit.

limits (input): two column matrix defining the bounds for coefficients (we always
need this for global optimization since we cannot scan the whole space) : limits[i][0]
and limits[i][1] are the lower and upper bounds.

7



Optional parameters:

holdwave (input): 1D wave of same length as coefs, specifies which coefficients
should be held constant during the fit (set those positions to 1, otherwise 0).

refwave (input): as explained above, if not provided the user functions will be called
without the refwave parameter.

popmul (default=100) : population multiplier - defines the size of the population as
popmul times the number of coefficients (size of coef wave). The population has of
course to increase with the number of coefficients, in principle the volume of the con-
figuration space increases rather exponentially than linearly but this is how it is done
in other implementations so I didn’t change it.

k_m (default=0.7) : mutation constant (or "differential weight", "F" in [4])

recomb (default=0.5) : recombination constant (or "crossover probability", "CR" in
[4])

bfrac (default=1): fraction (between 0 and 1) of best vectors from which the "base
vector" ([4]) will be chosen e.g. bfrac=1 means from all vectors (strategy named
"DE/rand/1" in [2]) and bfrac=0 means it is always the best vector (strategy named
"DE/best/1" in [2]), it gives faster convergence at the expense of genetic diversity (more
chances to miss the best solution). bfrac<1 needs sorting of all vectors at each step
and thus can be a bit slower.

iters (default=500) : first stopping criterion: maximum number of iterations

chi2tol (default=0.005) : second stopping criterion : stop if the ratio stddev/avg of
χ2 distribution of the population falls below. Set to zero to disable this criterion.

xtol (default=0.02) : third stopping criterion : stop if maximum euclidean distance
in population falls below xtol. Set to zero to disable. The distance is based on
normalised coordinates (0-1 between lower and upper bounds for each coefficient).

updrate_ct, updrate_m (default=1) : intervals (in number of generations) for
updating the color table and the calls of the user update function. If calculations are
fast you can gain some speed setting higher values.

quiet (default=0) : set to 1 for quiet mode (don’t print results in history)

pldev (default=-1) : if negative the generation of trial vectors will use Igor code; if
non-negative it will run on GPU, then pldev defines the platform (bits2,3) and device
(bits 0,1), i.e. pldev=4*platform nnumber + device number (e.g. set pldev=4 for device
0 on platform 1). The numbering is according to the values obtained via IgorCLInfo of
the XOP. If you set a non-negative pldev and the XOP is not detected then the routine
will display a message and continue falling back to the Igor version.

maxCLthreads (default=3000) : if pldev>=0, will define the max. number of threads
to use (set approx. to the number of cores or its multiple for optimum performance).

8


