4Misc_StartL4PlatformL@ xHH/8Ag{HH(dh h%4%ROGI'HH8A// com.apple.print.PageFormat.PMHorizontalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMHorizontalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMOrientation com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMOrientation 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.subTicket.paper_info_ticket PMPPDPaperCodeName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMPPDPaperCodeName A4 com.apple.print.ticket.stateFlag 0 PMTiogaPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMTiogaPaperName iso-a4 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPageRect 0 0 783 559 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPaperRect -18 -18 824 577 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMPaperName iso-a4 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPageRect 0 0 783 559 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPaperRect -18 -18 824 577 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.ppd.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.ppd.PMPaperName A4 com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PaperInfoTicket com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PageFormatTicket com.apple.print.DocumentTicket.PMSpoolFormat com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.DocumentTicket.PMSpoolFormat application/pdf com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMCopies com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMCopies 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMCopyCollate com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMCopyCollate com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMFirstPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMFirstPage 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMLastPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMLastPage 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMPageRange com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMPageRange 1 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PrintSettingsTicket xHH/8Ag{HH(dh h%4%ROGI'HH8A// com.apple.print.PageFormat.PMHorizontalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMHorizontalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMOrientation com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMOrientation 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.subTicket.paper_info_ticket PMPPDPaperCodeName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMPPDPaperCodeName A4 com.apple.print.ticket.stateFlag 0 PMTiogaPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMTiogaPaperName iso-a4 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPageRect 0 0 783 559 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPaperRect -18 -18 824 577 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMPaperName iso-a4 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPageRect 0 0 783 559 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPaperRect -18 -18 824 577 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.ppd.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.ppd.PMPaperName A4 com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PaperInfoTicket com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PageFormatTicket com.apple.print.DocumentTicket.PMSpoolFormat com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.DocumentTicket.PMSpoolFormat application/pdf com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMCopies com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMCopies 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMCopyCollate com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMCopyCollate com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMFirstPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMFirstPage 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMLastPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMLastPage 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMPageRange com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMPageRange 1 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PrintSettingsTicket xHH@Rg(HH(dh |%H%ROGI'HHR@@  com.apple.print.PageFormat.PMHorizontalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMHorizontalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMOrientation com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMOrientation 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.subTicket.paper_info_ticket PMPPDPaperCodeName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMPPDPaperCodeName Letter com.apple.print.ticket.stateFlag 0 PMTiogaPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMTiogaPaperName na-letter com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPageRect 0 0 734 576 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPaperRect -18 -18 774 594 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMPaperName na-letter com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPageRect 0 0 734 576 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPaperRect -18 -18 774 594 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.ppd.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.ppd.PMPaperName US Letter com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PaperInfoTicket com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PageFormatTicket com.apple.print.PrintSettings.PMColorMode com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMColorMode 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMCopies com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMCopies 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMDestinationType com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMDestinationType 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMFirstPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMFirstPage 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMLastPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMLastPage 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMPageRange com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMPageRange 1 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PrintSettingsTicket x HH@Rg(HH(dh |%H% ROGI'HHR@@  com.apple.print.PageFormat.PMHorizontalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMHorizontalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMOrientation com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMOrientation 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalRes com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalRes 72 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMVerticalScaling com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMVerticalScaling 1 com.apple.print.ticket.stateFlag 0 com.apple.print.subTicket.paper_info_ticket PMPPDPaperCodeName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMPPDPaperCodeName Letter com.apple.print.ticket.stateFlag 0 PMTiogaPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray PMTiogaPaperName na-letter com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPageRect 0 0 734 576 com.apple.print.ticket.stateFlag 0 com.apple.print.PageFormat.PMAdjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PageFormat.PMAdjustedPaperRect -18 -18 774 594 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMPaperName na-letter com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPageRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPageRect 0 0 734 576 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.PMUnadjustedPaperRect com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.PMUnadjustedPaperRect -18 -18 774 594 com.apple.print.ticket.stateFlag 0 com.apple.print.PaperInfo.ppd.PMPaperName com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PaperInfo.ppd.PMPaperName US Letter com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PaperInfoTicket com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PageFormatTicket com.apple.print.PrintSettings.PMColorMode com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMColorMode 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMCopies com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMCopies 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMDestinationType com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMDestinationType 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMFirstPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMFirstPage 1 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMLastPage com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMLastPage 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.PrintSettings.PMPageRange com.apple.print.ticket.creator com.apple.jobticket com.apple.print.ticket.itemArray com.apple.print.PrintSettings.PMPageRange 1 2147483647 com.apple.print.ticket.stateFlag 0 com.apple.print.ticket.APIVersion 00.20 com.apple.print.ticket.type com.apple.print.PrintSettingsTicket ^Graph*@@??WDashSettings#  !0a2Normal@ Geneva<HHHH$$0a2Normal@ Geneva<HHHH$$4444440 , Normal@ Geneva<HHHH$$4 4 4 4 4 4 homewdvq<Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics: Macintosh HD<#H+W Igor-graphicsvuo SLS-DLS_files_20111014V_FlagV_siga:?V_sigbt2?V_chisqch@V_q %1V_Rabfsh^?V_Pr.%)?V_r2~ ?V_numNaNsV_numINFsV_npnts@V_nterms@V_nheldV_startRowV_endRow@V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkS_waveNamesWVooUsEpH_zeta;stdpH;ZP_zeta;ZetaDeviation;Z_Average;Mob;Mobility_Deviation;S_pathamesWVooUsbMacintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:S_fileNameWVooUs zetaGPT14.txtS_nameameWVooUsGraph0{LoadWave/J/M/U={0,0,1,0}/D/N=DLS_input/O/E=1/K=0/V={"\t,"," $",0,1} "Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:DLS_Igor.txt" Delimited text load from "DLS_Igor.txt" Matrix size: (30,288), wave: DLS_input0 LoadWave/J/M/U={0,0,1,0}/D/N=SLS_input/O/E=1/K=0/V={"\t,"," $",0,1} "Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:SLS_Igor.txt" Delimited text load from "SLS_Igor.txt" Matrix size: (20,288), wave: SLS_input0 PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) S_fileName = "SLS_Igor.txt" Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:SLS_input0;DelayUpdate Edit/K=0 root:SLS_input0;DelayUpdate PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) PlotInputData(DLS_input0) pH=0 PlotInputData(DLS_input0) pH=3 PlotInputData(DLS_input0) pH=3I=1 PlotInputData(DLS_input0) pH=3I=30 PlotInputData(DLS_input0) PlotInputData(DLS_input0) pH=3I=15 pH=3I=30 PlotInputData(DLS_input0) pH=3, I=15 pH=3, I=30 PlotInputData(DLS_input0) pH=3, I=15 pH=3, I=30 Make/T ionic = {"15","30","50","75","100","175"} Edit/K=0 root:ionic;DelayUpdate PlotInputData(DLS_input0) pH=3, I=15 pH=3, I=30 PlotInputData(DLS_input0) pH=3, I=15 pH=3, I=30 PlotInputData(DLS_input0) PlotInputDataAndFit(DLS_input0) Curve fit with data subrange: DLS_input0[*][4] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_input0[*][52] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 PlotInputDataAndFit(DLS_input0) Curve fit with data subrange: DLS_input0[*][4] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_input0[*][52] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 Edit/K=0 root:fit_DLS_input0;DelayUpdate PlotInputDataAndFit(DLS_input0) Curve fit with data subrange: DLS_input0[*][4] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_input0[*][52] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 PlotInputDataAndFit(DLS_input0) Curve fit with data subrange: DLS_input0[*][4] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_input0[*][52] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 PlotInputDataAndFit(DLS_input0) Curve fit with data subrange: DLS_input0[*][4] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_input0[*][52] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 PlotInputDataAndFit(DLS_input0) Curve fit with data subrange: DLS_input0[*][4] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_input0[*][52] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 Curve fit with data subrange: DLS_input0[*][100] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2613,119.82} V_chisq= 0.456353;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 100;V_endCol= 100;V_q= 1; V_Rab= -0.784027;V_Pr= 0.921332;V_r2= 0.848854; W_sigma={0.0454,10.5} Coefficient values one standard deviation a =4.2613 0.0454 b =119.82 10.5 Curve fit with data subrange: DLS_input0[*][148] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2054,82.114} V_chisq= 0.403531;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 148;V_endCol= 148;V_q= 1; V_Rab= -0.786928;V_Pr= 0.871272;V_r2= 0.759114; W_sigma={0.0429,9.65} Coefficient values one standard deviation a =4.2054 0.0429 b =82.114 9.65 Curve fit with data subrange: DLS_input0[*][196] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.2891,54.245} V_chisq= 0.151455;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 196;V_endCol= 196;V_q= 1; V_Rab= -0.782788;V_Pr= 0.891692;V_r2= 0.795115; W_sigma={0.0261,5.74} Coefficient values one standard deviation a =4.2891 0.0261 b =54.245 5.74 Curve fit with data subrange: DLS_input0[*][244] fit_DLS_input0= W_coef[0]+W_coef[1]*x W_coef={4.1155,45.143} V_chisq= 0.635704;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 244;V_endCol= 244;V_q= 1; V_Rab= -0.779252;V_Pr= 0.650742;V_r2= 0.423465; W_sigma={0.0531,11} Coefficient values one standard deviation a =4.1155 0.0531 b =45.143 11 PlotInputDataAndFit(DLS_input0) PlotInputDataAndFit(SLS_input0) PlotInputDataAndFit(SLS_input0,1,1) PlotInputDataAndFit(SLS_input0,1,1) PlotInputDataAndFit(SLS_input0,1,1) Test() Result=-1, row=0, column=0 PlotInputDataAndFit(SLS_input0,1,1) PlotInputDataAndFit(SLS_input0,1,1) PlotInputDataAndFit(SLS_input0,1,1) PlotInputDataAndFit(SLS_input0,2,1) Test() Result=-1, row=0, column=0 PlotInputDataAndFit(SLS_input0,2,1) Test() Result=-1, row=0, column=0 Edit/K=0 root:SLS_input0;DelayUpdate PlotInputDataAndFit(SLS_input0,1,1) PlotInputDataAndFit(SLS_input0,1,1) row=8, column=2 row=9, column=2 row=11, column=2 row=10, column=2 Zap() Error Test() Result=0, row=10, column=4 Zap() Edit/K=0 root:SLS_input0;DelayUpdate Zap() Error Zap() Test() Result=0, row=10, column=4 Zap() Duplicate/O DLS_input0 DLS_clean Edit/K=0 root:DLS_clean;DelayUpdate Duplicate/O DLS_input0 DLS_clean Duplicate/O SLS_input0 SLS_clean Edit/K=0 root:SLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) Test() Result=-1, row=0, column=0 Test() Result=0, row=14, column=4 Zap() Zap() Zap() Zap() Error Test() Result=0, row=17, column=4 Zap() Error Duplicate/O DLS_input0 DLS_clean Duplicate/O SLS_input0 SLS_clean PlotInputDataAndFit(DLS_clean,1,1) Zap(DLS_clean) Error Zap(DLS_clean) Edit/K=0 root:DLS_clean;DelayUpdate Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,1,1) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,1,1) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,1,1) Duplicate/O DLS_input0 DLS_clean PlotInputDataAndFit(DLS_clean,1,1) Zap(DLS_clean) Duplicate/O DLS_input0 DLS_clean PlotInputDataAndFit(DLS_clean,1,1) Edit/K=0 root:W_coef;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) Edit/K=0 root:M_Jacobian;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) 40 iterations with no convergence Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.0274,1755.6} V_chisq= 1.55577e-05;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.491,122} Coefficient values one standard deviation a =4.0274 0.491 b =1755.6 122 PlotInputDataAndFit(DLS_clean,1,1) Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 PlotInputDataAndFit(DLS_clean,1,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={1.6829,2338.6} V_chisq= 1.37227e-14;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={6.21e+07,8.78e+09} Coefficient values one standard deviation a =1.6829 6.21e+07 b =2338.6 8.78e+09 Edit/K=0 root:Res_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,1,1) 40 iterations with no convergence Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={6.0852,1622.2} V_chisq= 1.48301e-14;V_npnts= 22;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={4.3e+07,6.75e+09} Coefficient values one standard deviation a =6.0852 4.3e+07 b =1622.2 6.75e+09 Edit/K=0 root:Res_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:W_coef;DelayUpdate Edit/K=0 root:W_sigma;DelayUpdate Edit/K=0 root:W_sigma;DelayUpdate Edit/K=0 root:Res_pH3I15_DLS_clean;DelayUpdate Duplicate/O DLS_input0 DLS_clean Edit/K=0 root:DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 PlotInputDataAndFit(DLS_clean,1,1) Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Edit/K=0 root:Sigma_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) Edit/K=0 root:W_coef;DelayUpdate Edit/K=0 root:coef_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:M_Jacobian;DelayUpdate FinalDataSet() fit_pH3I15_DLS_clean[0]= {5.27394,20.1438} FinalDataSet() coef_pH3I15_DLS_clean[0]= {4.36665,1479.18} FinalDataSet() coef_pH3I15_DLS_clean[0]= {4.36665,1479.18} FinalDataSet() coef_pH3I15_DLS_clean[0]= {4.36665,1479.18} FinalDataSet() coef_pH3I15_DLS_clean[0]= {4.36665,1479.18} FinalDataSet() coef_pH3I15_DLS_clean[0]= {4.36665,1479.18} KS_I15 FinalDataSet() FinalDataSet() coef_pH3I15_DLS_clean[0]= {4.36665,1479.18} Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I15_DLS_clean;DelayUpdate FinalDataSet() 1479.18 FinalDataSet() 4.36665 FinalDataSet() 4.36665 KS_I15[0]= {4.36665,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KS_I15[92]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} FinalDataSet() 4.36665 FinalDataSet() 4.36665 FinalDataSet() 4.36665 FinalDataSet() 4.36665 FinalDataSet() 4.36665 FinalDataSet() 4.36665 Edit/K=0 root:tmp;DelayUpdate Edit/K=0 root:tmp;DelayUpdate FinalDataSet() 4.36665 Edit/K=0 root:tmp;DelayUpdate Edit/K=0 root:tmp;DelayUpdate FinalDataSet() 4.36665 Edit/K=0 root:tmp;DelayUpdate FinalDataSet() 4.36665 FinalDataSet() 4.36665 NaN Edit/K=0 root:tmp;DelayUpdate Edit/K=0 root:coef_pH3I15_DLS_clean;DelayUpdate FinalDataSet() Edit/K=0 root:KS_I15;DelayUpdate PlotInputDataAndFit(DLS_clean,1,2) Edit/K=0 root:coef_pH4I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH4I15_DLS_clean;DelayUpdate Edit/K=0 root:Res_pH4I15_DLS_clean;DelayUpdate FinalDataSet() FinalDataSet() KS_I15[0]= {1479.18} FinalDataSet() Edit/K=0 root:KS_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KS_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KS_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KD_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KD_I15;DelayUpdate Edit/K=0 root:sdKD_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KD_I15;DelayUpdate Edit/K=0 root:sdKD_I15;DelayUpdate Edit/K=0 root:D0_I15;DelayUpdate Edit/K=0 root:sdD0_I15;DelayUpdate Duplicate/O DLS_input0 DLS_clean Duplicate/O SLS_input0 SLS_clean PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,2,1) Edit/K=0 root:coef_pH3I30_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I30_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,2,1) Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.3297,216.78} V_chisq= 1.09837;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52;V_q= 1; V_Rab= -0.787976;V_Pr= 0.939593;V_r2= 0.882835; W_sigma={0.071,16.5} Coefficient values one standard deviation a =4.3297 0.071 b =216.78 16.5 Edit/K=0 root:fit_pH3I30_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,2,1) Edit/K=0 root:Sigma_pH3I30_DLS_clean;DelayUpdate Edit/K=0 root:Sigma_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:M_Jacobian;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) PlotInputDataAndFit(DLS_clean,1,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.2808,1632.1} V_chisq= 45.0243;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4;V_q= 1; V_Rab= -0.767077;V_Pr= 0.951513;V_r2= 0.905378; W_sigma={0.476,115} Coefficient values one standard deviation a =4.2808 0.476 b =1632.1 115 Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,1,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 CurveFit/N/NTHR=0/ODR=2 line DLS_clean[][4] /X=DLS_clean[][2] /W=DLS_clean[][5]/XW=DLS_clean[][3] /D /R/I=1 Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Edit/K=0 root:fit_DLS_clean;DelayUpdate CurveFit/N/NTHR=0/ODR=2 line DLS_clean[][4] /X=DLS_clean[][2] /W=DLS_clean[][5]/XW=DLS_clean[][3] /D /R/I=1 Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_pH3I15_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_pH3I30_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_pH3I15_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_pH3I30_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 PlotInputDataAndFit(DLS_clean,2,1) PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 CurveFit/N/NTHR=0/ODR=2 line DLS_clean[][4] /X=DLS_clean[][2] /W=DLS_clean[][5]/XW=DLS_clean[][3] /D /R/I=1 Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Edit/K=0 root:fit_DLS_clean;DelayUpdate CurveFit/N/NTHR=0/ODR=2 line DLS_clean[][4] /X=DLS_clean[][2] /W=DLS_clean[][5]/XW=DLS_clean[][3] /R/I=1 Fit converged properly Curve fit with data subrange: DLS_clean[*][4] y= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] y= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] y= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) 40 iterations with no convergence Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={4.0274,1755.6} V_chisq= 1.55577e-05;V_npnts= 23;V_numNaNs= 7;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.491,122} Coefficient values one standard deviation a =4.0274 0.491 b =1755.6 122 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.2319,245.55} V_chisq= 2.06331e-05;V_npnts= 25;V_numNaNs= 5;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.0786,18.7} Coefficient values one standard deviation a =4.2319 0.0786 b =245.55 18.7 Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 Edit/K=0 root:W_coef;DelayUpdate Edit/K=0 root:fit_DLS_clean;DelayUpdate Edit/K=0 root:fit_DLS_clean;DelayUpdate Edit/K=0 root:M_Jacobian;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I15_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 Edit/K=0 root:fit_DLS_clean;DelayUpdate Duplicate/O DLS_input0 DLS_clean Duplicate/O SLS_input0 SLS_clean PlotInputDataAndFit(DLS_clean,2,1) Fit converged properly Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.3666,1479.2} V_chisq= 3692.52;V_npnts= 23;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.00937,4.77} Coefficient values one standard deviation a =4.3666 0.00937 b =1479.2 4.77 Fit converged properly Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x W_coef={4.2982,229.33} V_chisq= 1259.61;V_npnts= 25;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00617,2.18} Coefficient values one standard deviation a =4.2982 0.00617 b =229.33 2.18 PlotInputDataAndFit(DLS_clean,2,1) Edit/K=0 root:fit_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,1) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,1) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Edit/K=0 root:SLS_input0;DelayUpdate Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I30_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I50_DLS_clean;DelayUpdate Edit/K=0 root:fit_pH3I75_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I100_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I175_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,1) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,1) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,1) Edit/K=0 root:DLS_clean;DelayUpdate Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,1) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,1) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,1) Edit/K=0 root:coef_pH3I15_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I30_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I50_DLS_clean;DelayUpdate Edit/K=0 root:Res_pH3I75_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I75_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I100_DLS_clean;DelayUpdate Edit/K=0 root:coef_pH3I175_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,2) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,2) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,2) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,3) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,4) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Edit/K=0 root:Res_pH3I175_DLS_clean;DelayUpdate Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,4) PlotInputDataAndFit(DLS_clean,6,4) Edit/K=0 root:Res_DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,4) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,5) PlotInputDataAndFit(DLS_clean,6,5) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.4,4.55 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,6) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.4,4.5 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.1,4.4033333 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.4,4.55 SetAxis left 4.4,4.55 SetAxis/A left Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.6,4.3933333 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3,4.6 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3,4.866667 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3,4.6 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3,4.6 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,8) SetAxis left 4.0033333,4.5 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4,4.5 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(SLS_clean,6,1) Zap(DLS_clean) Error Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 7.0642657e-06,7.957349e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,2) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 7.0642657e-06,7.4985675e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.1918483e-06,7.8670618e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.0745191e-06,7.437296e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,3) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.0739405e-06,7.550481e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,4) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,4) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.0643786e-06,9.1484607e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.0960205e-06,9.2215213e-06 Zap(SLS_clean) SetAxis left 5.09742101e-06,9.7230076e-06 PlotInputDataAndFit(SLS_clean,6,5) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,5) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.304755e-06,6.69677e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.22222e-06,7.849152e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,5) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.8165262e-06,7.63551e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.083217e-06,9.42335e-06 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,6) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,7) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.0858731e-06,9.5643409e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.0729844e-06,8.631435e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,8) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,8) PlotInputDataAndFit(SLS_clean,6,8) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,8) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.0158152e-06,8.9186028e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.7727866e-06,7.6327977e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,8) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.051503e-06,9.4554227e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.2034634e-06,7.4931235e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) FinalDataSet() Edit/K=0 root:pH;DelayUpdate Edit/K=0 root:ion;DelayUpdate Edit/K=0 root:kappa_nm;DelayUpdate FinalDataSet() Edit/K=0 root:pH;DelayUpdate Edit/K=0 root:kappa_nm;DelayUpdate Edit/K=0 root:ion;DelayUpdate Edit/K=0 root:pH;DelayUpdate FinalDataSet() Edit/K=0 root:kappa_nm;DelayUpdate FinalDataSet() Edit/K=0 root:avgD_I175;DelayUpdate FinalDataSet() Edit/K=0 root:avgD_I175;DelayUpdate FinalDataSet() Edit/K=0 root:sdD_I175;DelayUpdate Edit/K=0 root:avgD_I175;DelayUpdate Edit/K=0 root:avgD_I175;DelayUpdate Edit/K=0 root:KD_I3;DelayUpdate Edit/K=0 root:sdKD_I3;DelayUpdate FinalDataSet() Edit/K=0 root:KD_I3;DelayUpdate FinalDataSet() Edit/K=0 root:D0_I30;DelayUpdate Edit/K=0 root:KD_I30;DelayUpdate Edit/K=0 root:D0_I30;DelayUpdate Edit/K=0 root:D0_I30;DelayUpdate Edit/K=0 root:coef_pH4I175_SLS_clean;DelayUpdate Edit/K=0 root:coef_pH10I30_DLS_clean;DelayUpdate Edit/K=0 root:ionic;DelayUpdate FinalDataSet() 3.68006 4.32888 4.48321 4.53767 4.53604 4.46007 4.4362 4.35607 4.18781 4.29406 4.47845 4.51149 4.52001 4.38302 4.46816 4.32374 4.23334 4.25097 4.49611 4.54122 4.4821 4.38499 4.39847 4.32115 4.22131 4.24572 4.49549 4.56489 4.50365 4.39831 4.38515 4.30874 4.24153 4.26028 4.49552 4.52839 4.49257 4.39483 4.40176 4.34024 4.28922 4.26344 4.49227 4.5393 4.48621 4.42923 4.26084 4.30652 FinalDataSet() 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 FinalDataSet() 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Edit/K=0 root:KD_I30;DelayUpdate Edit/K=0 root:KD_pH3;DelayUpdate FinalDataSet() 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 Edit/K=0 root:KD_I30;DelayUpdate Edit/K=0 root:sdKD_I30;DelayUpdate FinalDataSet() 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 FinalDataSet() FinalDataSet() 15 30 50 75 100 175 Edit/K=0 root:KD_I15;DelayUpdate Edit/K=0 root:KS_I30;DelayUpdate FinalDataSet() Edit/K=0 root:sdKD_I15;DelayUpdate Edit/K=0 root:D0_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KD_I15;DelayUpdate FinalDataSet() Edit/K=0 root:coef_pH10I175_SLS_clean;DelayUpdate FinalDataSet() Edit/K=0 root:KD_I15;DelayUpdate Edit/K=0 root:sdKD_I15;DelayUpdate Edit/K=0 root:KD_I15;DelayUpdate FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175[0]= {0,0,0,0,0,0,0,0} Print KD_I15 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} Print KD_I15[1] 3.80881e-09 Print KD_I15[0] 4.14017e-08 Print KD_I15[0] 4.14017e-08 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} coef_pH3I15_DLS_clean[0]= {3.68006,1927.67} coef_pH4I15_DLS_clean[0]= {4.32888,187.743} coef_pH5I15_DLS_clean[0]= {4.48321,153.507} coef_pH6I15_DLS_clean[0]= {4.53767,87.0073} coef_pH7I15_DLS_clean[0]= {4.53604,-14.1578} coef_pH8I15_DLS_clean[0]= {4.46007,-26.8851} coef_pH9I15_DLS_clean[0]= {4.4362,-70.3554} coef_pH10I15_DLS_clean[0]= {4.35607,-39.4122} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} coef_pH3I30_DLS_clean[0]= {4.18781,279.838} coef_pH4I30_DLS_clean[0]= {4.29406,98.5554} coef_pH5I30_DLS_clean[0]= {4.47845,69.5315} coef_pH6I30_DLS_clean[0]= {4.51149,40.146} coef_pH7I30_DLS_clean[0]= {4.52001,-25.5464} coef_pH8I30_DLS_clean[0]= {4.38302,-27.5149} coef_pH9I30_DLS_clean[0]= {4.46816,-86.5406} coef_pH10I30_DLS_clean[0]= {4.32374,-28.0716} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} coef_pH3I50_DLS_clean[0]= {4.23334,146.623} coef_pH4I50_DLS_clean[0]= {4.25097,78.4649} coef_pH5I50_DLS_clean[0]= {4.49611,25.4366} coef_pH6I50_DLS_clean[0]= {4.54122,0.972799} coef_pH7I50_DLS_clean[0]= {4.4821,-25.6583} coef_pH8I50_DLS_clean[0]= {4.38499,-30.5553} coef_pH9I50_DLS_clean[0]= {4.39847,-68.0931} coef_pH10I50_DLS_clean[0]= {4.32115,-31.4611} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} coef_pH3I75_DLS_clean[0]= {4.22131,97.8842} coef_pH4I75_DLS_clean[0]= {4.24572,61.4751} coef_pH5I75_DLS_clean[0]= {4.49549,8.93571} coef_pH6I75_DLS_clean[0]= {4.56489,-20.5738} coef_pH7I75_DLS_clean[0]= {4.50365,-35.4211} coef_pH8I75_DLS_clean[0]= {4.39831,-29.0394} coef_pH9I75_DLS_clean[0]= {4.38515,-69.9346} coef_pH10I75_DLS_clean[0]= {4.30874,-23.2373} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} coef_pH3I100_DLS_clean[0]= {4.24153,74.135} coef_pH4I100_DLS_clean[0]= {4.26028,44.7358} coef_pH5I100_DLS_clean[0]= {4.49552,-3.8411} coef_pH6I100_DLS_clean[0]= {4.52839,-15.7848} coef_pH7I100_DLS_clean[0]= {4.49257,-32.8158} coef_pH8I100_DLS_clean[0]= {4.39483,-30.6699} coef_pH9I100_DLS_clean[0]= {4.40176,-47.5949} coef_pH10I100_DLS_clean[0]= {4.34024,-27.327} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} coef_pH3I175_DLS_clean[0]= {4.28922,19.2861} coef_pH4I175_DLS_clean[0]= {4.26344,7.62424} coef_pH5I175_DLS_clean[0]= {4.49227,-22.5967} coef_pH6I175_DLS_clean[0]= {4.5393,-36.0821} coef_pH7I175_DLS_clean[0]= {4.48621,-34.2813} coef_pH8I175_DLS_clean[0]= {4.42923,-33.2013} coef_pH9I175_DLS_clean[0]= {4.26084,-38.3066} coef_pH10I175_DLS_clean[0]= {4.30652,-24.1874} FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} coef_pH3I15_DLS_clean[0]= {3.68006,1927.67} coef_pH4I15_DLS_clean[0]= {4.32888,187.743} coef_pH5I15_DLS_clean[0]= {4.48321,153.507} coef_pH6I15_DLS_clean[0]= {4.53767,87.0073} coef_pH7I15_DLS_clean[0]= {4.53604,-14.1578} coef_pH8I15_DLS_clean[0]= {4.46007,-26.8851} coef_pH9I15_DLS_clean[0]= {4.4362,-70.3554} coef_pH10I15_DLS_clean[0]= {4.35607,-39.4122} KD_I30[0]= {0,0,0,0,0,0,0,0} coef_pH3I30_DLS_clean[0]= {4.18781,279.838} coef_pH4I30_DLS_clean[0]= {4.29406,98.5554} coef_pH5I30_DLS_clean[0]= {4.47845,69.5315} coef_pH6I30_DLS_clean[0]= {4.51149,40.146} coef_pH7I30_DLS_clean[0]= {4.52001,-25.5464} coef_pH8I30_DLS_clean[0]= {4.38302,-27.5149} coef_pH9I30_DLS_clean[0]= {4.46816,-86.5406} coef_pH10I30_DLS_clean[0]= {4.32374,-28.0716} KD_I50[0]= {0,0,0,0,0,0,0,0} coef_pH3I50_DLS_clean[0]= {4.23334,146.623} coef_pH4I50_DLS_clean[0]= {4.25097,78.4649} coef_pH5I50_DLS_clean[0]= {4.49611,25.4366} coef_pH6I50_DLS_clean[0]= {4.54122,0.972799} coef_pH7I50_DLS_clean[0]= {4.4821,-25.6583} coef_pH8I50_DLS_clean[0]= {4.38499,-30.5553} coef_pH9I50_DLS_clean[0]= {4.39847,-68.0931} coef_pH10I50_DLS_clean[0]= {4.32115,-31.4611} KD_I75[0]= {0,0,0,0,0,0,0,0} coef_pH3I75_DLS_clean[0]= {4.22131,97.8842} coef_pH4I75_DLS_clean[0]= {4.24572,61.4751} coef_pH5I75_DLS_clean[0]= {4.49549,8.93571} coef_pH6I75_DLS_clean[0]= {4.56489,-20.5738} coef_pH7I75_DLS_clean[0]= {4.50365,-35.4211} coef_pH8I75_DLS_clean[0]= {4.39831,-29.0394} coef_pH9I75_DLS_clean[0]= {4.38515,-69.9346} coef_pH10I75_DLS_clean[0]= {4.30874,-23.2373} KD_I100[0]= {0,0,0,0,0,0,0,0} coef_pH3I100_DLS_clean[0]= {4.24153,74.135} coef_pH4I100_DLS_clean[0]= {4.26028,44.7358} coef_pH5I100_DLS_clean[0]= {4.49552,-3.8411} coef_pH6I100_DLS_clean[0]= {4.52839,-15.7848} coef_pH7I100_DLS_clean[0]= {4.49257,-32.8158} coef_pH8I100_DLS_clean[0]= {4.39483,-30.6699} coef_pH9I100_DLS_clean[0]= {4.40176,-47.5949} coef_pH10I100_DLS_clean[0]= {4.34024,-27.327} KD_I175[0]= {0,0,0,0,0,0,0,0} coef_pH3I175_DLS_clean[0]= {4.28922,19.2861} coef_pH4I175_DLS_clean[0]= {4.26344,7.62424} coef_pH5I175_DLS_clean[0]= {4.49227,-22.5967} coef_pH6I175_DLS_clean[0]= {4.5393,-36.0821} coef_pH7I175_DLS_clean[0]= {4.48621,-34.2813} coef_pH8I175_DLS_clean[0]= {4.42923,-33.2013} coef_pH9I175_DLS_clean[0]= {4.26084,-38.3066} coef_pH10I175_DLS_clean[0]= {4.30652,-24.1874} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 187.743 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 153.507 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 87.0073 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -14.1578 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -26.8851 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -70.3554 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 98.5554 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 69.5315 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 40.146 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -25.5464 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -27.5149 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -86.5406 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 78.4649 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 25.4366 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 0.972799 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -25.6583 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -30.5553 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -68.0931 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 61.4751 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 8.93571 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -20.5738 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -35.4211 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -29.0394 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -69.9346 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 44.7358 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -3.8411 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -15.7848 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -32.8158 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -30.6699 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -47.5949 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 7.62424 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -22.5967 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -36.0821 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -34.2813 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -33.2013 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -38.3066 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() NULL wave 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 NULL wave 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 NULL wave 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 NULL wave 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 NULL wave 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 NULL wave 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {0,0,0,0,0,0,0,0} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {0,0,0,0,0,0,0,0} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {0,0,0,0,0,0,0,0} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {0,0,0,0,0,0,0,0} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {0,0,0,0,0,0,0,0} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 187.743 153.507 87.0073 -14.1578 -26.8851 -70.3554 -39.4122 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 98.5554 69.5315 40.146 -25.5464 -27.5149 -86.5406 -28.0716 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 78.4649 25.4366 0.972799 -25.6583 -30.5553 -68.0931 -31.4611 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 61.4751 8.93571 -20.5738 -35.4211 -29.0394 -69.9346 -23.2373 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 44.7358 -3.8411 -15.7848 -32.8158 -30.6699 -47.5949 -27.327 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 7.62424 -22.5967 -36.0821 -34.2813 -33.2013 -38.3066 -24.1874 FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 1927.67 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 187.743 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 153.507 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 87.0073 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -14.1578 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -26.8851 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -70.3554 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -39.4122 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 279.838 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 98.5554 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 69.5315 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 40.146 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -25.5464 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -27.5149 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -86.5406 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -28.0716 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 146.623 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 78.4649 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 25.4366 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 0.972799 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -25.6583 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -30.5553 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -68.0931 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -31.4611 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 97.8842 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 61.4751 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 8.93571 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -20.5738 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -35.4211 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -29.0394 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -69.9346 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -23.2373 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 74.135 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 44.7358 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -3.8411 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -15.7848 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -32.8158 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -30.6699 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -47.5949 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -27.327 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 19.2861 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 7.62424 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -22.5967 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -36.0821 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -34.2813 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -33.2013 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -38.3066 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -24.1874 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() 1927.67 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 187.743 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 153.507 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 87.0073 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -14.1578 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -26.8851 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -70.3554 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} -39.4122 KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} 279.838 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 98.5554 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 69.5315 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 40.146 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -25.5464 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -27.5149 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -86.5406 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} -28.0716 KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} 146.623 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 78.4649 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 25.4366 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 0.972799 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -25.6583 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -30.5553 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -68.0931 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} -31.4611 KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} 97.8842 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 61.4751 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 8.93571 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -20.5738 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -35.4211 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -29.0394 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -69.9346 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} -23.2373 KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} 74.135 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 44.7358 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -3.8411 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -15.7848 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -32.8158 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -30.6699 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -47.5949 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} -27.327 KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} 19.2861 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} 7.62424 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -22.5967 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -36.0821 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -34.2813 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -33.2013 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -38.3066 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} -24.1874 KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} Edit/K=0 root:avgFractionSLS_I15;DelayUpdate Edit/K=0 root:sdFractionSLS_I15;DelayUpdate Edit/K=0 root:KCR_I15;DelayUpdate Edit/K=0 root:avgD_I15;DelayUpdate Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:SLS_input0;DelayUpdate Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:SLS_input0;DelayUpdate FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() tmpKDI[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09} tmpKDI[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10} tmpKDI[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10} tmpKDI[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09} tmpKDI[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10} tmpKDI[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I15[55]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I30[55]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I50[55]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I75[54]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I100[52]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I175[52]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} FinalDataSet() KD_I15[0]= {4.14017e-08,3.80881e-09,2.78009e-09,4.42396e-09,2.00225e-09,1.42545e-08,-3.19803e-10,2.19268e-09,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I15[55]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I30[0]= {4.84012e-09,2.0692e-09,2.15589e-09,6.63636e-10,2.85288e-10,-1.76873e-09,-2.4068e-10,-9.2188e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I30[55]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I50[0]= {1.79899e-09,1.1626e-09,5.59662e-10,3.54194e-10,2.33376e-10,-2.12117e-10,1.02838e-10,-1.97252e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I50[55]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I75[0]= {9.60846e-10,7.18411e-10,3.01678e-10,9.60907e-10,-3.83884e-10,-6.11471e-10,1.37577e-09,-1.30053e-09,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I75[54]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I100[0]= {4.91525e-10,1.33832e-09,-1.41552e-10,-5.91501e-10,1.02576e-09,-1.11423e-09,-1.31394e-10,-4.09992e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I100[52]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I175[0]= {-6.0036e-10,-4.46426e-10,-3.0659e-11,-1.52086e-10,-1.89656e-09,-1.25494e-09,-5.05044e-10,-1.74524e-10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} KD_I175[52]= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} LoadWave/J/M/U={0,0,1,0}/D/N=SLS_input/O/K=0 "Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:SLS_Igor.txt" Delimited text load from "SLS_Igor.txt" Matrix size: (35,288), wave: SLS_input0 Edit/K=0 root:SLS_input0;DelayUpdate Duplicate/O SLS_input0 SLS_clean Edit/K=0 root:SLS_clean;DelayUpdate FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15 KD_I30 KD_I50 KD_I75 KD_I100 KD_I175 FinalDataSet() KD_I15 KD_I30 KD_I50 KD_I75 KD_I100 KD_I175 FinalDataSet() KD_I15 KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30 KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50 KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75 KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100 KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175 KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15 KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30 KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50 KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75 KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100 KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175 KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15 coef_pH3I15_DLS_clean coef_pH4I15_DLS_clean coef_pH5I15_DLS_clean coef_pH6I15_DLS_clean coef_pH7I15_DLS_clean coef_pH8I15_DLS_clean coef_pH9I15_DLS_clean coef_pH10I15_DLS_clean KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30 coef_pH3I30_DLS_clean coef_pH4I30_DLS_clean coef_pH5I30_DLS_clean coef_pH6I30_DLS_clean coef_pH7I30_DLS_clean coef_pH8I30_DLS_clean coef_pH9I30_DLS_clean coef_pH10I30_DLS_clean KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50 coef_pH3I50_DLS_clean coef_pH4I50_DLS_clean coef_pH5I50_DLS_clean coef_pH6I50_DLS_clean coef_pH7I50_DLS_clean coef_pH8I50_DLS_clean coef_pH9I50_DLS_clean coef_pH10I50_DLS_clean KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75 coef_pH3I75_DLS_clean coef_pH4I75_DLS_clean coef_pH5I75_DLS_clean coef_pH6I75_DLS_clean coef_pH7I75_DLS_clean coef_pH8I75_DLS_clean coef_pH9I75_DLS_clean coef_pH10I75_DLS_clean KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100 coef_pH3I100_DLS_clean coef_pH4I100_DLS_clean coef_pH5I100_DLS_clean coef_pH6I100_DLS_clean coef_pH7I100_DLS_clean coef_pH8I100_DLS_clean coef_pH9I100_DLS_clean coef_pH10I100_DLS_clean KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175 coef_pH3I175_DLS_clean coef_pH4I175_DLS_clean coef_pH5I175_DLS_clean coef_pH6I175_DLS_clean coef_pH7I175_DLS_clean coef_pH8I175_DLS_clean coef_pH9I175_DLS_clean coef_pH10I175_DLS_clean KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15 coef_pH3I15_DLS_clean 1927.67 coef_pH4I15_DLS_clean 187.743 coef_pH5I15_DLS_clean 153.507 coef_pH6I15_DLS_clean 87.0073 coef_pH7I15_DLS_clean -14.1578 coef_pH8I15_DLS_clean -26.8851 coef_pH9I15_DLS_clean -70.3554 coef_pH10I15_DLS_clean -39.4122 KD_I15[0]= {0,0,0,0,0,0,0,0} KD_I30 coef_pH3I30_DLS_clean 279.838 coef_pH4I30_DLS_clean 98.5554 coef_pH5I30_DLS_clean 69.5315 coef_pH6I30_DLS_clean 40.146 coef_pH7I30_DLS_clean -25.5464 coef_pH8I30_DLS_clean -27.5149 coef_pH9I30_DLS_clean -86.5406 coef_pH10I30_DLS_clean -28.0716 KD_I30[0]= {0,0,0,0,0,0,0,0} KD_I50 coef_pH3I50_DLS_clean 146.623 coef_pH4I50_DLS_clean 78.4649 coef_pH5I50_DLS_clean 25.4366 coef_pH6I50_DLS_clean 0.972799 coef_pH7I50_DLS_clean -25.6583 coef_pH8I50_DLS_clean -30.5553 coef_pH9I50_DLS_clean -68.0931 coef_pH10I50_DLS_clean -31.4611 KD_I50[0]= {0,0,0,0,0,0,0,0} KD_I75 coef_pH3I75_DLS_clean 97.8842 coef_pH4I75_DLS_clean 61.4751 coef_pH5I75_DLS_clean 8.93571 coef_pH6I75_DLS_clean -20.5738 coef_pH7I75_DLS_clean -35.4211 coef_pH8I75_DLS_clean -29.0394 coef_pH9I75_DLS_clean -69.9346 coef_pH10I75_DLS_clean -23.2373 KD_I75[0]= {0,0,0,0,0,0,0,0} KD_I100 coef_pH3I100_DLS_clean 74.135 coef_pH4I100_DLS_clean 44.7358 coef_pH5I100_DLS_clean -3.8411 coef_pH6I100_DLS_clean -15.7848 coef_pH7I100_DLS_clean -32.8158 coef_pH8I100_DLS_clean -30.6699 coef_pH9I100_DLS_clean -47.5949 coef_pH10I100_DLS_clean -27.327 KD_I100[0]= {0,0,0,0,0,0,0,0} KD_I175 coef_pH3I175_DLS_clean 19.2861 coef_pH4I175_DLS_clean 7.62424 coef_pH5I175_DLS_clean -22.5967 coef_pH6I175_DLS_clean -36.0821 coef_pH7I175_DLS_clean -34.2813 coef_pH8I175_DLS_clean -33.2013 coef_pH9I175_DLS_clean -38.3066 coef_pH10I175_DLS_clean -24.1874 KD_I175[0]= {0,0,0,0,0,0,0,0} FinalDataSet() KD_I15 coef_pH3I15_DLS_clean 1927.67 coef_pH4I15_DLS_clean 187.743 coef_pH5I15_DLS_clean 153.507 coef_pH6I15_DLS_clean 87.0073 coef_pH7I15_DLS_clean -14.1578 coef_pH8I15_DLS_clean -26.8851 coef_pH9I15_DLS_clean -70.3554 coef_pH10I15_DLS_clean -39.4122 KD_I15[0]= {1927.67,187.743,153.507,87.0073,-14.1578,-26.8851,-70.3554,-39.4122} KD_I30 coef_pH3I30_DLS_clean 279.838 coef_pH4I30_DLS_clean 98.5554 coef_pH5I30_DLS_clean 69.5315 coef_pH6I30_DLS_clean 40.146 coef_pH7I30_DLS_clean -25.5464 coef_pH8I30_DLS_clean -27.5149 coef_pH9I30_DLS_clean -86.5406 coef_pH10I30_DLS_clean -28.0716 KD_I30[0]= {279.838,98.5554,69.5315,40.146,-25.5464,-27.5149,-86.5406,-28.0716} KD_I50 coef_pH3I50_DLS_clean 146.623 coef_pH4I50_DLS_clean 78.4649 coef_pH5I50_DLS_clean 25.4366 coef_pH6I50_DLS_clean 0.972799 coef_pH7I50_DLS_clean -25.6583 coef_pH8I50_DLS_clean -30.5553 coef_pH9I50_DLS_clean -68.0931 coef_pH10I50_DLS_clean -31.4611 KD_I50[0]= {146.623,78.4649,25.4366,0.972799,-25.6583,-30.5553,-68.0931,-31.4611} KD_I75 coef_pH3I75_DLS_clean 97.8842 coef_pH4I75_DLS_clean 61.4751 coef_pH5I75_DLS_clean 8.93571 coef_pH6I75_DLS_clean -20.5738 coef_pH7I75_DLS_clean -35.4211 coef_pH8I75_DLS_clean -29.0394 coef_pH9I75_DLS_clean -69.9346 coef_pH10I75_DLS_clean -23.2373 KD_I75[0]= {97.8842,61.4751,8.93571,-20.5738,-35.4211,-29.0394,-69.9346,-23.2373} KD_I100 coef_pH3I100_DLS_clean 74.135 coef_pH4I100_DLS_clean 44.7358 coef_pH5I100_DLS_clean -3.8411 coef_pH6I100_DLS_clean -15.7848 coef_pH7I100_DLS_clean -32.8158 coef_pH8I100_DLS_clean -30.6699 coef_pH9I100_DLS_clean -47.5949 coef_pH10I100_DLS_clean -27.327 KD_I100[0]= {74.135,44.7358,-3.8411,-15.7849,-32.8158,-30.6699,-47.5949,-27.327} KD_I175 coef_pH3I175_DLS_clean 19.2861 coef_pH4I175_DLS_clean 7.62424 coef_pH5I175_DLS_clean -22.5967 coef_pH6I175_DLS_clean -36.0821 coef_pH7I175_DLS_clean -34.2813 coef_pH8I175_DLS_clean -33.2013 coef_pH9I175_DLS_clean -38.3066 coef_pH10I175_DLS_clean -24.1874 KD_I175[0]= {19.2861,7.62424,-22.5967,-36.0821,-34.2813,-33.2013,-38.3066,-24.1874} FinalDataSet() KD_I15[0]= {1927.67,187.743,153.507,87.0073,-14.1578,-26.8851,-70.3554,-39.4122} KD_I30[0]= {279.838,98.5554,69.5315,40.146,-25.5464,-27.5149,-86.5406,-28.0716} KD_I50[0]= {146.623,78.4649,25.4366,0.972799,-25.6583,-30.5553,-68.0931,-31.4611} KD_I75[0]= {97.8842,61.4751,8.93571,-20.5738,-35.4211,-29.0394,-69.9346,-23.2373} KD_I100[0]= {74.135,44.7358,-3.8411,-15.7849,-32.8158,-30.6699,-47.5949,-27.327} KD_I175[0]= {19.2861,7.62424,-22.5967,-36.0821,-34.2813,-33.2013,-38.3066,-24.1874} FinalDataSet() KD_I15[0]= {523.815,43.3699,34.2404,19.1745,-3.12118,-6.02796,-15.8594,-9.04766} KD_I30[0]= {66.8219,22.9516,15.5258,8.8986,-5.65185,-6.2776,-19.3683,-6.49244} KD_I50[0]= {34.6353,18.4581,5.65748,0.214215,-5.72463,-6.96816,-15.4811,-7.28072} KD_I75[0]= {23.1881,14.4793,1.98771,-4.50696,-7.86499,-6.60239,-15.948,-5.39305} KD_I100[0]= {17.4784,10.5007,-0.854428,-3.48576,-7.30446,-6.97864,-10.8127,-6.2962} KD_I175[0]= {4.4964,1.78828,-5.03014,-7.94884,-7.64148,-7.49595,-8.9904,-5.61647} FinalDataSet() KD_I15[0]= {523.815,43.3699,34.2404,19.1745,-3.12118,-6.02796,-15.8594,-9.04766} KD_I30[0]= {66.8219,22.9516,15.5258,8.8986,-5.65185,-6.2776,-19.3683,-6.49244} KD_I50[0]= {34.6353,18.4581,5.65748,0.214215,-5.72463,-6.96816,-15.4811,-7.28072} KD_I75[0]= {23.1881,14.4793,1.98771,-4.50696,-7.86499,-6.60239,-15.948,-5.39305} KD_I100[0]= {17.4784,10.5007,-0.854428,-3.48576,-7.30446,-6.97864,-10.8127,-6.2962} KD_I175[0]= {4.4964,1.78828,-5.03014,-7.94884,-7.64148,-7.49595,-8.9904,-5.61647} DisplayHelpTopic "The Debugger" FinalDataSet() KD_I15[0]= {523.815,43.3699,34.2404,19.1745,-3.12118,-6.02796,-15.8594,-9.04766} sdKD_I15[0]= {51.2046,3.65022,2.053,1.68759,0.298955,0.914615,1.96152,2.21415} D0_I15[0]= {3.68006,4.32888,4.48321,4.53767,4.53604,4.46007,4.4362,4.35607} sdD0_I15[0]= {0.300296,0.0466418,0.0289589,0.0236399,0.00527329,0.0146523,0.0383729,0.0381955} KD_I30[0]= {66.8219,22.9516,15.5258,8.8986,-5.65185,-6.2776,-19.3683,-6.49244} sdKD_I30[0]= {2.7548,3.12511,0.893448,0.600647,0.52748,1.1882,2.95174,2.06462} D0_I30[0]= {4.18781,4.29406,4.47845,4.51149,4.52001,4.38302,4.46816,4.32374} sdD0_I30[0]= {0.039599,0.0408189,0.0151033,0.00723933,0.00926002,0.0197946,0.0547523,0.0362268} KD_I50[0]= {34.6353,18.4581,5.65748,0.214215,-5.72463,-6.96816,-15.4811,-7.28072} sdKD_I50[0]= {2.35408,2.50165,0.659461,0.278249,0.486263,1.27447,3.42827,2.03086} D0_I50[0]= {4.23334,4.25097,4.49611,4.54122,4.4821,4.38499,4.39847,4.32115} sdD0_I50[0]= {0.0329681,0.0305049,0.0101526,0.00386626,0.00811431,0.021255,0.0626692,0.0360268} KD_I75[0]= {23.1881,14.4793,1.98771,-4.50696,-7.86499,-6.60239,-15.948,-5.39305} sdKD_I75[0]= {2.05098,1.83185,0.328801,0.369788,0.953474,0.955206,4.36,1.60452} D0_I75[0]= {4.22131,4.24572,4.49549,4.56489,4.50365,4.39831,4.38515,4.30874} sdD0_I75[0]= {0.0304218,0.0276981,0.00519891,0.00625886,0.0149517,0.0157961,0.0755492,0.0285947} KD_I100[0]= {17.4784,10.5007,-0.854428,-3.48576,-7.30446,-6.97864,-10.8127,-6.2962} sdKD_I100[0]= {1.43644,1.31104,0.220843,0.523478,0.585611,0.947673,1.7233,1.5733} D0_I100[0]= {4.24153,4.26028,4.49552,4.52839,4.49257,4.39483,4.40176,4.34024} sdD0_I100[0]= {0.0219255,0.0236612,0.00324824,0.0107474,0.0102981,0.015498,0.0318908,0.0291194} KD_I175[0]= {4.4964,1.78828,-5.03014,-7.94884,-7.64148,-7.49595,-8.9904,-5.61647} sdKD_I175[0]= {0.90194,0.503215,0.444659,0.591821,0.804906,0.895349,2.31462,1.0831} D0_I175[0]= {4.28922,4.26344,4.49227,4.5393,4.48621,4.42923,4.26084,4.30652} sdD0_I175[0]= {0.0224453,0.00783335,0.007596,0.011002,0.0140478,0.0148348,0.0560604,0.021045} FinalDataSet() Edit/K=0 root:KD_pH3;DelayUpdate Edit/K=0 root:KD_pH10;DelayUpdate FinalDataSet() KD_pH3 KD_pH4 KD_pH5 KD_pH6 KD_pH7 KD_pH8 KD_pH9 KD_pH10 FinalDataSet() KD_pH3[0]= {523.815,66.8219,34.6353,23.1881,17.4784,4.4964} KD_pH4[0]= {43.3699,22.9516,18.4581,14.4793,10.5007,1.78828} KD_pH5[0]= {34.2404,15.5258,5.65748,1.98771,-0.854428,-5.03014} KD_pH6[0]= {19.1745,8.8986,0.214215,-4.50696,-3.48576,-7.94884} KD_pH7[0]= {-3.12118,-5.65185,-5.72463,-7.86499,-7.30446,-7.64148} KD_pH8[0]= {-6.02796,-6.2776,-6.96816,-6.60239,-6.97864,-7.49595} KD_pH9[0]= {-15.8594,-19.3683,-15.4811,-15.948,-10.8127,-8.9904} KD_pH10[0]= {-9.04766,-6.49244,-7.28072,-5.39305,-6.2962,-5.61647} FinalDataSet() coef_pH3I15_DLS_clean coef_pH3I30_DLS_clean coef_pH3I50_DLS_clean coef_pH3I75_DLS_clean coef_pH3I100_DLS_clean coef_pH3I175_DLS_clean coef_pH4I15_DLS_clean coef_pH4I30_DLS_clean coef_pH4I50_DLS_clean coef_pH4I75_DLS_clean coef_pH4I100_DLS_clean coef_pH4I175_DLS_clean coef_pH5I15_DLS_clean coef_pH5I30_DLS_clean coef_pH5I50_DLS_clean coef_pH5I75_DLS_clean coef_pH5I100_DLS_clean coef_pH5I175_DLS_clean coef_pH6I15_DLS_clean coef_pH6I30_DLS_clean coef_pH6I50_DLS_clean coef_pH6I75_DLS_clean coef_pH6I100_DLS_clean coef_pH6I175_DLS_clean coef_pH7I15_DLS_clean coef_pH7I30_DLS_clean coef_pH7I50_DLS_clean coef_pH7I75_DLS_clean coef_pH7I100_DLS_clean coef_pH7I175_DLS_clean coef_pH8I15_DLS_clean coef_pH8I30_DLS_clean coef_pH8I50_DLS_clean coef_pH8I75_DLS_clean coef_pH8I100_DLS_clean coef_pH8I175_DLS_clean coef_pH9I15_DLS_clean coef_pH9I30_DLS_clean coef_pH9I50_DLS_clean coef_pH9I75_DLS_clean coef_pH9I100_DLS_clean coef_pH9I175_DLS_clean coef_pH10I15_DLS_clean coef_pH10I30_DLS_clean coef_pH10I50_DLS_clean coef_pH10I75_DLS_clean coef_pH10I100_DLS_clean coef_pH10I175_DLS_clean FinalDataSet() 1927.67 279.838 146.623 97.8842 74.135 19.2861 187.743 98.5554 78.4649 61.4751 44.7358 7.62424 153.507 69.5315 25.4366 8.93571 -3.8411 -22.5967 87.0073 40.146 0.972799 -20.5738 -15.7848 -36.0821 -14.1578 -25.5464 -25.6583 -35.4211 -32.8158 -34.2813 -26.8851 -27.5149 -30.5553 -29.0394 -30.6699 -33.2013 -70.3554 -86.5406 -68.0931 -69.9346 -47.5949 -38.3066 -39.4122 -28.0716 -31.4611 -23.2373 -27.327 -24.1874 FinalDataSet() KD_pH3[0]= {523.815,66.8219,34.6353,23.1881,17.4784,4.4964} sdKD_pH3[0]= {51.2046,2.7548,2.35408,2.05098,1.43644,0.90194} D0_pH3[0]= {3.68006,4.18781,4.23334,4.22131,4.24153,4.28922} sdD0_pH3[0]= {0.300296,0.039599,0.0329681,0.0304218,0.0219255,0.0224453} KD_pH4[0]= {43.3699,22.9516,18.4581,14.4793,10.5007,1.78828} sdKD_pH4[0]= {3.65022,3.12511,2.50165,1.83185,1.31104,0.503215} D0_pH4[0]= {4.32888,4.29406,4.25097,4.24572,4.26028,4.26344} sdD0_pH4[0]= {0.0466418,0.0408189,0.0305049,0.0276981,0.0236612,0.00783335} KD_pH5[0]= {34.2404,15.5258,5.65748,1.98771,-0.854428,-5.03014} sdKD_pH5[0]= {2.053,0.893448,0.659461,0.328801,0.220843,0.444659} D0_pH5[0]= {4.48321,4.47845,4.49611,4.49549,4.49552,4.49227} sdD0_pH5[0]= {0.0289589,0.0151033,0.0101526,0.00519891,0.00324824,0.007596} KD_pH6[0]= {19.1745,8.8986,0.214215,-4.50696,-3.48576,-7.94884} sdKD_pH6[0]= {1.68759,0.600647,0.278249,0.369788,0.523478,0.591821} D0_pH6[0]= {4.53767,4.51149,4.54122,4.56489,4.52839,4.5393} sdD0_pH6[0]= {0.0236399,0.00723933,0.00386626,0.00625886,0.0107474,0.011002} KD_pH7[0]= {-3.12118,-5.65185,-5.72463,-7.86499,-7.30446,-7.64148} sdKD_pH7[0]= {0.298955,0.52748,0.486263,0.953474,0.585611,0.804906} D0_pH7[0]= {4.53604,4.52001,4.4821,4.50365,4.49257,4.48621} sdD0_pH7[0]= {0.00527329,0.00926002,0.00811431,0.0149517,0.0102981,0.0140478} KD_pH8[0]= {-6.02796,-6.2776,-6.96816,-6.60239,-6.97864,-7.49595} sdKD_pH8[0]= {0.914615,1.1882,1.27447,0.955206,0.947673,0.895349} D0_pH8[0]= {4.46007,4.38302,4.38499,4.39831,4.39483,4.42923} sdD0_pH8[0]= {0.0146523,0.0197946,0.021255,0.0157961,0.015498,0.0148348} KD_pH9[0]= {-15.8594,-19.3683,-15.4811,-15.948,-10.8127,-8.9904} sdKD_pH9[0]= {1.96152,2.95174,3.42827,4.36,1.7233,2.31462} D0_pH9[0]= {4.4362,4.46816,4.39847,4.38515,4.40176,4.26084} sdD0_pH9[0]= {0.0383729,0.0547523,0.0626692,0.0755492,0.0318908,0.0560604} KD_pH10[0]= {-9.04766,-6.49244,-7.28072,-5.39305,-6.2962,-5.61647} sdKD_pH10[0]= {2.21415,2.06462,2.03086,1.60452,1.5733,1.0831} D0_pH10[0]= {4.35607,4.32374,4.32115,4.30874,4.34024,4.30652} sdD0_pH10[0]= {0.0381955,0.0362268,0.0360268,0.0285947,0.0291194,0.021045} FinalDataSet() PlotInputDataAndFit(SLS_clean,6,2) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.0845007e-06,8.5222484e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.1041081e-06,1.02935983e-05 Zap(SLS_clean) SetAxis left 6.7041081e-06,1.0293598e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.6038276e-06,9.356956e-06 SetAxis left 4.1298518e-06,1.159927e-05 SetAxis left 1.8555355e-06,1.3530928e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.6384081e-06,1.7534886e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.3057578e-06,1.2683882e-05 SetAxis left 2.4043877e-06,8.8105656e-05 SetAxis left 4.0917974e-06,8.6124096e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,3) SetAxis left 4.5851827e-06,9.7804393e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.0950472e-06,1.0270575e-05 Zap(SLS_clean) SetAxis left 4.4793718e-06,7.3329571e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.5505421e-06,8.156207e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.2494701e-06,1.0908722e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.3818819e-06,9.4427441e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.4049859e-06,9.9927205e-06 Zap(SLS_clean) Edit/K=0 root:DLS_clean;DelayUpdate LoadWave/J/M/U={0,0,1,0}/D/A=SLS_input/K=0 "Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:SLS_Igor.txt" Delimited text load from "SLS_Igor.txt" Matrix size: (35,288), wave: SLS_input0 Edit/K=0 root:SLS_input0;DelayUpdate Edit/K=0 root:SLS_clean;DelayUpdate SetAxis left 5.1227634e-06,9.4230965e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.9194039e-06,1.0626456e-05 SetAxis left 4.8457399e-06,8.8831394e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.8771263e-06,8.9940459e-06 SetAxis left 5.3396309e-06,9.5315413e-06 Zap(SLS_clean) SetAxis left 4.6631586e-06,9.9915558e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.8334214e-06,9.1273622e-06 SetAxis left 5.4023463e-06,1.0326777e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.7880288e-06,1.191668e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.5882892e-06,1.1300315e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 1.5163326e-05,5.7094938e-06 SetAxis left 5.7094938e-06,1.5163326e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.004056e-06,1.7994408e-05 Zap(SLS_clean) Zap(SLS_clean) SetAxis left -6.9543149e-06,9.7464359e-05 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,4) SetAxis left 4.6809019e-06,1.0158224e-05 SetAxis left 3.9138453e-06,1.0925281e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.1011291e-06,8.7903103e-06 SetAxis left 4.9521509e-06,6.4904045e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.5485289e-06,1.2162877e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.1725596e-06,7.1608642e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.1818918e-06,8.151532e-06 SetAxis left 1.2788119e-06,1.1612628e-05 Zap(SLS_clean) SetAxis left -3.8699862e-06,1.6761426e-05 SetAxis left 4.7543202e-06,8.8536544e-06 Zap(SLS_clean) SetAxis left 3.4453691e-06,1.0162606e-05 Zap(SLS_clean) SetAxis left 5.4692719e-06,1.0928434e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 2.8349111e-06,1.2090292e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.381195e-06,1.0164665e-05 SetAxis left 4.10063e-06,9.2791885e-06 SetAxis left 3.6700277e-06,1.3339381e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left -2.3990076e-07,1.7249309e-05 SetAxis left 5.0511555e-06,1.0068406e-05 SetAxis left 3.6212162e-06,1.5718757e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.5104061e-06,1.3473264e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,5) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.4074106e-06,9.7647198e-06 SetAxis left 3.6945184e-06,9.169515e-06 SetAxis left 4.9057333e-06,6.1174194e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.4105524e-06,7.8579956e-06 Edit/K=0 root:SLS_clean;DelayUpdate Edit/K=0 root:SLS_input0;DelayUpdate SetAxis left 5.9918727e-06,8.4339729e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.8530846e-06,8.75489e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.4829587e-06,8.2718384e-06 SetAxis left 3.1224594e-06,1.0309632e-05 SetAxis left 4.3089016e-06,1.0236958e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.3924643e-06,9.5284258e-06 Zap(SLS_clean) SetAxis left 4.3110954e-07,1.3700675e-05 SetAxis left 4.9457062e-06,8.4341123e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.3084388e-06,1.0658971e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.5683663e-06,1.1011457e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,6) SetAxis left 3.1351665e-06,1.0086473e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.1871186e-06,8.4991711e-06 Zap(SLS_clean) SetAxis left -6.2565903e-06,1.8741167e-05 SetAxis left 5.8328221e-06,7.9098871e-06 SetAxis left 4.7722369e-06,8.4963111e-06 SetAxis left -1.9918378e-06,1.4216035e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.3533821e-06,8.2545925e-06 SetAxis left 5.4692719e-06,1.0928434e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.9459734e-06,8.7967358e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.6449169e-06,8.1098802e-06 SetAxis left 3.6928865e-06,9.7392052e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.3306672e-06,8.8973221e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.411574e-06,9.16274e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.2701869e-06,9.8615979e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 7.3936438e-06,1.1003732e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.6905464e-06,1.0957816e-05 PlotInputDataAndFit(SLS_clean,6,7) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 2.922319e-06,1.1114402e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.0262131e-06,9.2334488e-06 SetAxis left -6.8848348e-06,1.9364642e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.3551273e-06,1.0935515e-05 SetAxis left 6.056168e-06,9.3281252e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.4120726e-06,8.8203579e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 2.3251373e-06,1.3058857e-05 Zap(SLS_clean) SetAxis left 7.2976134e-06,1.0806602e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.6980484e-06,9.0277805e-06 SetAxis left 7.5763237e-06,7.9297721e-06 PlotInputDataAndFit(SLS_clean,6,8) SetAxis left -6.9006363e-05,0.0031081913 Zap(SLS_clean) SetAxis/A left Zap(SLS_clean) Zap(SLS_clean) SetAxis left 1.2307611e-06,1.280596e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 2.933279e-06,1.0713336e-05 SetAxis left 4.4929205e-06,8.7667414e-06 SetAxis left -5.5240271e-06,1.7847701e-05 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.7143062e-06,9.9633844e-06 SetAxis left 4.5136673e-06,1.0776975e-05 Zap(SLS_clean) SetAxis left 6.2440531e-06,8.4286328e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.5105664e-06,8.4229067e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.5822474e-06,1.1817475e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() pH_slopes_SLS_dimensionless() pH_slopes_DLS_dimensionless() intercepts_pH_DLS() intercepts_pH_SLS() SetAxis left 4e-06,1.3e-05 Edit/K=0 root:M_I15;DelayUpdate FinalDataSet() Edit/K=0 root:M_I15;DelayUpdate FinalDataSet() Edit/K=0 root:KS_I15;DelayUpdate Edit/K=0 root:sdKS_I15;DelayUpdate Edit/K=0 root:M_I15;DelayUpdate Edit/K=0 root:KD_pH9;DelayUpdate Edit/K=0 root:KS_I30;DelayUpdate FinalDataSet() Edit/K=0 root:KS_I30;DelayUpdate Edit/K=0 root:KS_I30;DelayUpdate Edit/K=0 root:KS_I30;DelayUpdate Edit/K=0 root:KD_I30;DelayUpdate FinalDataSet() Edit/K=0 root:KS_I30;DelayUpdate Edit/K=0 root:sdKS_pH4;DelayUpdate concentration_dependence_DLS() concentration_dependence_SLS() Edit/K=0 root:KS_pH6;DelayUpdate I_slopes_SLS() SetAxis/A left;DelayUpdate SetAxis/A bottom Edit/K=0 root:KD_I15;DelayUpdate Edit/K=0 root:KD_I15;DelayUpdate Edit/K=0 root:KD_pH3;DelayUpdate Edit/K=0 root:KS_I15;DelayUpdate Edit/K=0 root:KS_I15;DelayUpdate Edit/K=0 root:KS_pH3;DelayUpdate Edit/K=0 root:KS_pH3;DelayUpdate I_slopes_SLS() SetAxis/A left;DelayUpdate SetAxis/A bottom SetAxis left -150,150;DelayUpdate SetAxis bottom 0.35,1.45 I_slopes_DLS() SetAxis left -25,70;DelayUpdate SetAxis bottom 0.35,1.45 I_slopes_DLS() ModifyGraph marker(KD_pH9)=32,rgb(KD_pH9)=(52428,52425,1) ModifyGraph rgb(KD_pH9)=(39321,39319,1) ModifyGraph marker(KD_pH10)=62,msize(KD_pH10)=8,rgb(KD_pH10)=(1,39321,39321) ModifyGraph rgb(KD_pH10)=(26411,1,52428) ModifyGraph rgb(KD_pH10)=(19729,1,39321) ModifyGraph rgb(KD_pH10)=(0,17409,26214) ModifyGraph msize(KD_pH10)=10,rgb(KD_pH10)=(0,2,26214) Label bottom " \\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" ModifyGraph lblPosMode(bottom)=1;DelayUpdate Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" Label left "\\Z24k\\BD" I_slopes_DLS() ModifyGraph nticks(bottom)=8 I_slopes_SLS() ModifyGraph nticks(bottom)=9 I_slopes_DLS() pH3_fit_DLS() SetAxis left -5,370 pH4_fit_DLS() SetAxis left 0,45 pH5_fit_DLS() SetAxis left -7,32 pH6_fit_DLS() SetAxis left -10,22 pH7_fit_DLS() SetAxis left -10,-3 pH8_fit_DLS() SetAxis left -10,-4 pH9_fit_DLS() SetAxis left -20,-6 pH10_fit_DLS() SetAxis left -10,-2 pH10_fit_SLS() SetAxis left -20,25 pH9_fit_SLS() SetAxis left -15,40 pH8_fit_SLS() SetAxis left -70,45 pH7_fit_SLS() SetAxis left -30,20 pH6_fit_SLS() SetAxis left -20,60 pH6_fit_SLS() pH5_fit_SLS() SetAxis left -15,110 pH4_fit_SLS() SetAxis left -15,130 pH3_fit_SLS() SetAxis left -5,1400 Edit/K=0 root:KS_pH3;DelayUpdate PlotInputDataAndFit(SLS_clean,6,8) Edit/K=0 root:KS_pH3;DelayUpdate I_slopes_DLS() I_slopes_DLS() I_slopes_SLS() PlotInputDataAndFit(SLS_clean,6,8) SetAxis left 6.8142395e-06,1.1269181e-05 Zap(SLS_clean) Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 5.3345036e-06,8.7022175e-06 Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 6.7920178e-06,7.8942719e-06 intercepts_pH_SLS() Zap(SLS_clean) Error Zap(SLS_clean) SetAxis left 5.0706649e-06,8.1014655e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 59419.962,318580.04 SetAxis left 5.1596635e-06,5.8634892e-06 Zap(SLS_clean) Zap(SLS_clean) intercepts_pH_SLS() Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.7154741e-06,7.9384744e-06 Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 5.1431835e-06,8.5034319e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.6305799e-06,1.0016035e-05 SetAxis left 4.4394978e-06,8.8201641e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left -9.7867149e-07,1.2772063e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 6.2735419e-06,7.421119e-06 FinalDataSet() intercepts_pH_SLS() SetAxis left 80000,283000 PlotInputDataAndFit(SLS_clean,6,8) intercepts_pH_SLS() I_slopes_SLS() FinalDataSet() intercepts_pH_SLS() I_slopes_SLS() Edit/K=0 root:KS_pH10;DelayUpdate PlotInputDataAndFit(SLS_clean,6,8) I_slopes_SLS() pH_slopes_SLS_dimensionless() intercepts_pH_SLS() SetAxis left 7.3312746e-06,8.6878654e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.1011804e-06,8.545435e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.0191352e-06,9.6585554e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.8146537e-06,8.8436838e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.2060953e-06,1.1257372e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 3.7418824e-06,1.2218037e-05 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,8) FinalDataSet() intercepts_pH_SLS() I_slopes_SLS() SetAxis left 6.6900441e-06,8.3253462e-06 Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 6.3512298e-06,8.3402524e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.8359518e-06,8.1226856e-06 intercepts_pH_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,8) FinalDataSet() intercepts_pH_SLS() I_slopes_SLS() PlotInputDataAndFit(DLS_clean,6,8) Edit/K=0 root:KD_pH9;DelayUpdate intercepts_pH_DLS() I_slopes_DLS() SetAxis left 4.079039,4.4242943 Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,8) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.3439746,4.9061767 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.14127,4.3807002 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() Edit/K=0 root:KD_pH10;DelayUpdate intercepts_pH_SLS() intercepts_pH_DLS() I_slopes_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.0798088,4.3788659 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() intercepts_pH_DLS() I_slopes_DLS() I_slopes_DLS() I_slopes_DLS() Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() intercepts_pH_DLS() intercepts_pH_DLS() I_slopes_DLS() killGraphs() killGraphs() killGraphs() killTables() pH9_fit_SLS() SetAxis left -30.390615,55.390615 intercepts_pH_SLS() PlotInputDataAndFit(DLS_clean,7,8) PlotInputDataAndFit(DLS_clean,6,7) SetAxis left 3.5447545,4.5585788 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.820805,4.6016308 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.644473,4.6166852 SetAxis left 3.6236294,4.6063706 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.7858521,4.5441479 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) pH9_fit_DLS() PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() PlotInputDataAndFit(DLS_clean,6,8) pH9_fit_DLS() SetAxis left -22.175,-7.825 PlotInputDataAndFit(DLS_clean,6,7) SetAxis left 3.6306519,4.4864524 pH9_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) pH9_fit_DLS() SetAxis/A left Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.690191,4.5709672 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH9_fit_DLS() pH9_fit_SLS() SetAxis/A left Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) pH9_fit_DLS() pH9_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() Zap(DLS_clean) pH9_fit_DLS() pH9_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() pH9_fit_SLS() SetAxis/A left intercepts_pH_DLS() intercepts_pH_DLS() Zap(DLS_clean) Error Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() pH9_fit_DLS() pH9_fit_DLS() pH9_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() Edit/K=0 root:DLS_clean;DelayUpdate Edit/K=0 root:DLS_input0;DelayUpdate Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) pH9_fit_DLS() intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH10_fit_DLS() pH9_fit_DLS() pH9_fit_DLS() FinalDataSet() Zap(DLS_clean) intercepts_pH_DLS() FinalDataSet() PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH9_fit_DLS() pH9_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH9_fit_DLS() pH9_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) Edit/K=0 root:DLS_clean;DelayUpdate PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH9_fit_DLS() Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH9_fit_DLS() Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() pH9_fit_DLS() intercepts_pH_DLS() Zap(DLS_clean) killGraphs() PlotInputDataAndFit(DLS_clean,6,7) FinalDataSet() intercepts_pH_DLS() pH9_fit_DLS() killGraphs() PlotInputDataAndFit(SLS_clean,6,7) pH9_fit_SLS() SetAxis/A left intercepts_pH_SLS() SetAxis left 4.9187462e-06,8.3409157e-06 intercepts_pH_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 5.1709282e-06,8.9002554e-06 intercepts_pH_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,7) FinalDataSet() intercepts_pH_SLS() pH9_fit_SLS() pH9_fit_DLS() pH9_fit_SLS() SetAxis left 4.2833317e-06,9.6510863e-06 pH9_fit_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.543016e-06,9.4174379e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.9380936e-06,7.9953795e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.7480614e-06,8.1899552e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) pH9_fit_SLS() PlotInputDataAndFit(SLS_clean,6,7) FinalDataSet() intercepts_pH_SLS() pH9_fit_DLS() pH9_fit_SLS() SetAxis/A left SetAxis left 5.6151499e-06,6.8770405e-06 Zap(SLS_clean) SetAxis left 7.0495982e-06,7.9970926e-06 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,7) FinalDataSet() intercepts_pH_SLS() pH9_fit_SLS() Edit/K=0 root:DLS_clean;DelayUpdate LoadWave/J/M/U={0,0,1,0}/D/A=SLS_input/K=0 "Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:SLS_Igor.txt" Delimited text load from "SLS_Igor.txt" Matrix size: (35,288), wave: SLS_input1 Edit/K=0 root:SLS_input1;DelayUpdate Edit/K=0 root:SLS_clean;DelayUpdate Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) pH9_fit_SLS() pH9_fit_DLS() PlotInputDataAndFit(SLS_clean,6,7) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,7) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,7) FinalDataSet() pH9_fit_SLS() intercepts_pH_SLS() Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,7) FinalDataSet() intercepts_pH_SLS() pH9_fit_SLS() PlotInputDataAndFit(SLS_clean,6,6) pH8_fit_SLS() intercepts_pH_SLS() pH8_fit_DLS() Zap(SLS_clean) SetAxis left -2.7141054e-06,1.4160821e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.5295872e-06,8.0118257e-06 Zap(SLS_clean) intercepts_pH_SLS() SetAxis left 8.2559697e-06,9.8482453e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,6) FinalDataSet() intercepts_pH_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,6) SetAxis left 4.3579022e-06,8.9059144e-06 Zap(SLS_clean) Error Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,6) FinalDataSet() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,6) FinalDataSet() FinalDataSet() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 7.198136e-06,7.9931304e-06 PlotInputDataAndFit(SLS_clean,6,6) FinalDataSet() PlotInputDataAndFit(DLS_clean,6,6) intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Error Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,6) FinalDataSet() pH8_fit_SLS() SetAxis left -20,4.99305 FinalDataSet() Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,6) FinalDataSet() Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,6) FinalDataSet() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,6) FinalDataSet() killGraphs() PlotInputDataAndFit(DLS_clean,6,5) pH7_fit_DLS() intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,5) FinalDataSet() pH7_fit_DLS() intercepts_pH_DLS() intercepts_pH_SLS() pH7_fit_SLS() PlotInputDataAndFit(SLS_clean,6,5) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,5) FinalDataSet() FinalDataSet() Zap(SLS_clean) SetAxis left 6.1607214e-06,7.1278979e-06 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,5) FinalDataSet() pH6_fit_DLS() intercepts_pH_DLS() PlotInputDataAndFit(SLS_clean,6,4) SetAxis left 5.5256427e-06,7.7429053e-06 pH6_fit_SLS() SetAxis/A left pH6_fit_SLS() SetAxis left 5.2497454e-06,8.0188026e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.8710995e-06,8.5609922e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.7251617e-06,9.6422311e-06 Zap(SLS_clean) Error Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,4) FinalDataSet() SetAxis left 5.2974121e-06,1.0069981e-05 Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,4) FinalDataSet() PlotInputDataAndFit(DLS_clean,6,4) pH6_fit_DLS() Zap(SLS_clean) Error Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.5361769,4.5538231 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,4) FinalDataSet() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,4) FinalDataSet() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,4) FinalDataSet() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,4) FinalDataSet() pH5_fit_DLS() PlotInputDataAndFit(DLS_clean,6,3) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,3) FinalDataSet() SetAxis left -7,36 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,3) FinalDataSet() PlotInputDataAndFit(SLS_clean,6,3) intercepts_pH_SLS() pH5_fit_SLS() pH5_fit_SLS() pH5_fit_DLS() SetAxis left 4.3456466e-06,8.5183868e-06 concentration_dependence_SLS() intercepts_pH_DLS() concentration_dependence_DLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.3249852e-06,9.2208747e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,3) FinalDataSet() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Error Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) concentration_dependence_SLS() Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,3) FinalDataSet() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,3) FinalDataSet() PlotInputDataAndFit(SLS_clean,6,3) PlotInputDataAndFit(SLS_clean,6,3) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,3) FinalDataSet() PlotInputDataAndFit(SLS_clean,6,2) pH4_fit_SLS() Zap(SLS_clean) Error Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.9006676e-06,8.707307e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.5427138e-06,7.1101157e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.0353426e-06,8.925441e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() SetAxis left 5.539547e-06,8.177628e-06 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() PlotInputDataAndFit(SLS_clean,6,2) PlotInputDataAndFit(DLS_clean,6,2) Zap(SLS_clean) Error Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Error Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,2) FinalDataSet() PlotInputDataAndFit(DLS_clean,6,1) pH4_fit_DLS() pH3_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,1) FinalDataSet() intercepts_pH_SLS() pH3_fit_SLS() PlotInputDataAndFit(SLS_clean,6,1) SetAxis left 5.7619756e-06,7.2224111e-06 Zap(SLS_clean) SetAxis left 6.8601427e-06,8.1631251e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,1) FinalDataSet() pH3_fit_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,1) FinalDataSet() Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,1) FinalDataSet() pH3_fit_SLS() pH10_fit_DLS() SetAxis/A left pH10_fit_SLS() SetAxis/A left intercepts_pH_DLS() intercepts_pH_SLS() killGraphs() killTables() concentration_dependence_DLS() SetAxis left 4.2,5.6 concentration_dependence_DLS() CurveFit/NTHR=0 line avgD_I15 /X=avgFractionDLS_I15 /W=sdD_I15 /I=1 /D fit_avgD_I15= W_coef[0]+W_coef[1]*x W_coef={4.4852,160.54} V_chisq= 201.857;V_npnts= 18;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 3.34054e-34;V_Rab= -0.897852; V_Pr= 0.848846;V_r2= 0.785088; W_sigma={0.00592,2.53} Coefficient values one standard deviation a =4.4852 0.00592 b =160.54 2.53 RemoveFromGraph fit_avgD_I15 CurveFit/X=1/NTHR=0 line avgD_I15 /X=avgFractionDLS_I15 /W=sdD_I15 /I=1 /D fit_avgD_I15= W_coef[0]+W_coef[1]*x W_coef={4.4852,160.54} V_chisq= 201.857;V_npnts= 18;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 3.34054e-34;V_Rab= -0.897852; V_Pr= 0.848846;V_r2= 0.785088; W_sigma={0.00592,2.53} Coefficient values one standard deviation a =4.4852 0.00592 b =160.54 2.53 CurveFit/X=1/NTHR=0 line avgD_I30 /X=avgFractionDLS_I30 /W=sdD_I30 /I=1 /D fit_avgD_I30= W_coef[0]+W_coef[1]*x W_coef={4.5098,51.294} V_chisq= 94.787;V_npnts= 19;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 8.14411e-13;V_Rab= -0.888004; V_Pr= 0.80624;V_r2= 0.762306; W_sigma={0.00561,2.43} Coefficient values one standard deviation a =4.5098 0.00561 b =51.294 2.43 CurveFit/X=1/NTHR=0 line avgD_I50 /X=avgFractionDLS_I50 /W=sdD_I50 /I=1 /D fit_avgD_I50= W_coef[0]+W_coef[1]*x W_coef={4.5186,18.017} V_chisq= 8.37925;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.496425;V_Rab= -0.852492; V_Pr= 0.839698;V_r2= 0.699779; W_sigma={0.00679,2.39} Coefficient values one standard deviation a =4.5186 0.00679 b =18.017 2.39 CurveFit/X=1/NTHR=0 line avgD_I75 /X=avgFractionDLS_I75 /W=sdD_I75 /I=1 /D fit_avgD_I75= W_coef[0]+W_coef[1]*x W_coef={4.5005,7.2899} V_chisq= 7.43573;V_npnts= 12;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.683768;V_Rab= -0.888784; V_Pr= 0.732442;V_r2= 0.59732; W_sigma={0.00563,1.83} Coefficient values one standard deviation a =4.5005 0.00563 b =7.2899 1.83 CurveFit/X=1/NTHR=0 line avgD_I100 /X=avgFractionDLS_I100 /W=sdD_I100 /I=1 /D fit_avgD_I100= W_coef[0]+W_coef[1]*x W_coef={4.4963,-4.6577} V_chisq= 0.367192;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.996185;V_Rab= -0.71413; V_Pr= -0.913743;V_r2= 1.14203; W_sigma={0.00598,2.87} Coefficient values one standard deviation a =4.4963 0.00598 b =-4.6577 2.87 CurveFit/X=1/NTHR=0 line avgD_I175 /X=avgFractionDLS_I175 /W=sdD_I175 /I=1 /D fit_avgD_I175= W_coef[0]+W_coef[1]*x W_coef={4.4753,-20.455} V_chisq= 7.66043;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.467323;V_Rab= -0.871253; V_Pr= -0.908246;V_r2= 0.919955; W_sigma={0.00562,1.31} Coefficient values one standard deviation a =4.4753 0.00562 b =-20.455 1.31 killGraphs() concentration_dependence_DLS() Edit/K=0 root:fit_avgD_I15;DelayUpdate RemoveFromGraph fit_avgD_I15,fit_avgD_I30,fit_avgD_I50,fit_avgD_I75,fit_avgD_I100,fit_avgD_I175 concentration_dependence_DLS() CurveFit/X=1/NTHR=0 line avgD_I175 /X=avgFractionDLS_I175 /W=sdD_I175 /I=1 /D fit_avgD_I175= W_coef[0]+W_coef[1]*x W_coef={4.4753,-20.455} V_chisq= 7.66043;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.467323;V_Rab= -0.871253; V_Pr= -0.908246;V_r2= 0.919955; W_sigma={0.00562,1.31} Coefficient values one standard deviation a =4.4753 0.00562 b =-20.455 1.31 CurveFit/X=1/NTHR=0 line avgD_I100 /X=avgFractionDLS_I100 /W=sdD_I100 /I=1 /D fit_avgD_I100= W_coef[0]+W_coef[1]*x W_coef={4.4963,-4.6577} V_chisq= 0.367192;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.996185;V_Rab= -0.71413; V_Pr= -0.913743;V_r2= 1.14203; W_sigma={0.00598,2.87} Coefficient values one standard deviation a =4.4963 0.00598 b =-4.6577 2.87 CurveFit/X=1/NTHR=0 line avgD_I75 /X=avgFractionDLS_I75 /W=sdD_I75 /I=1 /D fit_avgD_I75= W_coef[0]+W_coef[1]*x W_coef={4.5005,7.2899} V_chisq= 7.43573;V_npnts= 12;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.683768;V_Rab= -0.888784; V_Pr= 0.732442;V_r2= 0.59732; W_sigma={0.00563,1.83} Coefficient values one standard deviation a =4.5005 0.00563 b =7.2899 1.83 CurveFit/X=1/NTHR=0 line avgD_I50 /X=avgFractionDLS_I50 /W=sdD_I50 /I=1 /D fit_avgD_I50= W_coef[0]+W_coef[1]*x W_coef={4.5186,18.017} V_chisq= 8.37925;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.496425;V_Rab= -0.852492; V_Pr= 0.839698;V_r2= 0.699779; W_sigma={0.00679,2.39} Coefficient values one standard deviation a =4.5186 0.00679 b =18.017 2.39 CurveFit/X=1/NTHR=0 line avgD_I30 /X=avgFractionDLS_I30 /W=sdD_I30 /I=1 /D fit_avgD_I30= W_coef[0]+W_coef[1]*x W_coef={4.5098,51.294} V_chisq= 94.787;V_npnts= 19;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 8.14411e-13;V_Rab= -0.888004; V_Pr= 0.80624;V_r2= 0.762306; W_sigma={0.00561,2.43} Coefficient values one standard deviation a =4.5098 0.00561 b =51.294 2.43 CurveFit/X=1/NTHR=0 line avgD_I15 /X=avgFractionDLS_I15 /W=sdD_I15 /I=1 /D fit_avgD_I15= W_coef[0]+W_coef[1]*x W_coef={4.4852,160.54} V_chisq= 201.857;V_npnts= 18;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 3.34054e-34;V_Rab= -0.897852; V_Pr= 0.848846;V_r2= 0.785088; W_sigma={0.00592,2.53} Coefficient values one standard deviation a =4.4852 0.00592 b =160.54 2.53 Legend/C/N=text0/J "\\Z16\\s(avgD_I15)\\F'Symbol'k =\\F'Geneva' 0.40 nm\\S-1\\M\r\\Z16\\s(avgD_I30)\\Z16\\F'Symbol'k =\\F'Geneva' 0.57 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\Z16\\s(avgD_I50)\\Z16\\F'Symbol'k =\\F'Geneva' 0.74 nm\\S-1\\M\r\\Z16\\s(avgD_I75)\\Z16\\F'Symbol'k =\\F'Geneva' 0.90 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\Z16\\s(avgD_I100)\\Z16\\F'Symbol'k =\\F'Geneva' 1.04 nm\\S-1\\M\r\\Z16\\s(avgD_I175)\\Z16\\F'Symbol'k =\\F'Geneva' 1.38 nm\\S-1\\M" concentration_dependence_DLS() concentration_dependence_DLS() concentration_dependence_DLS() concentration_dependence_SLS() CurveFit/X=1/NTHR=0 line KCR_I15 /X=avgFractionSLS_I15 /W=sdKCR_I15 /I=1 /D fit_KCR_I15= W_coef[0]+W_coef[1]*x W_coef={5.9706e-06,0.00048449} V_chisq= 1.52559;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.8221;V_Rab= -0.81877; V_Pr= 0.775727;V_r2= 0.627018; W_sigma={3.16e-07,7.67e-05} Coefficient values one standard deviation a =5.9706e-06 3.16e-07 b =0.00048449 7.67e-05 CurveFit/X=1/NTHR=0 line KCR_I30 /X=avgFractionSLS_I30 /W=sdKCR_I30 /I=1 /D fit_KCR_I30= W_coef[0]+W_coef[1]*x W_coef={5.8891e-06,0.00035356} V_chisq= 9.57372;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.214044;V_Rab= -0.856472; V_Pr= 0.882617;V_r2= 0.929793; W_sigma={2.77e-07,6.64e-05} Coefficient values one standard deviation a =5.8891e-06 2.77e-07 b =0.00035356 6.64e-05 CurveFit/X=1/NTHR=0 line KCR_I50 /X=avgFractionSLS_I50 /W=sdKCR_I50 /I=1 /D fit_KCR_I50= W_coef[0]+W_coef[1]*x W_coef={6.631e-06,0.00014089} V_chisq= 0.218255;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.97459;V_Rab= -0.83793; V_Pr= 0.973073;V_r2= 0.954544; W_sigma={3.35e-07,7.61e-05} Coefficient values one standard deviation a =6.631e-06 3.35e-07 b =0.00014089 7.61e-05 CurveFit/X=1/NTHR=0 line KCR_I75 /X=avgFractionSLS_I75 /W=sdKCR_I75 /I=1 /D fit_KCR_I75= W_coef[0]+W_coef[1]*x W_coef={5.7275e-06,5.2392e-05} V_chisq= 0.214899;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.975149;V_Rab= -0.848872; V_Pr= 0.896443;V_r2= 0.805007; W_sigma={2.54e-07,5.56e-05} Coefficient values one standard deviation a =5.7275e-06 2.54e-07 b =5.2392e-05 5.56e-05 CurveFit/X=1/NTHR=0 line KCR_I100 /X=avgFractionSLS_I100 /W=sdKCR_I100 /I=1 /D fit_KCR_I100= W_coef[0]+W_coef[1]*x W_coef={6.0182e-06,3.6114e-05} V_chisq= 3.80605;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.43289;V_Rab= -0.836671; V_Pr= 0.283807;V_r2= 0.0966182; W_sigma={2.51e-07,5.78e-05} Coefficient values one standard deviation a =6.0182e-06 2.51e-07 b =3.6114e-05 5.78e-05 CurveFit/X=1/NTHR=0 line KCR_I175 /X=avgFractionSLS_I175 /W=sdKCR_I175 /I=1 /D fit_KCR_I175= W_coef[0]+W_coef[1]*x W_coef={5.8118e-06,-1.7362e-05} V_chisq= 0.106758;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.948021;V_Rab= -0.874817; V_Pr= -0.63125;V_r2= 0.410276; W_sigma={3.37e-07,6.49e-05} Coefficient values one standard deviation a =5.8118e-06 3.37e-07 b =-1.7362e-05 6.49e-05 Legend/C/N=text0/J "\\Z16\\s(KCR_I15)\\F'Symbol'k =\\F'Geneva' 0.40 nm\\S-1\\M\r\\Z16\\s(KCR_I30)\\Z16\\F'Symbol'k =\\F'Geneva' 0.57 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\Z16\\s(KCR_I50)\\Z16\\F'Symbol'k =\\F'Geneva' 0.74 nm\\S-1\\M\r\\Z16\\s(KCR_I75)\\Z16\\F'Symbol'k =\\F'Geneva' 0.90 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\Z16\\s(KCR_I100)\\Z16\\F'Symbol'k =\\F'Geneva' 1.04 nm\\S-1\\M\r\\Z16\\s(KCR_I175)\\Z16\\F'Symbol'k =\\F'Geneva' 1.38 nm\\S-1\\M" concentration_dependence_SLS() concentration_dependence_SLS() pH_slopes_DLS_dimensionless() pH_slopes_DLS_dimensionless() pH_slopes_SLS_dimensionless() pH_slopes_SLS_dimensionless() SetAxis left -45,130 pH_slopes_SLS_dimensionless() SetAxis left -30,150 pH_slopes_DLS_dimensionless() SetAxis left -23,78 intercepts_pH_DLS() SetAxis left 3.9,4.6 intercepts_pH_SLS() SetAxis left 105000,200000 linear() SetAxis/A left;DelayUpdate SetAxis/A bottom I_slopes_SLS() SetAxis left -50,150 I_slopes_SLS() SetAxis left -30,150 I_slopes_DLS() SetAxis left -25,60 Legend/C/N=text0/J/S=3/A=MC "\\s(KD_pH3) pH = 3\r\\s(KD_pH4) pH = 4\r\\s(KD_pH5) pH = 5\r\\s(KD_pH6) pH = 6\r\\s(KD_pH7) pH = 7\r\\s(KD_pH8) pH = 8\r\\s(KD_pH9) pH = 9";DelayUpdate AppendText "\\s(KD_pH10) pH = 10" pH3_fit_DLS() SetAxis left -5,470 killGraphs() killTables() Edit/K=0 root:D0_I175;DelayUpdate Edit/K=0 root:D0_I175;DelayUpdate Edit/K=0 root:M_I175;DelayUpdate KillDataFolder/Z root:Packages:WM_WavesAverage FinalDataSet() 4.40522 0.0106049 FinalDataSet() 4.40522 0.10298 FinalDataSet() 4.40522 0.10298 150205 20073.9 FinalDataSet() 4.40522 0.10298 144984 13439.8 FinalDataSet() 4.39109 0.117077 144984 13439.8 FinalDataSet() 4.40522 0.10298 144984 13439.8 killGraphs() killTables() FinalDataSet() 4.40522 0.10298 FinalDataSet() 4.40522 0.10298 meanA[0]= {4.95253e-23,2.11856e-21} FinalDataSet() 4.40522 0.10298 meanA[0]= {5.58346e-20,2.38845e-18} FinalDataSet() 4.40522 0.10298 meanA[0]= {5.58346e-09,2.38845e-07} pH3_fit_SLS() Make/D/N=2/O W_coef W_coef[0] = {20,4} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[1] Fit converged properly Make/D/N=2/O W_coef Duplicate/D KS_pH3,New_FitDestination W_coef[0] = {20,4} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[1] Fit converged properly RemoveFromGraph Res_KS_pH3 RemoveFromGraph fit_KS_pH3 Make/D/N=2/O W_coef W_coef[0] = {20,4} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[1] Fit converged properly RemoveFromGraph fit_KS_pH3 Make/D/N=2/O W_coef W_coef[0] = {20,4e-20} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[1] Fit converged properly Edit/K=0 root:fit_KS_pH3;DelayUpdate SetAxis/A left RemoveFromGraph fit_KS_pH3 Make/D/N=2/O W_coef W_coef[0] = {20e-36,4} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0] Fit converged properly Display/K=0 fit_KS_pH3 RemoveFromGraph fit_KS_pH3 Make/D/N=2/O W_coef W_coef[0] = {20,4} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[1] Fit converged properly Make/D/N=2/O W_coef W_coef[0] = {20e-19,4} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0] Fit converged properly Edit/K=0 root:fit_KS_pH3;DelayUpdate Make/D/N=2/O W_coef W_coef[0] = {20e-19,4e-20} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Fit converged properly Edit/K=0 root:fit_KS_pH3;DelayUpdate Edit/K=0 root:kappa_nm;DelayUpdate Make/D/N=2/O W_coef W_coef[0] = {45,4} FuncFit/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={181.07,45.515} V_chisq= 113.86;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.45,8.4} Coefficient values one standard deviation ZP =181.07 6.45 AH =45.515 8.4 pH3_fit_DLS() Make/D/N=2/O W_coef W_coef[0] = {45,4} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={301.86,-61.555} V_chisq= 2430.67;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.14,3.05} Coefficient values one standard deviation ZP =301.86 1.14 AH =-61.555 3.05 Make/D/N=2/O W_coef W_coef[0] = {45,4} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 0","K1 < 50"} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>-0 Achieved: =-8.88178e-15 fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={314.43,-8.8818e-15} V_chisq= 2837.41;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.09,3.05} Coefficient values one standard deviation ZP =314.43 1.09 AH =-8.8818e-15 3.05 ShowInfo Make/D/N=2/O W_coef W_coef[0] = {45,4} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 0","K1 < 50"} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3[pcsr(A),pcsr(B)] /X=kappa_nm /W=sdKD_pH3 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>-0 Achieved: =-1.15463e-14 Curve fit with data subrange: KD_pH3[1,5] fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={292.36,-1.1546e-14} V_chisq= 1824.96;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1;V_endRow= 5; W_sigma={1.59,3.32} Coefficient values one standard deviation ZP =292.36 1.59 AH =-1.1546e-14 3.32 pH4_fit_DLS() SetAxis/A left Make/D/N=2/O W_coef W_coef[0] = {45,4} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 0","K1 < 50"} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH4 /X=kappa_nm /W=sdKD_pH4 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>-0 Achieved: =-4.44089e-15 fit_KD_pH4= FittingDynamic_constCharge(W_coef,x) W_coef={128.09,-4.4409e-15} V_chisq= 765.877;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.745,3.32} Coefficient values one standard deviation ZP =128.09 0.745 AH =-4.4409e-15 3.32 Make/D/N=2/O W_coef W_coef[0] = {10,5} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KD_pH4 /X=kappa_nm /W=sdKD_pH4 /I=1 /D Fit converged properly fit_KD_pH4= FittingStatic_constCharge(W_coef,x) W_coef={49.991,1.5642} V_chisq= 227.684;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.367,0.319} Coefficient values one standard deviation ZP =49.991 0.367 AH =1.5642 0.319 pH3_fit_DLS() killGraphs() pH3_fit_SLS() Make/D/N=2/O W_coef W_coef[0] = {10,5} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={181.07,45.515} V_chisq= 113.86;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.45,8.4} Coefficient values one standard deviation ZP =181.07 6.45 AH =45.515 8.4 pH4_fit_SLS() SetAxis/A left Make/D/N=2/O W_coef W_coef[0] = {10,5} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D Fit converged properly fit_KS_pH4= FittingStatic_constCharge(W_coef,x) W_coef={80.709,-1.0659} V_chisq= 7.81847;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.99,5.42} Coefficient values one standard deviation ZP =80.709 4.99 AH =-1.0659 5.42 Make/D/N=2/O W_coef W_coef[0] = {10,5} Make/O/T/N=1 T_Constraints T_Constraints[0] = {"K1 < 0"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- No constraints active or violated fit_KS_pH4= FittingStatic_constCharge(W_coef,x) W_coef={80.709,-1.0659} V_chisq= 7.81847;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.99,5.42} Coefficient values one standard deviation ZP =80.709 4.99 AH =-1.0659 5.42 Make/D/N=2/O W_coef W_coef[0] = {10,5} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 0","K1 < 50"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>-0 Achieved: =-2.77556e-16 fit_KS_pH4= FittingStatic_constCharge(W_coef,x) W_coef={81.322,-2.7756e-16} V_chisq= 7.8572;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.95,5.42} Coefficient values one standard deviation ZP =81.322 4.95 AH =-2.7756e-16 5.42 Make/D/N=2/O W_coef W_coef[0] = {10,5} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 5","K1 < 50"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>5 Achieved: =5 fit_KS_pH4= FittingStatic_constCharge(W_coef,x) W_coef={84.152,5} V_chisq= 9.0727;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.79,5.42} Coefficient values one standard deviation ZP =84.152 4.79 AH =5 5.42 Make/D/N=2/O W_coef W_coef[0] = {10,5} Make/O/T/N=1 T_Constraints T_Constraints[0] = {"K1 > 10"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>10 Achieved: =10 fit_KS_pH4= FittingStatic_constCharge(W_coef,x) W_coef={86.893,10} V_chisq= 11.9925;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.64,5.42} Coefficient values one standard deviation ZP =86.893 4.64 AH =10 5.42 Make/D/N=2/O W_coef W_coef[0] = {10,5} Make/O/T/N=1 T_Constraints T_Constraints[0] = {"K1 > 15"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>15 Achieved: =15 fit_KS_pH4= FittingStatic_constCharge(W_coef,x) W_coef={89.547,15} V_chisq= 16.6167;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.5,5.42} Coefficient values one standard deviation ZP =89.547 4.5 AH =15 5.42 killGraphs() pH6_fit_SLS() Make/D/N=2/O W_coef W_coef[0] = {50,25} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D Fit converged properly fit_KS_pH6= FittingStatic_constCharge(W_coef,x) W_coef={57.148,18.993} V_chisq= 6.14174;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.7,4.46} Coefficient values one standard deviation ZP =57.148 4.7 AH =18.993 4.46 pH7_fit_SLS() Make/D/N=2/O W_coef W_coef[0] = {50,25} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH7 /X=kappa_nm /W=sdKS_pH7 /I=1 /D Fit converged properly fit_KS_pH7= FittingStatic_constCharge(W_coef,x) W_coef={23.287,9.0855} V_chisq= 1.28536;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={12.8,5.24} Coefficient values one standard deviation ZP =23.287 12.8 AH =9.0855 5.24 Make/D/N=2/O W_coef W_coef[0] = {50,10} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 5","K1 < 15"} Make/D/N=2/O W_coef W_coef[0] = {50,10} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 5","K1 < 15"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<15 Achieved: =15 fit_KS_pH6= FittingStatic_constCharge(W_coef,x) W_coef={54.342,15} V_chisq= 6.94485;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.95,4.46} Coefficient values one standard deviation ZP =54.342 4.95 AH =15 4.46 killGraphs() intercepts_pH_SLS() PlotInputDataAndFit(SLS_clean,6,2) pH_slopes_DLS_dimensionless() PlotInputDataAndFit(DLS_clean,6,2) SetAxis left 4.2036156,4.3747566 pH_slopes_DLS_dimensionless() concentration_dependence_SLS() pH_slopes_SLS_dimensionless() pH_slopes_SLS_dimensionless() PlotInputDataAndFit(SLS_clean,6,2) SetAxis left 3.6519579e-06,1.4337682e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) FinalDataSet() 4.40522 0.10298 meanA[0]= {5.58346e-09,2.38845e-07} intercepts_pH_SLS() intercepts_pH_DLS() pH_slopes_SLS_dimensionless() intercepts_pH_SLS() pH_slopes_SLS_dimensionless() pH_slopes_DLS_dimensionless() pH3_fit_SLS() pH7_fit_SLS() ModifyGraph mode=3 ErrorBars KS_pH7 OFF pH3_fit_DLS() SetAxis/A left ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH3 OFF pH3_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH3 OFF pH7_fit_SLS() PlotInputDataAndFit(DLS_clean,6,2) pH_slopes_DLS_dimensionless() SetAxis left 4.1947323,4.3836399 intercepts_pH_DLS() pH_slopes_SLS_dimensionless() SetAxis left 4.1428879,4.6379366 intercepts_pH_SLS() Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.4942844,4.594049 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 3.9778406,4.522159 intercepts_pH_DLS() intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) intercepts_pH_DLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis/A left Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.2431955,4.5964701 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) killGraphs() PlotInputDataAndFit(DLS_clean,6,2) FinalDataSet() 4.42476 0.0768608 meanA[0]= {5.5588e-09,3.20012e-07} intercepts_pH_DLS() pH_slopes_DLS_dimensionless() pH3_fit_DLS() SetAxis left -209.23033,709.23033 ModifyGraph nticks(left)=10 ModifyGraph grid(left)=1 pH3_fit_SLS() ModifyGraph grid(left)=1 pH4_fit_DLS() SetAxis left -4.9140652,49.914065 ModifyGraph grid(left)=1 pH4_fit_SLS() ModifyGraph grid(left)=1 intercepts_pH_SLS() SetAxis left 4.2702474,4.419459 Zap(DLS_clean) SetAxis left 4.2528802,4.5537865 Zap(DLS_clean) Zap(DLS_clean) PlotInputDataAndFit(SLS_clean,6,2) SetAxis left 5.3710934e-06,5.9792534e-06 Edit/K=0 root:SLS_clean;DelayUpdate Edit/K=0 root:SLS_input0;DelayUpdate Zap(DLS_clean) Error Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis/A left intercepts_pH_SLS() Zap(SLS_clean) intercepts_pH_SLS() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 4.586356e-06,8.117851e-06 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) pH_slopes_DLS_dimensionless() pH_slopes_SLS_dimensionless() SetAxis left 5.9850864e-06,6.6743513e-06 SetAxis/A left Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() 4.42476 0.0768608 meanA[0]= {5.5588e-09,3.20012e-07} intercepts_pH_SLS() intercepts_pH_DLS() pH_slopes_SLS_dimensionless() SetAxis left 5.7651806e-06,7.8325436e-06 Zap(SLS_clean) SetAxis left 5.9849146e-06,7.043738e-06 intercepts_pH_SLS() intercepts_pH_SLS() Edit/K=0 root:SLS_clean;DelayUpdate SetAxis/A left Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 5.9773006e-06,6.8519958e-06 pH_slopes_SLS_dimensionless() SetAxis left 6.3138342e-06,8.2215094e-06 Zap(SLS_clean) Zap(SLS_clean) intercepts_pH_SLS() SetAxis left -1.2329408e-05,0.00010287245 Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() 4.42476 0.0768608 meanA[0]= {5.5588e-09,3.20012e-07} intercepts_pH_SLS() pH_slopes_SLS_dimensionless() SetAxis left 5.7651806e-06,7.8325436e-06 Zap(SLS_clean) Zap(SLS_clean) SetAxis left 6.091762e-06,6.5676757e-06 Zap(SLS_clean) SetAxis left 7.075771e-06,7.9392127e-06 Zap(SLS_clean) intercepts_pH_SLS() pH_slopes_SLS_dimensionless() intercepts_pH_SLS() pH_slopes_SLS_dimensionless() Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) SetAxis left 7.3769165e-06,1.5796377e-05 Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) Zap(SLS_clean) PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() 4.42476 0.0768608 meanA[0]= {5.5588e-09,3.20012e-07} intercepts_pH_SLS() pH_slopes_SLS_dimensionless() linear() SetAxis bottom -127.55728,1374.4059 SetAxis left -72.159129,513.47082 killGraphs() pH3_fit_DLS() ModifyGraph grid(left)=1 pH3_fit_SLS() ModifyGraph grid(left)=1 pH4_fit_DLS() SetAxis/A left pH4_fit_DLS() ModifyGraph grid(left)=1 pH4_fit_SLS() ModifyGraph grid(left)=1 PlotInputDataAndFit(SLS_clean,6,2) intercepts_pH_SLS() intercepts_pH_DLS() Zap(SLS_clean) killGraphs() PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() 4.42476 0.0768608 meanA[0]= {5.5588e-09,3.20012e-07} intercepts_pH_SLS() pH4_fit_SLS() pH_slopes_SLS_dimensionless() Zap(SLS_clean) killGraphs() PlotInputDataAndFit(SLS_clean,6,2) FinalDataSet() 4.42476 0.0768608 meanA[0]= {5.5588e-09,3.20012e-07} pH_slopes_SLS_dimensionless() intercepts_pH_SLS() pH4_fit_SLS() ModifyGraph grid(left)=1 killGraphs() PlotInputDataAndFit(DLS_clean,6,2) SetAxis left 4.2879818,4.3929957 Zap(DLS_clean) killGraphs() PlotInputDataAndFit(DLS_clean,6,2) FinalDataSet() 4.42772 0.0739039 meanA[0]= {5.55508e-09,3.32815e-07} intercepts_pH_DLS() pH4_fit_DLS() Zap(DLS_clean) PlotInputDataAndFit(DLS_clean,6,2) FinalDataSet() 4.43106 0.0715845 meanA[0]= {5.5509e-09,3.43599e-07} intercepts_pH_DLS() pH4_fit_DLS() pH4_fit_SLS() killGraphs() linear() killTables() pH8_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH8 OFF pH8_fit_SLS() Make/D/O/N=2 Coeff_ChargeSLS_pH3 Coeff_ChargeSLS_pH3[0] = {5,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH3 KS_pH8 /X=kappa_nm /W=sdKS_pH8 /I=1 /D /R Fit converged properly fit_KS_pH8= FittingStatic_constCharge(Coeff_ChargeSLS_pH3,x) Res_KS_pH8= KS_pH8[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH3,kappa_nm[p]) Coeff_ChargeSLS_pH3={0.51537,12.265} V_chisq= 2.93361;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={892,4.43} Coefficient values one standard deviation ZP =0.51537 892 AH =12.265 4.43 Edit/K=0 root:Coeff_ChargeSLS_pH3;DelayUpdate Edit/K=0 root:Res_KS_pH8;DelayUpdate Edit/K=0 root:fit_KS_pH8;DelayUpdate pH8_fit_SLS() ModifyGraph rgb=(0,0,0),lsize(fit_ChargeSLS_pH3)=3 ModifyGraph marker(Res_ChargeSLS_pH3)=19 pH8_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH8 Coeff_PotentialSLS_pH8[0] = {5,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_PotentialSLS_pH8 KS_pH8 /X=kappa_nm /W=sdKS_pH8 /I=1 /D /R Fit converged properly fit_KS_pH8= FittingStatic_constCharge(Coeff_PotentialSLS_pH8,x) Res_KS_pH8= KS_pH8[p] - FittingStatic_constCharge(Coeff_PotentialSLS_pH8,kappa_nm[p]) Coeff_PotentialSLS_pH8={0.51537,12.265} V_chisq= 2.93361;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={892,4.43} Coefficient values one standard deviation ZP =0.51537 892 AH =12.265 4.43 Edit/K=0 root:Coeff_ChargeSLS_pH8;DelayUpdate Edit/K=0 root:Coeff_PotentialSLS_pH8;DelayUpdate pH8_fit_SLS() pH8_fit_SLS() pH8_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH8 Coeff_PotentialSLS_pH8[0] = {0.02,12} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH8 KS_pH8 /X=kappa_nm /W=sdKS_pH8 /I=1 /D /R Fit converged properly fit_KS_pH8= FittingStatic_constPotential(Coeff_PotentialSLS_pH8,x) Res_KS_pH8= KS_pH8[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH8,kappa_nm[p]) Coeff_PotentialSLS_pH8={-0.015477,12.004} V_chisq= 2.94567;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={92.6,8.74} Coefficient values one standard deviation PsiP =-0.015477 92.6 AH =12.004 8.74 pH7_fit_SLS() Edit/K=0 root:Coeff_ChargeSLS_pH8;DelayUpdate Make/D/O/N=2 Coeff_ChargeSLS_pH7 Coeff_ChargeSLS_pH7[0] = {20,15} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH7 KS_pH7 /X=kappa_nm /W=sdKS_pH7 /I=1 /D /R Fit converged properly fit_KS_pH7= FittingStatic_constCharge(Coeff_ChargeSLS_pH7,x) Res_KS_pH7= KS_pH7[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH7,kappa_nm[p]) Coeff_ChargeSLS_pH7={23.289,9.0855} V_chisq= 1.28536;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={12.8,5.24} Coefficient values one standard deviation ZP =23.289 12.8 AH =9.0855 5.24 pH6_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH6 OFF Make/D/O/N=2 Coeff_ChargeSLS_pH6 Coeff_ChargeSLS_pH6[0] = {20,15} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R Fit converged properly fit_KS_pH6= FittingStatic_constCharge(Coeff_ChargeSLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH6,kappa_nm[p]) Coeff_ChargeSLS_pH6={57.148,18.993} V_chisq= 6.14174;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.7,4.46} Coefficient values one standard deviation ZP =57.148 4.7 AH =18.993 4.46 pH5_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH5 OFF Make/D/O/N=2 Coeff_ChargeSLS_pH5 Coeff_ChargeSLS_pH5[0] = {20,15} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH5 KS_pH5 /X=kappa_nm /W=sdKS_pH5 /I=1 /D /R Fit converged properly fit_KS_pH5= FittingStatic_constCharge(Coeff_ChargeSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH5,kappa_nm[p]) Coeff_ChargeSLS_pH5={66.697,2.5036} V_chisq= 4.80282;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.72,5.19} Coefficient values one standard deviation ZP =66.697 5.72 AH =2.5036 5.19 Make/D/O/N=2 Coeff_ChargeSLS_pH5 Coeff_ChargeSLS_pH5[0] = {20,15} Make/O/T/N=1 T_Constraints T_Constraints[0] = {"K1 > 10"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH5 KS_pH5 /X=kappa_nm /W=sdKS_pH5 /I=1 /D /R /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>10 Achieved: =10 fit_KS_pH5= FittingStatic_constCharge(Coeff_ChargeSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH5,kappa_nm[p]) Coeff_ChargeSLS_pH5={71.873,10} V_chisq= 6.88919;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.31,5.19} Coefficient values one standard deviation ZP =71.873 5.31 AH =10 5.19 Make/D/O/N=2 Coeff_ChargeSLS_pH5 Coeff_ChargeSLS_pH5[0] = {20,15} Make/O/T/N=1 T_Constraints T_Constraints[0] = {"K1 > 12"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH5 KS_pH5 /X=kappa_nm /W=sdKS_pH5 /I=1 /D /R /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>12 Achieved: =12 fit_KS_pH5= FittingStatic_constCharge(Coeff_ChargeSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH5,kappa_nm[p]) Coeff_ChargeSLS_pH5={73.192,12} V_chisq= 8.15095;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.21,5.19} Coefficient values one standard deviation ZP =73.192 5.21 AH =12 5.19 Make/D/O/N=2 Coeff_ChargeSLS_pH5 Coeff_ChargeSLS_pH5[0] = {20,15} Make/O/T/N=1 T_Constraints T_Constraints[0] = {"K1 > 10"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH5 KS_pH5 /X=kappa_nm /W=sdKS_pH5 /I=1 /D /R /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>10 Achieved: =10 fit_KS_pH5= FittingStatic_constCharge(Coeff_ChargeSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH5,kappa_nm[p]) Coeff_ChargeSLS_pH5={71.873,10} V_chisq= 6.88919;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.31,5.19} Coefficient values one standard deviation ZP =71.873 5.31 AH =10 5.19 Edit/K=0 root:T_Constraints_ChargeSLS_pH5;DelayUpdate pH4_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH4 OFF Make/D/O/N=2 Coeff_ChargeSLS_pH4 Coeff_ChargeSLS_pH4[0] = {20,15} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH4 KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /R Fit converged properly fit_KS_pH4= FittingStatic_constCharge(Coeff_ChargeSLS_pH4,x) Res_KS_pH4= KS_pH4[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH4,kappa_nm[p]) Coeff_ChargeSLS_pH4={73.801,-7.1721} V_chisq= 5.56191;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={7.26,7.7} Coefficient values one standard deviation ZP =73.801 7.26 AH =-7.1721 7.7 Make/D/O/N=2 Coeff_ChargeSLS_pH4 Coeff_ChargeSLS_pH4[0] = {20,15} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH4 KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /R /C=T_Constraints_Charge Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>10 Achieved: =10 fit_KS_pH4= FittingStatic_constCharge(Coeff_ChargeSLS_pH4,x) Res_KS_pH4= KS_pH4[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH4,kappa_nm[p]) Coeff_ChargeSLS_pH4={84.475,10} V_chisq= 10.532;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.35,7.7} Coefficient values one standard deviation ZP =84.475 6.35 AH =10 7.7 pH3_fit_SLS() SetAxis/A left Make/D/O/N=2 Coeff_ChargeSLS_pH3 Coeff_ChargeSLS_pH3[0] = {20,15} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH3 KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D /R Fit converged properly fit_KS_pH3= FittingStatic_constCharge(Coeff_ChargeSLS_pH3,x) Res_KS_pH3= KS_pH3[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH3,kappa_nm[p]) Coeff_ChargeSLS_pH3={166.91,38.257} V_chisq= 126.931;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.82,8.24} Coefficient values one standard deviation ZP =166.91 5.82 AH =38.257 8.24 Make/D/O/N=2 Coeff_ChargeSLS_pH3 Coeff_ChargeSLS_pH3[0] = {20,15} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 10","K1 < 12"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH3 KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D /R /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<12 Achieved: =12 fit_KS_pH3= FittingStatic_constCharge(Coeff_ChargeSLS_pH3,x) Res_KS_pH3= KS_pH3[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH3,kappa_nm[p]) Coeff_ChargeSLS_pH3={151.31,12} V_chisq= 137.085;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.42,8.24} Coefficient values one standard deviation ZP =151.31 6.42 AH =12 8.24 Edit/K=0 root:T_Constraints;DelayUpdate Make/D/O/N=2 Coeff_ChargeSLS_pH3 Coeff_ChargeSLS_pH3[0] = {20,10} FuncFit/X=1/H="01"/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH3 KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D /R Fit converged properly fit_KS_pH3= FittingStatic_constCharge(Coeff_ChargeSLS_pH3,x) Res_KS_pH3= KS_pH3[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH3,kappa_nm[p]) Coeff_ChargeSLS_pH3={150.05,10} V_chisq= 138.691;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={3.88,0} Coefficient values one standard deviation ZP =150.05 3.88 AH =10 0 pH9_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH9 OFF Make/D/O/N=2 Coeff_ChargeSLS_pH9 Coeff_ChargeSLS_pH9[0] = {20,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH9 KS_pH9 /X=kappa_nm /W=sdKS_pH9 /I=1 /D /R Fit converged properly fit_KS_pH9= FittingStatic_constCharge(Coeff_ChargeSLS_pH9,x) Res_KS_pH9= KS_pH9[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH9,kappa_nm[p]) Coeff_ChargeSLS_pH9={1.6312,10.075} V_chisq= 0.450903;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={233,3.89} Coefficient values one standard deviation ZP =1.6312 233 AH =10.075 3.89 pH10_fit_SLS() ModifyGraph mode=3;DelayUpdate ErrorBars KS_pH10 OFF Make/D/O/N=2 Coeff_ChargeSLS_pH10 Coeff_ChargeSLS_pH10[0] = {20,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge Coeff_ChargeSLS_pH10 KS_pH10 /X=kappa_nm /W=sdKS_pH10 /I=1 /D /R Fit converged properly fit_KS_pH10= FittingStatic_constCharge(Coeff_ChargeSLS_pH10,x) Res_KS_pH10= KS_pH10[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH10,kappa_nm[p]) Coeff_ChargeSLS_pH10={58.947,15.145} V_chisq= 0.48639;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.05,4.17} Coefficient values one standard deviation ZP =58.947 6.05 AH =15.145 4.17 pH10_fit_SLS() pH7_fit_DLS() pH8_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH8 OFF SetAxis/A left Make/D/O/N=2 Coeff_ChargeDLS_pH8 Coeff_ChargeDLS_pH8[0] = {10,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH8 KD_pH8 /X=kappa_nm /W=sdKD_pH8 /I=1 /D /R Fit converged properly fit_KD_pH8= FittingDynamic_constCharge(Coeff_ChargeDLS_pH8,x) Res_KD_pH8= KD_pH8[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH8,kappa_nm[p]) Coeff_ChargeDLS_pH8={30.765,65.064} V_chisq= 54.7283;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.8,2.35} Coefficient values one standard deviation ZP =30.765 1.8 AH =65.064 2.35 pH7_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH7 OFF Make/D/O/N=2 Coeff_ChargeDLS_pH7 Coeff_ChargeDLS_pH7[0] = {10,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH7 KD_pH7 /X=kappa_nm /W=sdKD_pH7 /I=1 /D /R Fit converged properly fit_KD_pH7= FittingDynamic_constCharge(Coeff_ChargeDLS_pH7,x) Res_KD_pH7= KD_pH7[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH7,kappa_nm[p]) Coeff_ChargeDLS_pH7={1505.4,59.337} V_chisq= 62.268;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={96.5,1.75} Coefficient values one standard deviation ZP =1505.4 96.5 AH =59.337 1.75 pH6_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH6 OFF Make/D/O/N=2 Coeff_ChargeDLS_pH6 Coeff_ChargeDLS_pH6[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH6 KD_pH6 /X=kappa_nm /W=sdKD_pH6 /I=1 /D /R Fit converged properly fit_KD_pH6= FittingDynamic_constCharge(Coeff_ChargeDLS_pH6,x) Res_KD_pH6= KD_pH6[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH6,kappa_nm[p]) Coeff_ChargeDLS_pH6={7242.4,34.079} V_chisq= 250.978;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={149,2.24} Coefficient values one standard deviation ZP =7242.4 149 AH =34.079 2.24 pH7_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH7 OFF Make/D/O/N=2 Coeff_ChargeDLS_pH7 Coeff_ChargeDLS_pH7[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH7 KD_pH7 /X=kappa_nm /W=sdKD_pH7 /I=1 /D /R Fit converged properly fit_KD_pH7= FittingDynamic_constCharge(Coeff_ChargeDLS_pH7,x) Res_KD_pH7= KD_pH7[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH7,kappa_nm[p]) Coeff_ChargeDLS_pH7={38.802,59.339} V_chisq= 62.268;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.24,1.75} Coefficient values one standard deviation ZP =38.802 1.24 AH =59.339 1.75 Edit/K=0 root:Coeff_ChargeSLS_pH7;DelayUpdate pH10_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH10 OFF Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH10 /X=kappa_nm /W=sdKD_pH10 /I=1 /D /R Fit converged properly fit_KD_pH10= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH10= KD_pH10[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={84.088,35.557} V_chisq= 24.5708;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.54,3.65} Coefficient values one standard deviation ZP =84.088 4.54 AH =35.557 3.65 Edit/K=0 root:Coeff_ChargeSLS_pH10;DelayUpdate Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH10 /X=kappa_nm /W=sdKD_pH10 /I=1 /D /R Fit converged properly fit_KD_pH10= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH10= KD_pH10[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={84.088,85.557} V_chisq= 24.5708;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.54,3.65} Coefficient values one standard deviation ZP =84.088 4.54 AH =85.557 3.65 Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH10 /X=kappa_nm /W=sdKD_pH10 /I=1 /D /R Fit converged properly fit_KD_pH10= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH10= KD_pH10[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={84.088,35.557} V_chisq= 24.5708;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={4.54,3.65} Coefficient values one standard deviation ZP =84.088 4.54 AH =35.557 3.65 pH10_fit_SLS() intercepts_pH_DLS() PlotInputDataAndFit(DLS_clean,6,7) PlotInputDataAndFit(DLS_clean,6,8) Edit/K=0 root:DLS_input0;DelayUpdate Edit/K=0 root:DLS_clean;DelayUpdate SetAxis left 3.960197,4.3931363 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) SetAxis left 4.0087168,4.5079498 Zap(DLS_clean) pH10_fit_DLS() Zap(DLS_clean) Error Zap(DLS_clean) Zap(DLS_clean) pH10_fit_SLS() Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) killGraphs() PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() 4.43225 0.0701194 meanA[0]= {5.54941e-09,3.50778e-07} intercepts_pH_DLS() pH_slopes_DLS_dimensionless() pH10_fit_DLS() Zap(DLS_clean) Zap(DLS_clean) pH10_fit_DLS() Zap(DLS_clean) killGraphs() PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() 4.43407 0.0681238 meanA[0]= {5.54712e-09,3.61054e-07} pH10_fit_DLS() pH10_fit_SLS() ModifyGraph grid(left)=1 pH10_fit_DLS() ModifyGraph grid(left)=1 ModifyGraph grid(left)=1 pH10_fit_SLS() ModifyGraph grid(left)=1 SetAxis left 4.0139253,4.5494081 Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) Zap(DLS_clean) killGraphs() PlotInputDataAndFit(DLS_clean,6,8) FinalDataSet() 4.43407 0.0681238 meanA[0]= {5.54712e-09,3.61054e-07} intercepts_pH_DLS() I_slopes_DLS() pH_slopes_DLS_dimensionless() pH10_fit_DLS() pH10_fit_SLS() pH10_fit_SLS() killGraphs() pH10_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH10 OFF Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH10 /X=kappa_nm /W=sdKD_pH10 /I=1 /D /R Fit converged properly fit_KD_pH10= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH10= KD_pH10[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={100.23,62.909} V_chisq= 38.4213;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={3.7,3.13} Coefficient values one standard deviation ZP =100.23 3.7 AH =62.909 3.13 SetAxis left -44.2618,64.2618 pH3_fit_DLS() Edit/K=0 root:Coeff_ChargeSLS_pH3;DelayUpdate Make/D/O/N=2 Coeff_ChargeDLS_pH3 Coeff_ChargeDLS_pH3[0] = {200,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH3 KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /R Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,x) Res_KD_pH3= KD_pH3[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,kappa_nm[p]) Coeff_ChargeDLS_pH3={301.6,-62.995} V_chisq= 2455.81;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.16,3.32} Coefficient values one standard deviation ZP =301.6 1.16 AH =-62.995 3.32 Make/D/O/N=2 Coeff_ChargeDLS_pH3 Coeff_ChargeDLS_pH3[0] = {200,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH3 KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /R Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,x) Res_KD_pH3= KD_pH3[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,kappa_nm[p]) Coeff_ChargeDLS_pH3={301.6,62.995} V_chisq= 2455.81;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.16,3.32} Coefficient values one standard deviation ZP =301.6 1.16 AH =62.995 3.32 pH10_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH10 OFF Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {200,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH10 /X=kappa_nm /W=sdKD_pH10 /I=1 /D /R Fit converged properly fit_KD_pH10= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH10= KD_pH10[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={100.23,-62.909} V_chisq= 38.4213;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={3.7,3.13} Coefficient values one standard deviation ZP =100.23 3.7 AH =-62.909 3.13 pH10_fit_DLS() Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {200,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH10 /X=kappa_nm /W=sdKD_pH10 /I=1 /D /R Fit converged properly fit_KD_pH10= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH10= KD_pH10[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={100.23,5.594} V_chisq= 38.4213;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={3.7,0.279} Coefficient values one standard deviation ZP =100.23 3.7 AH =5.594 0.279 pH3_fit_DLS() Make/D/O/N=2 Coeff_ChargeDLS_pH10 Coeff_ChargeDLS_pH10[0] = {200,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH10 KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /R Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,x) Res_KD_pH3= KD_pH3[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH10,kappa_nm[p]) Coeff_ChargeDLS_pH10={301.6,-5.6017} V_chisq= 2455.81;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.16,0.296} Coefficient values one standard deviation ZP =301.6 1.16 AH =-5.6017 0.296 pH3_fit_DLS() Make/D/O/N=2 Coeff_ChargeDLS_pH3 Coeff_ChargeDLS_pH3[0] = {200,10} FuncFit/X=1/H="01"/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH3 KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /R Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,x) Res_KD_pH3= KD_pH3[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,kappa_nm[p]) Coeff_ChargeDLS_pH3={316.16,10} V_chisq= 2937.92;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.901,0} Coefficient values one standard deviation ZP =316.16 0.901 AH =10 0 pH3_fit_DLS() Make/D/O/N=2 Coeff_ChargeDLS_pH3 Coeff_ChargeDLS_pH3[0] = {200,10} FuncFit/X=1/H="01"/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH3 KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /R Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,x) Res_KD_pH3= KD_pH3[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,kappa_nm[p]) Coeff_ChargeDLS_pH3={0.3765,10} V_chisq= 33731.9;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={15.5,0} Coefficient values one standard deviation ZP =0.3765 15.5 AH =10 0 Make/D/O/N=2 Coeff_ChargeDLS_pH3 Coeff_ChargeDLS_pH3[0] = {200,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge Coeff_ChargeDLS_pH3 KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /R Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,x) Res_KD_pH3= KD_pH3[p] - FittingDynamic_constCharge(Coeff_ChargeDLS_pH3,kappa_nm[p]) Coeff_ChargeDLS_pH3={-0.04806,-57.588} V_chisq= 28331.2;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={292,6.49} Coefficient values one standard deviation ZP =-0.04806 292 AH =-57.588 6.49 killGraphs() killTables() pH3_fit_DLS() pH4_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH4 OFF pH5_fit_DLS() SetAxis/A left ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH5 OFF pH6_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH6 OFF pH7_fit_DLS() SetAxis/A left ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH7 OFF pH8_fit_DLS() SetAxis/A left ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH8 OFF pH9_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH9 OFF pH10_fit_DLS() ModifyGraph mode=3;DelayUpdate ErrorBars KD_pH10 OFF pH8_fit_SLS() pH5_fit_SLS() pH6_fit_SLS() Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,15} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R Fit converged properly fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialDLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH6,kappa_nm[p]) Coeff_PotentialDLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 Edit/K=0 root:Coeff_ChargeSLS_pH6;DelayUpdate pH7_fit_SLS() pH8_fit_SLS() pH7_fit_SLS() pH7_fit_SLS() pH7_fit_SLS() ModifyGraph rgb(fit_ChargeSLS_pH7)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH7)=(0,0,0) pH7_fit_SLS() Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,15} pH7_fit_SLS() Make/D/O/N=2 Coeff_PotentialDLS_pH7 Coeff_PotentialDLS_pH7[0] = {1,15} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH7 KS_pH7 /X=kappa_nm /W=sdKS_pH7 /I=1 /D /R Fit converged properly fit_KS_pH7= FittingStatic_constPotential(Coeff_PotentialDLS_pH7,x) Res_KS_pH7= KS_pH7[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH7,kappa_nm[p]) Coeff_PotentialDLS_pH7={1.4286,13.242} V_chisq= 1.11653;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.716,8.45} Coefficient values one standard deviation PsiP =1.4286 0.716 AH =13.242 8.45 pH7_fit_SLS() ModifyGraph lstyle(fit_PotentialSLS_pH7)=2,rgb(fit_PotentialSLS_pH7)=(0,0,0) ModifyGraph lstyle(fit_PotentialSLS_pH7)=3,lsize(fit_PotentialSLS_pH7)=3 pH7_fit_SLS() ModifyGraph mode(Res_PotentialSLS_pH7)=3,marker(Res_PotentialSLS_pH7)=8;DelayUpdate ModifyGraph rgb(Res_PotentialSLS_pH7)=(0,0,0) pH7_fit_SLS() Legend/C/N=text0/J/S=3/A=MC "\\s(KS_pH7) Experiment pH = 7\r\\s(fit_ChargeSLS_pH7) fit Constant charge pH = 7";DelayUpdate AppendText "\\s(fit_PotentialSLS_pH7) fit Constant potential pH = 7\r\\s(Res_ChargeSLS_pH7) Residual Constant charge pH = 7";DelayUpdate AppendText "\\s(Res_PotentialSLS_pH7) Residual Constant potential pH = 7" SetAxis left -10,10 SetAxis/A left SetAxis left -18,10 SetAxis Res_Left -11,7 pH8_fit_DLS() killGraphs() pH6_fit_SLS() Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,15} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R Fit converged properly fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialDLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH6,kappa_nm[p]) Coeff_PotentialDLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,15} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R /C=T_Constraints_Charge Fit converged properly --Curve fit with constraints-- No constraints active or violated fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialDLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH6,kappa_nm[p]) Coeff_PotentialDLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,15} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 10","K1 < 15"} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<15 Achieved: =15 fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialDLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH6,kappa_nm[p]) Coeff_PotentialDLS_pH6={2.4287,15} V_chisq= 15.4143;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.373,6.87} Coefficient values one standard deviation PsiP =2.4287 0.373 AH =15 6.87 Edit/K=0 root:Coeff_ChargeSLS_pH6;DelayUpdate Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,15} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R Fit converged properly fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialDLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH6,kappa_nm[p]) Coeff_PotentialDLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 Make/D/O/N=2 Coeff_PotentialDLS_pH6 Coeff_PotentialDLS_pH6[0] = {1,10} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialDLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R Fit converged properly fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialDLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH6,kappa_nm[p]) Coeff_PotentialDLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 Name too long -- truncating to maximum name length Edit/K=0 root:Coeff_PotentialDLS_pH6;DelayUpdate Name too long -- truncating to maximum name length pH6_fit_SLS() Make/D/O/N=2 Coeff_PotentialsLS_pH6 Coeff_PotentialsLS_pH6[0] = {1,10} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialsLS_pH6 KS_pH6 /X=kappa_nm /W=sdKS_pH6 /I=1 /D /R Fit converged properly fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialsLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialsLS_pH6,kappa_nm[p]) Coeff_PotentialsLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 pH5_fit_SLS() Make/D/O/N=2 Coeff_PotentialsSLS_pH5 Coeff_PotentialsSLS_pH5[0] = {1,10} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialsSLS_pH5 KS_pH5 /X=kappa_nm /W=sdKS_pH5 /I=1 /D /R Fit converged properly fit_KS_pH5= FittingStatic_constPotential(Coeff_PotentialsSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constPotential(Coeff_PotentialsSLS_pH5,kappa_nm[p]) Coeff_PotentialsSLS_pH5={3.9311,30.834} V_chisq= 2.0986;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.324,8.85} Coefficient values one standard deviation PsiP =3.9311 0.324 AH =30.834 8.85 pH4_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH4 Coeff_PotentialSLS_pH4[0] = {1,10} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH4 KS_pH4 /X=kappa_nm /W=sdKS_pH4 /I=1 /D /R Fit converged properly fit_KS_pH4= FittingStatic_constPotential(Coeff_PotentialSLS_pH4,x) Res_KS_pH4= KS_pH4[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH4,kappa_nm[p]) Coeff_PotentialSLS_pH4={4.5057,34.463} V_chisq= 2.80161;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.421,14.1} Coefficient values one standard deviation PsiP =4.5057 0.421 AH =34.463 14.1 Edit/K=0 root:fit_fit_ChargeSLS_pH7;DelayUpdate pH3_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH3 Coeff_PotentialSLS_pH3[0] = {1,10} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH3 KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D /R Fit converged properly fit_KS_pH3= FittingStatic_constPotential(Coeff_PotentialSLS_pH3,x) Res_KS_pH3= KS_pH3[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH3,kappa_nm[p]) Coeff_PotentialSLS_pH3={8.2346,142.53} V_chisq= 168.893;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.322,16.3} Coefficient values one standard deviation PsiP =8.2346 0.322 AH =142.53 16.3 Make/D/O/N=2 Coeff_PotentialSLS_pH3 Coeff_PotentialSLS_pH3[0] = {1,30} FuncFit/X=1/H="01"/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH3 KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D /R Fit converged properly fit_KS_pH3= FittingStatic_constPotential(Coeff_PotentialSLS_pH3,x) Res_KS_pH3= KS_pH3[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH3,kappa_nm[p]) Coeff_PotentialSLS_pH3={5.7394,30} V_chisq= 216.417;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.14,0} Coefficient values one standard deviation PsiP =5.7394 0.14 AH =30 0 pH6_fit_SLS() SetAxis left -30,60 pH5_fit_SLS() pH5_fit_DLS() pH4_fit_SLS() pH3_fit_SLS() SetAxis left -15,1350 ModifyGraph lstyle(fit_PotentialSLS_pH3)=3 pH4_fit_SLS() ModifyGraph lstyle(fit_PotentialSLS_pH4)=3 pH5_fit_SLS() ModifyGraph lstyle(fit_PotentialSLS_pH5)=3 pH5_fit_SLS() pH6_fit_SLS() ModifyGraph lstyle(fit_PotentialSLS_pH6)=3 pH7_fit_SLS() pH8_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH8 Coeff_PotentialSLS_pH8[0] = {1,30} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH8 KS_pH8 /X=kappa_nm /W=sdKS_pH8 /I=1 /D /R Fit converged properly fit_KS_pH8= FittingStatic_constPotential(Coeff_PotentialSLS_pH8,x) Res_KS_pH8= KS_pH8[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH8,kappa_nm[p]) Coeff_PotentialSLS_pH8={-0.013249,12.206} V_chisq= 2.93516;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={109,8.74} Coefficient values one standard deviation PsiP =-0.013249 109 AH =12.206 8.74 pH9_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH9 Coeff_PotentialSLS_pH9[0] = {1,30} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH9 KS_pH9 /X=kappa_nm /W=sdKS_pH9 /I=1 /D /R Fit converged properly fit_KS_pH9= FittingStatic_constPotential(Coeff_PotentialSLS_pH9,x) Res_KS_pH9= KS_pH9[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH9,kappa_nm[p]) Coeff_PotentialSLS_pH9={-0.0016805,9.7065} V_chisq= 0.48032;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={687,6.87} Coefficient values one standard deviation PsiP =-0.0016805 687 AH =9.7065 6.87 pH10_fit_SLS() Make/D/O/N=2 Coeff_PotentialSLS_pH10 Coeff_PotentialSLS_pH10[0] = {1,30} FuncFit/X=1/NTHR=0 FittingStatic_constPotential Coeff_PotentialSLS_pH10 KS_pH10 /X=kappa_nm /W=sdKS_pH10 /I=1 /D /R Fit converged properly fit_KS_pH10= FittingStatic_constPotential(Coeff_PotentialSLS_pH10,x) Res_KS_pH10= KS_pH10[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH10,kappa_nm[p]) Coeff_PotentialSLS_pH10={3.3379,34.747} V_chisq= 2.36319;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.357,7.68} Coefficient values one standard deviation PsiP =3.3379 0.357 AH =34.747 7.68 pH8_fit_SLS() pH9_fit_SLS() pH10_fit_SLS() Edit/K=0 root:Coeff_PotentialSLS_pH9;DelayUpdate FittingResults(pH) Edit/K=0 root:ChargeSLS;DelayUpdate Edit/K=0 root:PotentialSLS;DelayUpdate FittingResults() FittingResults() coef_PotentialSLS_pH3 coef_PotentialSLS_pH4 coef_PotentialSLS_pH5 coef_PotentialSLS_pH6 coef_PotentialSLS_pH7 coef_PotentialSLS_pH8 coef_PotentialSLS_pH9 coef_PotentialSLS_pH10 FittingResults() Coeff_PotentialSLS_pH3 Coeff_PotentialSLS_pH4 Coeff_PotentialSLS_pH5 Coeff_PotentialSLS_pH6 Coeff_PotentialSLS_pH7 Coeff_PotentialSLS_pH8 Coeff_PotentialSLS_pH9 Coeff_PotentialSLS_pH10 FittingResults() Coeff_PotentialSLS_pH3 Coeff_ChargeSLS_pH3 Coeff_PotentialSLS_pH4 Coeff_ChargeSLS_pH4 Coeff_PotentialSLS_pH5 Coeff_ChargeSLS_pH5 Coeff_PotentialSLS_pH6 Coeff_ChargeSLS_pH6 Coeff_PotentialSLS_pH7 Coeff_ChargeSLS_pH7 Coeff_PotentialSLS_pH8 Coeff_ChargeSLS_pH8 Coeff_PotentialSLS_pH9 Coeff_ChargeSLS_pH9 Coeff_PotentialSLS_pH10 Coeff_ChargeSLS_pH10 FittingResults() Coeff_PotentialSLS_pH3 Coeff_ChargeSLS_pH3 FittingResults() Coeff_PotentialSLS_pH3 Coeff_ChargeSLS_pH3 Coeff_PotentialSLS_pH4 Coeff_ChargeSLS_pH4 FittingResults() Coeff_PotentialSLS_pH3 Coeff_ChargeSLS_pH3 Coeff_PotentialSLS_pH4 Coeff_ChargeSLS_pH4 Coeff_PotentialSLS_pH5 Coeff_ChargeSLS_pH5 FittingResults() Coeff_PotentialSLS_pH3 Coeff_ChargeSLS_pH3 Coeff_PotentialSLS_pH4 Coeff_ChargeSLS_pH4 Coeff_PotentialSLS_pH5 Coeff_ChargeSLS_pH5 Coeff_PotentialSLS_pH6 Coeff_ChargeSLS_pH6 FittingResults() Edit/K=0 root:ChargeSLS;DelayUpdate Edit/K=0 root:PotentialSLS;DelayUpdate FittingResults() Edit/K=0 root:HamakerPotentialSLS;DelayUpdate Edit/K=0 root:HamakerChargeSLS;DelayUpdate Edit/K=0 root:PotentialSLS;DelayUpdate I_slopes_SLS() pH3_fit_SLS() I_slopes_SLS() I_slopes_SLS() I_slopes_SLS() ModifyGraph mode(fit_PotentialSLS_pH3)=0,lstyle(fit_PotentialSLS_pH3)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH3)=3 ModifyGraph mode(fit_ChargeSLS_pH3)=0,lsize(fit_ChargeSLS_pH3)=3 ModifyGraph mode(fit_PotentialSLS_pH4)=0,lstyle(fit_PotentialSLS_pH4)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH4)=3 ModifyGraph mode(fit_ChargeSLS_pH4)=0,lsize(fit_ChargeSLS_pH4)=3 ModifyGraph mode(fit_ChargeSLS_pH5)=0,lsize(fit_ChargeSLS_pH5)=3 ModifyGraph mode(fit_PotentialSLS_pH5)=0,lstyle(fit_PotentialSLS_pH5)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH5)=3 ModifyGraph mode(fit_ChargeSLS_pH6)=0,lstyle(fit_ChargeSLS_pH6)=3;DelayUpdate ModifyGraph lsize(fit_ChargeSLS_pH6)=3 ModifyGraph mode(fit_PotentialSLS_pH10)=0,lstyle(fit_PotentialSLS_pH10)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH10)=3 ModifyGraph mode(fit_PotentialSLS_pH6)=0,lstyle(fit_PotentialSLS_pH6)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH6)=3 ModifyGraph mode(fit_PotentialSLS_pH8)=0,lstyle(fit_PotentialSLS_pH8)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH8)=3 ModifyGraph mode(fit_ChargeSLS_pH10)=0,lsize(fit_ChargeSLS_pH10)=3 ModifyGraph mode(fit_ChargeSLS_pH7)=0,lsize(fit_ChargeSLS_pH7)=3 ModifyGraph mode(fit_PotentialSLS_pH7)=0,lstyle(fit_PotentialSLS_pH7)=3;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH7)=3 ModifyGraph mode(fit_PotentialSLS_pH9)=0,lstyle(fit_PotentialSLS_pH9)=2;DelayUpdate ModifyGraph lsize(fit_PotentialSLS_pH9)=3 I_slopes_SLS() ModifyGraph mode(KS_pH3)=3 ModifyGraph mode(KS_pH4)=3 ModifyGraph mode(KS_pH5)=3 ModifyGraph mode(KS_pH10)=3 ModifyGraph mode(KS_pH6)=3 ModifyGraph mode(KS_pH7)=3,mode(KS_pH8)=3,mode(KS_pH9)=3 ModifyGraph mode(fit_ChargeSLS_pH8)=0,lsize(fit_ChargeSLS_pH8)=3;DelayUpdate ModifyGraph mode(fit_ChargeSLS_pH9)=0,lsize(fit_ChargeSLS_pH9)=3 ModifyGraph rgb(fit_ChargeSLS_pH10)=(13112,0,26214);DelayUpdate ModifyGraph rgb(fit_PotentialSLS_pH10)=(13112,0,26214) ModifyGraph rgb(fit_ChargeSLS_pH7)=(3,52428,1);DelayUpdate ModifyGraph rgb(fit_PotentialSLS_pH7)=(3,52428,1),rgb(fit_ChargeSLS_pH8)=(0,0,0);DelayUpdate ModifyGraph rgb(fit_PotentialSLS_pH8)=(0,0,0);DelayUpdate ModifyGraph rgb(fit_ChargeSLS_pH9)=(39321,39319,1);DelayUpdate ModifyGraph rgb(fit_PotentialSLS_pH9)=(39321,39319,1) Legend/K/N=text0 Legend/C/N=text0/J/S=3/A=MC "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7\r\\s(KS_pH8) Exp pH=8";DelayUpdate AppendText "\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10" LoadWave/J/D/W/O/K=0 "Macintosh HD:Users:dejanarzensek:Work:SLS-DLS:Project-virial:SLS-DLS_files_20111014:Igor-graphics:zetaGPT14.txt" Delimited text load from "zetaGPT14.txt" Data length: 12, waves: pH_zeta, stdpH, ZP_zeta, ZetaDeviation, Z_Average, Mob, Mobility_Deviation ChargePotential_SLS() ModifyGraph axisEnab(left)={0,0.48},axisEnab(L2)={0.52,1} SetAxis/A left SetAxis/A L2 Label L2 "\\Z16A\\BH\\M\\Z16 [\\F'Geneva'k\\BB\\MT]" Label left "\\Z16z\\Bp\\M\\Z16 [\\F'Geneva'e\\B0\\M/monomer]" ModifyGraph marker(ChargeSLS)=19,lsize(ChargeSLS)=3 ModifyGraph lsize=3,marker(HamakerChargeSLS)=8 ModifyGraph marker=19 AppendToGraph/L=L2 HamakerPotentialSLS vs pH; AppendToGraph PotentialSLS vs pH ModifyGraph mode=4,marker=19,useMrkStrokeRGB=1,lsize(HamakerPotentialSLS)=3;DelayUpdate ModifyGraph rgb(HamakerPotentialSLS)=(0,0,65535),rgb(PotentialSLS)=(0,0,65535) SetAxis L2 6.0855112,50.259575 RemoveFromGraph PotentialSLS RemoveFromGraph HamakerPotentialSLS AppendToGraph/R PotentialSLS vs pH; AppendToGraph/R=R2 HamakerPotentialSLS vs pH ModifyGraph axisEnab(right)={0,0.48},axisEnab(R2)={0.52,1};DelayUpdate ModifyGraph freePos(R2)={0,kwFraction} ModifyGraph mode(HamakerPotentialSLS)=4,marker(HamakerPotentialSLS)=19;DelayUpdate ModifyGraph mrkThick(HamakerPotentialSLS)=3,lsize(HamakerPotentialSLS)=3;DelayUpdate ModifyGraph rgb(HamakerPotentialSLS)=(1,12815,52428);DelayUpdate ModifyGraph useMrkStrokeRGB(HamakerPotentialSLS)=1 ModifyGraph mode=4,marker=19,lsize=3,useMrkStrokeRGB=1,mrkThick(PotentialSLS)=3;DelayUpdate ModifyGraph rgb(PotentialSLS)=(1,4,52428) SetAxis L2 8.0855112,20.259575 SetAxis left -10.01537299,150.04991 ModifyGraph zero(left)=0;DelayUpdate SetAxis right -1.013249273,5.7393556 Label L2 "\\Z16A\\BH\\M\\Z16 [\\F'Geneva'k\\BB\\MT] (Surface potential)";DelayUpdate Label R2 "\\Z16A\\BH\\M\\Z16 [\\F'Geneva'k\\BB\\MT] (Surface potential)" ModifyGraph lblPosMode(R2)=1 Label L2 "\\Z16A\\BH\\M\\Z16 [\\F'Geneva'k\\BB\\MT] (Surface charge)" Label right "\\Z16\\F'Symbol'y\\Bp\\M\\Z16 [\\F'Geneva'e\\B0\\M/monomer]" Label right "\\Z16\\F'Symbol'y\\M\\F'Geneva'\\Bp\\M\\Z16 [\\F'Geneva'e\\B0\\M/monomer]" Legend/C/N=text0/J/S=3/A=MC "\\s(ChargeSLS) Constant charge\r\\s(PotentialSLS) Constant potential" WM_NewGlobalFit1#InitNewGlobalFitPanel() WM_NewGlobalFit1#InitNewGlobalFitPanel() Genetic_curvefitting() killGraphs() I_slopes_GlobalFit_SLS() WM_NewGlobalFit1#InitNewGlobalFitPanel() Edit/K=0 root:ChargeSLS;DelayUpdate *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={229,17.997,89.009,77.011,56.461,35.88,27.968,29.641,61.549} V_chisq= 643.186;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={1.7,1.74,4.37,3.91,3.82,5.99,12.8,10.7,4.7} Coefficient values one standard deviation K0 =229 1.7 K1 =17.997 1.74 K2 =89.009 4.37 K3 =77.011 3.91 K4 =56.461 3.82 K5 =35.88 5.99 K6 =27.968 12.8 K7 =29.641 10.7 K8 =61.549 4.7 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 643.186 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 7 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 229.004 +- 1.69725 1 Global AH 17.9965 +- 1.73551 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 89.0092 +- 4.36671 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 77.0114 +- 3.9115 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 56.4609 +- 3.81686 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 35.8799 +- 5.99107 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 27.9682 +- 12.7572 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 29.6413 +- 10.6899 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 61.5485 +- 4.69656 1 Global AH 17.9965 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH3)=(0,0,0) ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH5)=(16385,28398,65535);DelayUpdate ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH6)=(65535,0,52428);DelayUpdate ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH7)=(26205,52428,1);DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH8)=3;DelayUpdate ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH8)=(0,0,0);DelayUpdate ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH9)=(39321,39319,1);DelayUpdate ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH10)=(0,2,26214) Legend/C/N=text0/J "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7\r\\s(KS_pH8) Exp pH=8";DelayUpdate AppendText/N=text0 "\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10\r\\s(FitGlobalChargeSLSGFit_KS_pH3) Global Charge pH = 3";DelayUpdate AppendText/N=text0 "\\s(FitGlobalChargeSLSGFit_KS_pH4) Global Charge pH = 4\r\\s(FitGlobalChargeSLSGFit_KS_pH5) Global Charge pH = 5";DelayUpdate AppendText/N=text0 "\\s(FitGlobalChargeSLSGFit_KS_pH6) Global Charge pH = 6\r\\s(FitGlobalChargeSLSGFit_KS_pH7) Global Charge pH = 7";DelayUpdate AppendText/N=text0 "\\s(FitGlobalChargeSLSGFit_KS_pH8) Global Charge pH = 8\r\\s(FitGlobalChargeSLSGFit_KS_pH9) Global Charge pH = 9";DelayUpdate AppendText/N=text0 "\\s(FitGlobalChargeSLSGFit_KS_pH10) Global Charge pH = 10" Legend/C/N=text0/J "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7\r\\s(KS_pH8) Exp pH=8";DelayUpdate AppendText/N=text0 "\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10\r\\s(FitGlobalChargeSLSGFit_KS_pH3) Global Charge " ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH8)=1 Edit/K=0 root:ChargeSLSGlobalFit:FitGlobalChargeSLSsig_KS_pH6;DelayUpdate Edit/K=0 root:ChargeSLSGlobalFit:FitGlobalChargeSLSsig_KS_pH6;DelayUpdate Edit/K=0 root:GlobalFitCoefficients;DelayUpdate Edit/K=0 root:fitYCumData;DelayUpdate Edit/K=0 root:fitYCumData;DelayUpdate Edit/K=0 root:ChargeSLSGlobalFit:FitGlobalChargeSLSsig_KS_pH5;DelayUpdate Edit/K=0 root:ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH5;DelayUpdate Edit/K=0 root:ChargeSLSGlobalFit:FitGlobalChargeSLSCoef_KS_pH5;DelayUpdate Edit/K=0 root:ChargeSLSGlobalFit:FitGlobalChargeSLSCoef_KS_pH4;DelayUpdate Edit/K=0 root:PotentialSLS;DelayUpdate *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5093,49.324,4.8991,4.4971,3.71,3.156,3.3561,3.4148,3.9054} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5093 0.0869 K1 =49.324 3.02 K2 =4.8991 0.169 K3 =4.4971 0.153 K4 =3.71 0.152 K5 =3.156 0.172 K6 =3.3561 0.21 K7 =3.4148 0.201 K8 =3.9054 0.167 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 11 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50928 +- 0.0869202 1 Global AH 49.3236 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89913 +- 0.168713 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49712 +- 0.153159 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71004 +- 0.152313 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15602 +- 0.172096 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35605 +- 0.209693 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41478 +- 0.201379 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.9054 +- 0.16731 1 Global AH 49.3236 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH I_slopes_GlobalFit_SLS() *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5094,49.333,4.8994,4.4974,3.7103,3.1563,3.3561,3.415,3.9058} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5094 0.0869 K1 =49.333 3.02 K2 =4.8994 0.169 K3 =4.4974 0.153 K4 =3.7103 0.152 K5 =3.1563 0.172 K6 =3.3561 0.21 K7 =3.415 0.201 K8 =3.9058 0.167 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 2 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50941 +- 0.086919 1 Global AH 49.3333 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89936 +- 0.168705 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49738 +- 0.15315 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71034 +- 0.1523 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15632 +- 0.172079 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35613 +- 0.209688 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41497 +- 0.201368 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.90575 +- 0.167294 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH SetAxis left -30,350 I_slopes_GlobalFit_SLS() ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH3)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH4)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH5)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH6)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH7)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH8)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH9)=2;DelayUpdate ModifyGraph lsize(FitGlobalChargeSLSGFit_KS_pH10)=2 I_slopes_GlobalFit_SLS() *** Doing Global fit *** 9 iterations with no decrease in chi square Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5094,49.333,4.8994,4.4974,3.7103,3.1563,3.3561,3.415,3.9058} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5094 0.0869 K1 =49.333 3.02 K2 =4.8994 0.169 K3 =4.4974 0.153 K4 =3.7103 0.152 K5 =3.1563 0.172 K6 =3.3561 0.21 K7 =3.415 0.201 K8 =3.9058 0.167 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50941 +- 0.086919 1 Global AH 49.3333 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89936 +- 0.168705 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49738 +- 0.15315 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71034 +- 0.1523 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15632 +- 0.172079 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35613 +- 0.209688 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41497 +- 0.201368 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.90575 +- 0.167294 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** 9 iterations with no decrease in chi square Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5094,49.333,4.8994,4.4974,3.7103,3.1563,3.3561,3.415,3.9058} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5094 0.0869 K1 =49.333 3.02 K2 =4.8994 0.169 K3 =4.4974 0.153 K4 =3.7103 0.152 K5 =3.1563 0.172 K6 =3.3561 0.21 K7 =3.415 0.201 K8 =3.9058 0.167 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50941 +- 0.086919 1 Global AH 49.3333 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89936 +- 0.168705 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49738 +- 0.15315 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71034 +- 0.1523 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15632 +- 0.172079 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35613 +- 0.209688 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41497 +- 0.201368 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.90575 +- 0.167294 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** 9 iterations with no decrease in chi square Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5094,49.333,4.8994,4.4974,3.7103,3.1563,3.3561,3.415,3.9058} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5094 0.0869 K1 =49.333 3.02 K2 =4.8994 0.169 K3 =4.4974 0.153 K4 =3.7103 0.152 K5 =3.1563 0.172 K6 =3.3561 0.21 K7 =3.415 0.201 K8 =3.9058 0.167 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50941 +- 0.086919 1 Global AH 49.3333 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89936 +- 0.168705 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49738 +- 0.15315 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71034 +- 0.1523 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15632 +- 0.172079 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35613 +- 0.209688 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41497 +- 0.201368 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.90575 +- 0.167294 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH I_slopes_GlobalFit_SLS() WM_NewGlobalFit1#InitNewGlobalFitPanel() *** Doing Global fit *** 9 iterations with no decrease in chi square Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5094,49.333,4.8994,4.4974,3.7103,3.1563,3.3561,3.415,3.9058} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5094 0.0869 K1 =49.333 3.02 K2 =4.8994 0.169 K3 =4.4974 0.153 K4 =3.7103 0.152 K5 =3.1563 0.172 K6 =3.3561 0.21 K7 =3.415 0.201 K8 =3.9058 0.167 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50941 +- 0.086919 1 Global AH 49.3333 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89936 +- 0.168705 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49738 +- 0.15315 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71034 +- 0.1523 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15632 +- 0.172079 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35613 +- 0.209688 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41497 +- 0.201368 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.90575 +- 0.167294 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH I_slopes_GlobalFit_SLS() WM_NewGlobalFit1#InitNewGlobalFitPanel() *** Doing Global fit *** 9 iterations with no decrease in chi square Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={9.5094,49.333,4.8994,4.4974,3.7103,3.1563,3.3561,3.415,3.9058} V_chisq= 2149.86;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={0.0869,3.02,0.169,0.153,0.152,0.172,0.21,0.201,0.167} Coefficient values one standard deviation K0 =9.5094 0.0869 K1 =49.333 3.02 K2 =4.8994 0.169 K3 =4.4974 0.153 K4 =3.7103 0.152 K5 =3.1563 0.172 K6 =3.3561 0.21 K7 =3.415 0.201 K8 =3.9058 0.167 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 2149.86 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 9.50941 +- 0.086919 1 Global AH 49.3333 +- 3.0245 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.89936 +- 0.168705 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.49738 +- 0.15315 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.71034 +- 0.1523 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 3.15632 +- 0.172079 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 3.35613 +- 0.209688 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 3.41497 +- 0.201368 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.90575 +- 0.167294 1 Global AH 49.3333 +- 3.0245 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Name too long -- truncating to maximum name length Name too long -- truncating to maximum name length Legend/C/N=text0/J "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7\r\\s(KS_pH8) Exp pH=8";DelayUpdate AppendText/N=text0 "\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10\r\\s(FitGlobalChargeSLSGFit_KS_pH3) Global Charge \r\\s(FitGlobalPotSLSGFit_KS_pH3) Global Potential" ModifyGraph lsize(FitGlobalPotSLSGFit_KS_pH3)=3;DelayUpdate ModifyGraph rgb(FitGlobalPotSLSGFit_KS_pH3)=(0,0,0) ModifyGraph lsize(FitGlobalPotSLSGFit_KS_pH3)=4 I_slopes_GlobalFit_SLS() SetAxis left -30,200 I_slopes_GlobalFit_SLS() Edit/K=0 root:ChargeSLS;DelayUpdate Edit/K=0 root:PotentialSLS;DelayUpdate *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={232.69,35.31,98.112,87.104,67.413,52.297,56.967,54.467,75.442,8.802,0} MasterCoefs[10]={4.5056,4.0596,3.3882,2.6927,2.4882,2.6512,3.3616} V_chisq= 5327.97;V_npnts= 96;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 95; W_sigma={1.66,1.46,3.93,3.42,3.15,4.04,6.15,5.72,3.77,0.0609,0.119,0.132,0.158,0.199,0.216,0.202,0.16} Coefficient values one standard deviation K0 =232.69 1.66 K1 =35.31 1.46 K2 =98.112 3.93 K3 =87.104 3.42 K4 =67.413 3.15 K5 =52.297 4.04 K6 =56.967 6.15 K7 =54.467 5.72 K8 =75.442 3.77 K9 =8.802 0.0609 K10 =4.5056 0.119 K11 =4.0596 0.132 K12 =3.3882 0.158 K13 =2.6927 0.199 K14 =2.4882 0.216 K15 =2.6512 0.202 K16 =3.3616 0.16 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 5327.97 V_npnts= 96 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 11 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 232.693 +- 1.65862 1 Global AH 35.3099 +- 1.46239 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 98.112 +- 3.93376 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 87.1044 +- 3.41996 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 67.4133 +- 3.15026 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 52.2972 +- 4.04187 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 56.967 +- 6.15348 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 54.467 +- 5.72478 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 75.4423 +- 3.77064 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 8.80199 +- 0.0609284 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.5056 +- 0.119028 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.05956 +- 0.132106 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.38819 +- 0.158283 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 2.69275 +- 0.199161 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 2.48817 +- 0.215537 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 2.65116 +- 0.202286 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.36161 +- 0.159534 1 Global AH 35.3099 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Edit/K=0 root:fitYCumData;DelayUpdate I_slopes_GlobalFit_SeparateSLS() Edit/K=0 root:GlobalFitCoefficients_PotSLS;DelayUpdate Edit/K=0 root:GlobalFitCoefficients_BothSLS;DelayUpdate Edit/K=0 root:BothSLSGlobalFit:FitGlobalBothSLSCoef_KS_pH3;DelayUpdate Edit/K=0 root:BothSLSGlobalFit:FitGlobalBothSLSCoef_KS_pH3;DelayUpdate WM_NewGlobalFit1#InitNewGlobalFitPanel() Edit/K=0 root:BothSLSGlobalFit:FitGlobalBothSLSCoef_KS_pH3;DelayUpdate Edit/K=0 root:BothSLSGlobalFit:FitGlobalBothSLSCoef_KS_pH3;DelayUpdate Edit/K=0 root:BothSLSGlobalFit:FitGlobalBothSLSCoef_KS_pH3;DelayUpdate Edit/K=0 root:BothSLSGlobalFit:FitGlobalBothSLSCoef_KS_pH4;DelayUpdate Edit/K=0 root:fitYCumData_BothSLS;DelayUpdate Edit/K=0 root:GlobalFitCoefficients_BothSLS;DelayUpdate WM_NewGlobalFit1#InitNewGlobalFitPanel() *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={232.69,35.311,98.113,87.105,67.414,52.298,56.968,54.468,75.443,8.802,0} MasterCoefs[10]={4.5056,4.0596,3.3882,2.6928,2.4882,2.6512,3.3617} V_chisq= 5327.97;V_npnts= 96;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 95; W_sigma={1.66,1.46,3.93,3.42,3.15,4.04,6.15,5.72,3.77,0.0609,0.119,0.132,0.158,0.199,0.216,0.202,0.16} Coefficient values one standard deviation K0 =232.69 1.66 K1 =35.311 1.46 K2 =98.113 3.93 K3 =87.105 3.42 K4 =67.414 3.15 K5 =52.298 4.04 K6 =56.968 6.15 K7 =54.468 5.72 K8 =75.443 3.77 K9 =8.802 0.0609 K10 =4.5056 0.119 K11 =4.0596 0.132 K12 =3.3882 0.158 K13 =2.6928 0.199 K14 =2.4882 0.216 K15 =2.6512 0.202 K16 =3.3617 0.16 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 5327.97 V_npnts= 96 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 2 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 232.694 +- 1.65862 1 Global AH 35.311 +- 1.46239 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 98.1126 +- 3.93374 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 87.1051 +- 3.41994 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 67.414 +- 3.15023 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 52.298 +- 4.0418 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 56.9679 +- 6.15338 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 54.468 +- 5.72468 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 75.4431 +- 3.7706 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 8.80201 +- 0.0609282 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.50564 +- 0.119027 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.0596 +- 0.132104 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.38823 +- 0.158281 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 2.6928 +- 0.199157 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 2.48821 +- 0.215533 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 2.65121 +- 0.202282 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.36166 +- 0.159532 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH linear() SetAxis left -94.673855,535.98554 SetAxis bottom -165.57572,1412.4244 CurveFit/NTHR=0 line KD_I15 /X=KS_I15 /D fit_KD_I15= W_coef[0]+W_coef[1]*x W_coef={0.88733,0.3633} V_chisq= 465.064;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1;V_Rab= -0.427836;V_Pr= 0.998687; V_r2= 0.997377; W_sigma={3.44,0.00761} Coefficient values one standard deviation a =0.88733 3.44 b =0.3633 0.00761 CurveFit/X=1/NTHR=0 line KD_I15 /X=KS_I15 /D fit_KD_I15= W_coef[0]+W_coef[1]*x W_coef={0.88733,0.3633} V_chisq= 465.064;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1;V_Rab= -0.427836;V_Pr= 0.998687; V_r2= 0.997377; W_sigma={3.44,0.00761} Coefficient values one standard deviation a =0.88733 3.44 b =0.3633 0.00761 Edit/K=0 root:fit_KD_I15;DelayUpdate RemoveFromGraph fit_KD_I15 CurveFit/X=1/NTHR=0 line KD_I15 /X=KS_I15 /W=sdKD_I15 /I=1 /D fit_KD_I15= W_coef[0]+W_coef[1]*x W_coef={-1.7165,0.41025} V_chisq= 1452.38;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1.09938e-310;V_Rab= -0.258556; V_Pr= 0.895577;V_r2= 1.26148; W_sigma={0.169,0.00238} Coefficient values one standard deviation a =-1.7165 0.169 b =0.41025 0.00238 Edit/K=0 root:fit_KD_I15;DelayUpdate RemoveFromGraph fit_KD_I15 Make/D/O/N=2 Coeff_linearI15 CurveFit/X=1/NTHR=0 line kwCWave=Coeff_linearI15, KD_I15 /X=KS_I15 /W=sdKD_I15 /I=1 /D fit_KD_I15= Coeff_linearI15[0]+Coeff_linearI15[1]*x Coeff_linearI15={-1.7165,0.41025} V_chisq= 1452.38;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1.09938e-310;V_Rab= -0.258556; V_Pr= 0.895577;V_r2= 1.26148; W_sigma={0.169,0.00238} Coefficient values one standard deviation a =-1.7165 0.169 b =0.41025 0.00238 ModifyGraph lsize(fit_linearI15)=2,rgb(fit_linearI15)=(0,0,0) Edit/K=0 root:Coeff_linearI15;DelayUpdate Make/D/O/N=2 Coeff_linearI30 CurveFit/X=1/NTHR=0 line kwCWave=Coeff_linearI30, KD_I30 /X=KS_I30 /W=sdKD_I30 /I=1 /D fit_KD_I30= Coeff_linearI30[0]+Coeff_linearI30[1]*x Coeff_linearI30={-5.8216,0.35232} V_chisq= 1644.45;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 0;V_Rab= -0.526124;V_Pr= 0.689179; V_r2= 0.430371; W_sigma={0.192,0.00401} Coefficient values one standard deviation a =-5.8216 0.192 b =0.35232 0.00401 ModifyGraph lsize(fit_linearI30)=2 Make/D/O/N=2 Coeff_linearI50 CurveFit/X=1/NTHR=0 line kwCWave=Coeff_linearI50, KD_I50 /X=KS_I50 /W=sdKD_I50 /I=1 /D fit_KD_I50= Coeff_linearI50[0]+Coeff_linearI50[1]*x Coeff_linearI50={-3.6282,0.53755} V_chisq= 216.907;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 4.75079e-44;V_Rab= -0.268604; V_Pr= 0.905568;V_r2= 0.864167; W_sigma={0.193,0.00702} Coefficient values one standard deviation a =-3.6282 0.193 b =0.53755 0.00702 ModifyGraph lsize(fit_linearI50)=2,rgb(fit_linearI50)=(0,0,65535) Edit/K=0 root:fit_linearI50;DelayUpdate Edit/K=0 root:Coeff_linearI50;DelayUpdate Edit/K=0 root:fit_linearI50;DelayUpdate Make/D/O/N=2 Coeff_linearI75 CurveFit/X=1/NTHR=0 line kwCWave=Coeff_linearI75, KD_I75 /X=KS_I75 /W=sdKD_I75 /I=1 /D fit_KD_I75= Coeff_linearI75[0]+Coeff_linearI75[1]*x Coeff_linearI75={-2.6401,0.77354} V_chisq= 527.469;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1.01413e-110;V_Rab= 0.0299538; V_Pr= 0.874119;V_r2= 0.745867; W_sigma={0.189,0.0149} Coefficient values one standard deviation a =-2.6401 0.189 b =0.77354 0.0149 Make/D/O/N=2 Coeff_linearI100 CurveFit/X=1/NTHR=0 line kwCWave=Coeff_linearI100, KD_I100 /X=KS_I100 /W=sdKD_I100 /I=1 /D fit_KD_I100= Coeff_linearI100[0]+Coeff_linearI100[1]*x Coeff_linearI100={1.741,0.5604} V_chisq= 2267.04;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 0;V_Rab= 0.370263;V_Pr= 0.68028; V_r2= 0.526784; W_sigma={0.162,0.0107} Coefficient values one standard deviation a =1.741 0.162 b =0.5604 0.0107 Make/D/O/N=2 Coeff_linearI175 CurveFit/X=1/NTHR=0 line kwCWave=Coeff_linearI175, KD_I175 /X=KS_I175 /W=sdKD_I175 /I=1 /D fit_KD_I175= Coeff_linearI175[0]+Coeff_linearI175[1]*x Coeff_linearI175={-5.6793,0.22528} V_chisq= 338.156;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 5.37724e-70;V_Rab= 0.627853; V_Pr= 0.432657;V_r2= 0.124009; W_sigma={0.205,0.0201} Coefficient values one standard deviation a =-5.6793 0.205 b =0.22528 0.0201 ModifyGraph lsize(fit_linearI75)=2,rgb(fit_linearI75)=(39321,1,31457);DelayUpdate ModifyGraph lsize(fit_linearI100)=2,rgb(fit_linearI100)=(1,26214,0);DelayUpdate ModifyGraph lsize(fit_linearI175)=2,rgb(fit_linearI175)=(43690,43690,43690) SetAxis left -25.857693,60.084799;DelayUpdate SetAxis bottom -30.01482,130.9406 SetAxis bottom -30.01482,110.9406 Legend/C/N=text0/J/S=3/A=MC "\\s(KD_I15) I = 15\r\\s(KD_I30) I = 30\r\\s(KD_I50) I = 50\r\\s(KD_I75) I = 75\r\\s(KD_I100) I = 100\r\\s(KD_I175) I = 175";DelayUpdate AppendText "\\s(fit_linearI15) linear I = 15\r\\s(fit_linearI30) linearI = 30\r\\s(fit_linearI50) linearI = 50\r\\s(fit_linearI75) linearI = 75";DelayUpdate AppendText "\\s(fit_linearI100) linearI = 100\r\\s(fit_linearI175) linearI = 175" Legend/C/N=text0/J "\\s(KD_I15) I = 15\r\\s(KD_I30) I = 30\r\\s(KD_I50) I = 50\r\\s(KD_I75) I = 75\r\\s(KD_I100) I = 100\r\\s(KD_I175) I = 175";DelayUpdate AppendText/N=text0 "\\s(fit_linearI15) linear I = 15\r\\s(fit_linearI30) linear I = 30\r\\s(fit_linearI50) linear I = 50\r\\s(fit_linearI75) linear I = 75";DelayUpdate AppendText/N=text0 "\\s(fit_linearI100) linear I = 100\r\\s(fit_linearI175) linear I = 175" I_slopes_SLS() intercepts_pH_DLS() Legend/C/N=text0/J "\\s(KD_I15) I = 15\r\\s(KD_I30) I = 30\r\\s(KD_I50) I = 50\r\\s(KD_I75) I = 75\r\\s(KD_I100) I = 100\r\\s(KD_I175) I = 175";DelayUpdate AppendText/N=text0 "\\s(fit_linearI15) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.40 nm\\S-1\\M\r\\s(fit_linearI30) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.57 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\s(fit_linearI50) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.74 nm\\S-1\\M\r\\s(fit_linearI75) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.90 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\s(fit_linearI100) linear \\Z15\\F'Symbol'k=\\F'Geneva' 1.04 nm\\S-1\\M\r\\s(fit_linearI175) linear )\\Z15\\F'Symbol'k=\\F'Geneva' 1.38 nm\\S-1\\M" Legend/C/N=text0/J "\\s(KD_I15) I = 15\r\\s(KD_I30) I = 30\r\\s(KD_I50) I = 50\r\\s(KD_I75) I = 75\r\\s(KD_I100) I = 100\r\\s(KD_I175) I = 175";DelayUpdate AppendText/N=text0 "\\s(fit_linearI15) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.40 nm\\S-1\\M\r\\s(fit_linearI30) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.57 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\s(fit_linearI50) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.74 nm\\S-1\\M\r\\s(fit_linearI75) linear \\Z15\\F'Symbol'k=\\F'Geneva' 0.90 nm\\S-1\\M";DelayUpdate AppendText/N=text0 "\\s(fit_linearI100) linear \\Z15\\F'Symbol'k=\\F'Geneva' 1.04 nm\\S-1\\M\r\\s(fit_linearI175) linear \\Z15\\F'Symbol'k=\\F'Geneva' 1.38 nm\\S-1\\M" killGraphs() killTables() ChargePotential_SLS() WM_NewGlobalFit1#InitNewGlobalFitPanel() pH3_fit_SLS() Make/D/N=2/O W_coef W_coef[0] = {30,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={254.28,132.33} V_chisq= 90418.7;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={17.8,73.3} Coefficient values one standard deviation ZP =254.28 17.8 AH =132.33 73.3 Edit/K=0 root:fit_KS_pH3;DelayUpdate Make/D/N=2/O W_coef W_coef[0] = {30,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={166.91,38.26} V_chisq= 126.931;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.82,8.24} Coefficient values one standard deviation ZP =166.91 5.82 AH =38.26 8.24 Make/D/N=2/O W_coef W_coef[0] = {30,10} Make/O/T/N=2 T_Constraints T_Constraints[0] = {"K1 > 0","K1 < 13"} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D /C=T_Constraints Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<13 Achieved: =13 fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={151.93,13} V_chisq= 136.327;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.4,8.24} Coefficient values one standard deviation ZP =151.93 6.4 AH =13 8.24 ErrorBars KS_pH3 Y,wave=(sdKS_pH3,sdKS_pH3) Make/D/N=2/O W_coef W_coef[0] = {30,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={166.91,20.381} V_chisq= 126.931;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.82,4.39} Coefficient values one standard deviation ZP =166.91 5.82 AH =20.381 4.39 Make/D/N=2/O W_coef W_coef[0] = {0,10} FuncFit/X=1/H="10"/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={0,-30.018} V_chisq= 332.239;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0,2.63} Coefficient values one standard deviation ZP =0 0 AH =-30.018 2.63 ErrorBars KS_pH3 OFF RemoveFromGraph fit_KS_pH3 Edit/K=0 root:KD_pH3;DelayUpdate Edit/K=0 root:KS_pH3;DelayUpdate Make/N=6/D KS,KD Edit/K=0 root:KS;DelayUpdate Edit/K=0 root:KS;DelayUpdate Edit/K=0 root:KD;DelayUpdate Display KS vs kappa_nm ModifyGraph mode=3,marker=19 Make/D/N=2/O W_coef W_coef[0] = {20,10} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS /X=kappa_nm /D Fit converged properly fit_KS= FittingStatic_constCharge(W_coef,x) W_coef={322.15,237.22} V_chisq= 328344;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={26.8,140} Coefficient values one standard deviation ZP =322.15 26.8 AH =237.22 140 Display KD vs kappa_nm ModifyGraph mode=3,marker=19 Make/D/N=2/O W_coef W_coef[0] = {10,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD /X=kappa_nm /D Fit converged properly fit_KD= FittingDynamic_constCharge(W_coef,x) W_coef={251.35,4.0505} V_chisq= 676.169;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={8.11,67.5} Coefficient values one standard deviation ZP =251.35 8.11 AH =4.0505 67.5 Edit/K=0 root:T_Constraints_Fitting;DelayUpdate Edit/K=0 root:KD_pH3;DelayUpdate pH3_fit_DLS() Make/D/N=2/O W_coef W_coef[0] = {10,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /D Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={349.01,91.335} V_chisq= 3678.81;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={13.6,157} Coefficient values one standard deviation ZP =349.01 13.6 AH =91.335 157 Make/D/N=2/O W_coef W_coef[0] = {250,4} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={301.6,-63} V_chisq= 2455.81;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.16,3.32} Coefficient values one standard deviation ZP =301.6 1.16 AH =-63 3.32 Make/D/N=2/O W_coef W_coef[0] = {250,4} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /D /C=T_Constraints_Fitting Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>-0 Achieved: =2.05391e-15 fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={314.21,2.0539e-15} V_chisq= 2814.88;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.12,3.32} Coefficient values one standard deviation ZP =314.21 1.12 AH =2.0539e-15 3.32 ChargeHamaker_SLS() Label right "\\Z16\\F'Symbol'y\\M\\F'Geneva'\\Bp\\M\\Z16 [\\F'Geneva'e\\M/k\\BB\\MT]" Label right "\\Z20\\F'Symbol'y\\M\\F'Geneva'\\Bp\\M\\Z16 \\M[\\Me\\M/k\\BB\\MT]" pH3_fit_SLS() intercepts_pH_SLS() pH3_fit_DLS() Hydrodynamic_Slope() Edit/K=0 root:KH_pH3;DelayUpdate Edit/K=0 root:KH_pH3;DelayUpdate Edit/K=0 root:KH_pH4;DelayUpdate Hydrodynamic_Slope() Edit/K=0 root:KH_I15;DelayUpdate Edit/K=0 root:KH_I15;DelayUpdate Edit/K=0 root:KH_pH3;DelayUpdate Edit/K=0 root:KH_I175;DelayUpdate pH3_fit_SLS() ShowInfo Make/D/N=2/O W_coef W_coef[0] = {250,4} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3[pcsr(A),pcsr(B)] /X=kappa_nm /D Fit converged properly Curve fit with data subrange: KS_pH3[1,5] fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={132.98,8.2474} V_chisq= 289.627;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1;V_endRow= 5; W_sigma={6.19,6.28} Coefficient values one standard deviation ZP =132.98 6.19 AH =8.2474 6.28 Make/D/N=2/O W_coef W_coef[0] = {250,4} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3[pcsr(A),pcsr(B)] /X=kappa_nm /D /C=T_Constraints_Fitting Fit converged properly --Curve fit with constraints-- No constraints active or violated Curve fit with data subrange: KS_pH3[1,5] fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={132.98,8.2474} V_chisq= 289.627;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1;V_endRow= 5; W_sigma={6.19,6.28} Coefficient values one standard deviation ZP =132.98 6.19 AH =8.2474 6.28 Make/D/N=2/O W_coef W_coef[0] = {250,4} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3[pcsr(A),pcsr(B)] /X=kappa_nm /W=sdKS_pH3 /I=1 /D Fit converged properly Curve fit with data subrange: KS_pH3[1,5] fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={131.5,7.0615} V_chisq= 1.46129;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1;V_endRow= 5; W_sigma={8.22,8.7} Coefficient values one standard deviation ZP =131.5 8.22 AH =7.0615 8.7 WM_NewGlobalFit1#InitNewGlobalFitPanel() WM_NewGlobalFit1#InitNewGlobalFitPanel() *** Doing Global fit *** Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<10 Achieved: =10 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={227.28,10,84.535,71.961,50.763,25.751,-5.9369,8.4366,54.176} V_chisq= 664.843;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={1.71,1.74,4.6,4.19,4.25,8.35,60.1,37.6,5.34} Coefficient values one standard deviation K0 =227.28 1.71 K1 =10 1.74 K2 =84.535 4.6 K3 =71.961 4.19 K4 =50.763 4.25 K5 =25.751 8.35 K6 =-5.9369 60.1 K7 =8.4366 37.6 K8 =54.176 5.34 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 664.843 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 6 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 227.284 +- 1.7101 1 Global AH 10 +- 1.73551 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 84.5345 +- 4.59786 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 71.9612 +- 4.18601 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 50.7633 +- 4.24526 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 25.7505 +- 8.34776 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -5.93689 +- 60.098 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 8.4366 +- 37.5582 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 54.1765 +- 5.33565 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<10 Achieved: =10 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={233.25,10,82.392,70.593,51.267,21.872,-1.2952,1.6411,55.39} V_chisq= 158519;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={6.36,11,18,21,28.9,67.8,1.15e+03,904,26.8} Coefficient values one standard deviation K0 =233.25 6.36 K1 =10 11 K2 =82.392 18 K3 =70.593 21 K4 =51.267 28.9 K5 =21.872 67.8 K6 =-1.2952 1.15e+03 K7 =1.6411 904 K8 =55.39 26.8 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 158519 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 9 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 233.253 +- 6.36111 1 Global AH 10 +- 10.9871 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 82.392 +- 18.0084 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 70.593 +- 21.0183 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 51.2673 +- 28.9414 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 21.8719 +- 67.838 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -1.29524 +- 1145.54 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 1.64115 +- 904.092 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 55.3902 +- 26.7872 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={233.25,10,82.392,70.593,51.267,21.872,-0.26329,1.6264,55.39} V_chisq= 158519;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={5.97,0,16.9,19.7,27.2,63.7,5.29e+03,856,25.1} Coefficient values one standard deviation K0 =233.25 5.97 K1 =10 0 K2 =82.392 16.9 K3 =70.593 19.7 K4 =51.267 27.2 K5 =21.872 63.7 K6 =-0.26329 5.29e+03 K7 =1.6264 856 K8 =55.39 25.1 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 158519 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 6 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 233.253 +- 5.97093 1 Global AH 10 +- 0 *HELD* Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 82.392 +- 16.9038 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 70.593 +- 19.7291 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 51.2673 +- 27.1662 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 21.8719 +- 63.6771 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -0.263291 +- 5289.73 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 1.6264 +- 856.333 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 55.3902 +- 25.1441 1 Global AH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<10 Achieved: =10 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={233.25,10,82.392,70.593,51.267,21.872,0.24588,1.6249,55.39} V_chisq= 158519;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={6.36,11,18,21,28.9,67.8,6.03e+03,913,26.8} Coefficient values one standard deviation K0 =233.25 6.36 K1 =10 11 K2 =82.392 18 K3 =70.593 21 K4 =51.267 28.9 K5 =21.872 67.8 K6 =0.24588 6.03e+03 K7 =1.6249 913 K8 =55.39 26.8 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 158519 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 7 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 233.253 +- 6.3611 1 Global AH 10 +- 10.9871 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 82.392 +- 18.0084 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 70.593 +- 21.0183 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 51.2673 +- 28.9414 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 21.8719 +- 67.838 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 0.24588 +- 6034.41 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 1.62491 +- 913.124 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 55.3902 +- 26.7871 1 Global AH 10 +- 10.9871 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<10 Achieved: =10 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={233.19,10,82.413,70.606,51.261,21.904,-6.9278,1.3551,55.376} V_chisq= 678.229;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={1.67,1.74,4.72,4.27,4.2,9.81,51.5,234,5.22} Coefficient values one standard deviation K0 =233.19 1.67 K1 =10 1.74 K2 =82.413 4.72 K3 =70.606 4.27 K4 =51.261 4.2 K5 =21.904 9.81 K6 =-6.9278 51.5 K7 =1.3551 234 K8 =55.376 5.22 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 678.229 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 6 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 233.195 +- 1.66675 1 Global AH 10 +- 1.73551 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 82.4129 +- 4.71622 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 70.6058 +- 4.26636 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 51.2608 +- 4.20406 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 21.9037 +- 9.81384 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -6.92785 +- 51.5016 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 1.35513 +- 233.825 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 55.376 +- 5.22007 1 Global AH 10 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Edit/K=0 root:GlobalFitCoefficients;DelayUpdate pH3_fit_SLS() Make/N=6/D maskSLSpH3 Edit/K=0 root:maskSLSpH3;DelayUpdate Edit/K=0 root:maskSLSpH3;DelayUpdate Make/D/N=2/O W_coef W_coef[0] = {250,4} FuncFit/X=1/NTHR=0 FittingStatic_constCharge W_coef KS_pH3 /X=kappa_nm /W=sdKS_pH3 /I=1 /M=maskSLSpH3 /D Fit converged properly fit_KS_pH3= FittingStatic_constCharge(W_coef,x) W_coef={131.5,7.0615} V_chisq= 1.46129;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={8.22,8.7} Coefficient values one standard deviation ZP =131.5 8.22 AH =7.0615 8.7 WM_NewGlobalFit1#InitNewGlobalFitPanel() *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={229,17.997,89.009,77.012,56.461,35.88,-28.314,29.641,61.549} V_chisq= 643.187;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 47; W_sigma={1.7,1.74,4.37,3.91,3.82,5.99,12.6,10.7,4.7} Coefficient values one standard deviation K0 =229 1.7 K1 =17.997 1.74 K2 =89.009 4.37 K3 =77.012 3.91 K4 =56.461 3.82 K5 =35.88 5.99 K6 =-28.314 12.6 K7 =29.641 10.7 K8 =61.549 4.7 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 643.187 V_npnts= 48 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 7 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 229.004 +- 1.69725 1 Global AH 17.9968 +- 1.73551 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 89.0094 +- 4.3667 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 77.0116 +- 3.91149 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 56.4611 +- 3.81685 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 35.8802 +- 5.99101 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -28.3135 +- 12.6016 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 29.641 +- 10.69 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 61.5488 +- 4.69655 1 Global AH 17.9968 +- 1.73551 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Make/N=6/D maskALL Edit/K=0 root:maskALL;DelayUpdate *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={137.85,10.737,84.901,72.36,51.174,26.083,-9.2203,4.2208,54.68} V_chisq= 36.5592;V_npnts= 47;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 46; W_sigma={5.68,1.76,4.58,4.17,4.22,8.26,38.8,75.2,5.29} Coefficient values one standard deviation K0 =137.85 5.68 K1 =10.737 1.76 K2 =84.901 4.58 K3 =72.36 4.17 K4 =51.174 4.22 K5 =26.083 8.26 K6 =-9.2203 38.8 K7 =4.2208 75.2 K8 =54.68 5.29 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 36.5592 V_npnts= 47 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 7 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 137.846 +- 5.67851 1 Global AH 10.7371 +- 1.76059 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 84.9008 +- 4.58123 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 72.3598 +- 4.16755 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 51.1736 +- 4.21732 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 26.0826 +- 8.25513 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -9.22034 +- 38.7639 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 4.22083 +- 75.1905 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 54.6795 +- 5.29493 1 Global AH 10.7371 +- 1.76059 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Make/N=6/D maskSLSpH8,maskSLSpH9 Edit/K=0 root:maskSLSpH8;DelayUpdate Edit/K=0 root:maskSLSpH9;DelayUpdate *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={138.3,11.43,85.292,72.806,51.69,27.152,-3.9919,6.2692,55.357} V_chisq= 35.2515;V_npnts= 44;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 43; W_sigma={5.69,1.92,4.58,4.17,4.22,8.02,90.3,50.8,5.29} Coefficient values one standard deviation K0 =138.3 5.69 K1 =11.43 1.92 K2 =85.292 4.58 K3 =72.806 4.17 K4 =51.69 4.22 K5 =27.152 8.02 K6 =-3.9919 90.3 K7 =6.2692 50.8 K8 =55.357 5.29 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 35.2515 V_npnts= 44 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 6 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 138.298 +- 5.69426 1 Global AH 11.4298 +- 1.91996 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 85.2924 +- 4.58154 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 72.8063 +- 4.17244 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 51.6902 +- 4.21534 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 27.1524 +- 8.01707 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -3.99189 +- 90.3444 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 6.26921 +- 50.7883 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 55.3573 +- 5.2851 1 Global AH 11.4298 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH I_slopes_GlobalFit_SeparateSLS() I_slopes_GlobalFit_SLS() *** Doing Global fit *** 9 iterations with no decrease in chi square --Curve fit with constraints-- Active Constraint: Desired: K1<10 Achieved: =10 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={137.14,10,84.474,71.873,50.608,24.875,-0.84954,-5.7046,53.936} V_chisq= 36.0753;V_npnts= 44;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 43; W_sigma={5.74,1.92,4.63,4.23,4.31,8.75,425,55.8,5.42} Coefficient values one standard deviation K0 =137.14 5.74 K1 =10 1.92 K2 =84.474 4.63 K3 =71.873 4.23 K4 =50.608 4.31 K5 =24.875 8.75 K6 =-0.84954 425 K7 =-5.7046 55.8 K8 =53.936 5.42 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 36.0753 V_npnts= 44 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 12 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 137.143 +- 5.74221 1 Global AH 10 +- 1.91996 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 84.4745 +- 4.6259 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 71.8729 +- 4.22663 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 50.6084 +- 4.30545 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 24.8749 +- 8.7511 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -0.849537 +- 424.52 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -5.70462 +- 55.8149 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 53.9365 +- 5.42432 1 Global AH 10 +- 1.91996 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1<10 Achieved: =10 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={137.12,10,84.454,71.86,50.615,24.847,0.77803,-5.6597,53.951} V_chisq= 5497.77;V_npnts= 44;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 43; W_sigma={5.03,2.35,3.48,4.09,5.81,11.8,378,51.8,5.45} Coefficient values one standard deviation K0 =137.12 5.03 K1 =10 2.35 K2 =84.454 3.48 K3 =71.86 4.09 K4 =50.615 5.81 K5 =24.847 11.8 K6 =0.77803 378 K7 =-5.6597 51.8 K8 =53.951 5.45 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 5497.77 V_npnts= 44 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 6 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 137.116 +- 5.02624 1 Global AH 10 +- 2.34522 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 84.4541 +- 3.48337 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 71.8603 +- 4.09385 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 50.615 +- 5.81222 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 24.8469 +- 11.8399 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 0.77803 +- 377.519 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -5.65969 +- 51.8019 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 53.9511 +- 5.45282 1 Global AH 10 +- 2.34522 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={137.09,10.003,84.434,71.848,50.621,24.819,-0.99665,-5.6151,53.966} V_chisq= 5494.66;V_npnts= 44;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 43; W_sigma={5.03,2.34,3.48,4.09,5.81,11.8,295,52.2,5.45} Coefficient values one standard deviation K0 =137.09 5.03 K1 =10.003 2.34 K2 =84.434 3.48 K3 =71.848 4.09 K4 =50.621 5.81 K5 =24.819 11.8 K6 =-0.99665 295 K7 =-5.6151 52.2 K8 =53.966 5.45 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 5494.66 V_npnts= 44 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 6 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 137.089 +- 5.02582 1 Global AH 10.0033 +- 2.34455 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 84.434 +- 3.48322 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 71.8479 +- 4.0934 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 50.6215 +- 5.80983 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 24.8193 +- 11.8497 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] -0.996654 +- 294.624 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -5.61507 +- 52.1987 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 53.9655 +- 5.44982 1 Global AH 10.0033 +- 2.34455 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH pH3_fit_DLS() pH8_fit_DLS() pH9_fit_DLS() pH8_fit_DLS() *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={235.7,24.132,89.174,78.42,61.638,-42.492,30.314,-35.397,65.097,345.48,0} MasterCoefs[10]={131.16,106.07,83.227,16.266,15.229,0.70352,79.43} V_chisq= 157249;V_npnts= 96;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 95; W_sigma={4.4,7.66,11.6,13.2,16.8,24.4,34.2,29.3,15.9,16.3,43,53.1,67.7,346,370,8.01e+03,70.9} Coefficient values one standard deviation K0 =235.7 4.4 K1 =24.132 7.66 K2 =89.174 11.6 K3 =78.42 13.2 K4 =61.638 16.8 K5 =-42.492 24.4 K6 =30.314 34.2 K7 =-35.397 29.3 K8 =65.097 15.9 K9 =345.48 16.3 K10 =131.16 43 K11 =106.07 53.1 K12 =83.227 67.7 K13 =16.266 346 K14 =15.229 370 K15 =0.70352 8.01e+03 K16 =79.43 70.9 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 157249 V_npnts= 96 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 19 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 235.699 +- 4.40343 1 GlobalAH 24.1316 +- 7.65507 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 89.1739 +- 11.6389 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 78.4201 +- 13.2349 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 61.6382 +- 16.8383 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -42.492 +- 24.4254 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 30.3144 +- 34.2373 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -35.3966 +- 29.3216 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 65.0968 +- 15.9437 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 345.483 +- 16.3113 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.16 +- 42.9651 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.07 +- 53.1281 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.2266 +- 67.7102 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 16.2664 +- 346.438 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 15.2291 +- 370.034 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] 0.703516 +- 8010.17 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 79.4299 +- 70.9467 1 GlobalAH 24.1316 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={235.7,24.132,89.174,78.42,61.638,-42.492,30.314,-35.396,65.097,345.48,0} MasterCoefs[10]={131.16,106.07,83.227,16.266,15.227,0.43576,79.43} V_chisq= 157249;V_npnts= 96;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 95; W_sigma={4.4,7.66,11.6,13.2,16.8,24.4,34.2,29.3,15.9,16.3,43,53.1,67.7,346,370,1.29e+04,70.9} Coefficient values one standard deviation K0 =235.7 4.4 K1 =24.132 7.66 K2 =89.174 11.6 K3 =78.42 13.2 K4 =61.638 16.8 K5 =-42.492 24.4 K6 =30.314 34.2 K7 =-35.396 29.3 K8 =65.097 15.9 K9 =345.48 16.3 K10 =131.16 43 K11 =106.07 53.1 K12 =83.227 67.7 K13 =16.266 346 K14 =15.227 370 K15 =0.43576 1.29e+04 K16 =79.43 70.9 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 157249 V_npnts= 96 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 8 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 235.699 +- 4.40342 1 GlobalAH 24.1317 +- 7.65507 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 89.1739 +- 11.6389 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 78.4201 +- 13.2349 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 61.6382 +- 16.8383 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -42.4918 +- 24.4255 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 30.3144 +- 34.2373 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -35.3965 +- 29.3217 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 65.0968 +- 15.9437 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 345.483 +- 16.3113 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.16 +- 42.9651 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.07 +- 53.1281 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.2266 +- 67.7102 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 16.2664 +- 346.438 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 15.2267 +- 370.093 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] 0.435755 +- 12932.2 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 79.4299 +- 70.9467 1 GlobalAH 24.1317 +- 7.65507 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={235.63,24.142,89.177,78.422,61.637,-42.492,30.327,-35.402,65.099,345.46,0} MasterCoefs[10]={131.16,106.07,83.226,16.268,15.205,-2.5271,79.414} V_chisq= 9255.98;V_npnts= 96;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 95; W_sigma={2.49,0.796,4.27,3.72,3.36,4.83,11.2,8.56,4.25,0.837,0.551,0.7,0.778,2.49,2.7,21.9,3.48} Coefficient values one standard deviation K0 =235.63 2.49 K1 =24.142 0.796 K2 =89.177 4.27 K3 =78.422 3.72 K4 =61.637 3.36 K5 =-42.492 4.83 K6 =30.327 11.2 K7 =-35.402 8.56 K8 =65.099 4.25 K9 =345.46 0.837 K10 =131.16 0.551 K11 =106.07 0.7 K12 =83.226 0.778 K13 =16.268 2.49 K14 =15.205 2.7 K15 =-2.5271 21.9 K16 =79.414 3.48 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 9255.98 V_npnts= 96 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 7 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 235.635 +- 2.48907 1 GlobalAH 24.142 +- 0.796343 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 89.1771 +- 4.27468 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 78.4224 +- 3.72417 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 61.6371 +- 3.35611 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -42.4918 +- 4.82598 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 30.3265 +- 11.1951 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -35.4016 +- 8.55644 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 65.0986 +- 4.24527 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 345.457 +- 0.836641 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.16 +- 0.550521 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.07 +- 0.700051 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.2263 +- 0.778484 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 16.2682 +- 2.49354 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 15.2051 +- 2.69584 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] -2.52713 +- 21.8724 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 79.4136 +- 3.4795 1 GlobalAH 24.142 +- 0.796343 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={186.21,28.012,92.359,81.174,62.292,-44.494,41.06,-39.933,67.941,317.68,0} MasterCoefs[10]={131.78,106.81,83.53,19.419,7.0219,-0.12899,70.851} V_chisq= 6479.79;V_npnts= 88;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 87; W_sigma={3.33,0.827,4.13,3.6,3.32,4.61,8.28,7.62,4.07,1.14,0.549,0.696,0.777,2.1,5.86,429,3.91} Coefficient values one standard deviation K0 =186.21 3.33 K1 =28.012 0.827 K2 =92.359 4.13 K3 =81.174 3.6 K4 =62.292 3.32 K5 =-44.494 4.61 K6 =41.06 8.28 K7 =-39.933 7.62 K8 =67.941 4.07 K9 =317.68 1.14 K10 =131.78 0.549 K11 =106.81 0.696 K12 =83.53 0.777 K13 =19.419 2.1 K14 =7.0219 5.86 K15 =-0.12899 429 K16 =70.851 3.91 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 6479.79 V_npnts= 88 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 23 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 186.206 +- 3.32983 1 GlobalAH 28.0124 +- 0.826865 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 92.3588 +- 4.12913 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 81.174 +- 3.60032 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 62.2921 +- 3.32377 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -44.4936 +- 4.61359 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 41.0601 +- 8.28163 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -39.933 +- 7.61878 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 67.9409 +- 4.07165 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 317.685 +- 1.13891 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.783 +- 0.548884 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.806 +- 0.696403 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.5304 +- 0.777089 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 19.4188 +- 2.09783 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 7.02187 +- 5.86068 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] -0.12899 +- 429.043 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 70.8512 +- 3.90842 1 GlobalAH 28.0124 +- 0.826865 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** 9 iterations with no decrease in chi square --Curve fit with constraints-- Constraint VIOLATED: Desired: K1<10 Achieved: =28.0124 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={186.21,28.012,92.359,81.174,62.292,-44.494,41.06,-39.933,67.941,317.68,0} MasterCoefs[10]={131.78,106.81,83.53,19.419,7.0219,-0.12899,70.851} V_chisq= 34578.4;V_npnts= 88;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 87; W_sigma={6.51,4.11,5.61,6.38,8.31,11.6,12.6,12.9,7.62,27.7,21.2,26.1,33.4,144,397,2.16e+04,39.3} Coefficient values one standard deviation K0 =186.21 6.51 K1 =28.012 4.11 K2 =92.359 5.61 K3 =81.174 6.38 K4 =62.292 8.31 K5 =-44.494 11.6 K6 =41.06 12.6 K7 =-39.933 12.9 K8 =67.941 7.62 K9 =317.68 27.7 K10 =131.78 21.2 K11 =106.81 26.1 K12 =83.53 33.4 K13 =19.419 144 K14 =7.0219 397 K15 =-0.12899 2.16e+04 K16 =70.851 39.3 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 34578.4 V_npnts= 88 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 186.206 +- 6.51346 1 GlobalAH 28.0124 +- 4.11109 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 92.3588 +- 5.60584 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 81.174 +- 6.37826 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 62.2921 +- 8.31162 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -44.4936 +- 11.6365 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 41.0601 +- 12.5899 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -39.933 +- 12.9219 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 67.9409 +- 7.62058 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 317.685 +- 27.7457 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.783 +- 21.153 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.806 +- 26.0998 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.5304 +- 33.3724 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 19.4188 +- 143.552 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 7.02187 +- 397.013 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] -0.12899 +- 21623.6 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 70.8512 +- 39.3445 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** 9 iterations with no decrease in chi square --Curve fit with constraints-- Constraint VIOLATED: Desired: K1<10 Achieved: =28.0124 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={186.21,28.012,92.359,81.174,62.292,-44.494,41.06,-39.933,67.941,317.68,0} MasterCoefs[10]={131.78,106.81,83.53,19.419,7.0219,-0.12899,70.851} V_chisq= 34578.4;V_npnts= 88;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 87; W_sigma={6.51,4.11,5.61,6.38,8.31,11.6,12.6,12.9,7.62,27.7,21.2,26.1,33.4,144,397,2.16e+04,39.3} Coefficient values one standard deviation K0 =186.21 6.51 K1 =28.012 4.11 K2 =92.359 5.61 K3 =81.174 6.38 K4 =62.292 8.31 K5 =-44.494 11.6 K6 =41.06 12.6 K7 =-39.933 12.9 K8 =67.941 7.62 K9 =317.68 27.7 K10 =131.78 21.2 K11 =106.81 26.1 K12 =83.53 33.4 K13 =19.419 144 K14 =7.0219 397 K15 =-0.12899 2.16e+04 K16 =70.851 39.3 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 34578.4 V_npnts= 88 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 186.206 +- 6.51346 1 GlobalAH 28.0124 +- 4.11109 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 92.3588 +- 5.60584 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 81.174 +- 6.37826 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 62.2921 +- 8.31162 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -44.4936 +- 11.6365 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 41.0601 +- 12.5899 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -39.933 +- 12.9219 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 67.9409 +- 7.62058 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 317.685 +- 27.7457 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.783 +- 21.153 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.806 +- 26.0998 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.5304 +- 33.3724 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 19.4188 +- 143.552 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 7.02187 +- 397.013 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] -0.12899 +- 21623.6 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 70.8512 +- 39.3445 1 GlobalAH 28.0124 +- 4.11109 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Edit/K=0 root:maskSLSpH8;DelayUpdate Edit/K=0 root:maskSLSpH9;DelayUpdate *** Doing Global fit *** 9 iterations with no decrease in chi square --Curve fit with constraints-- Constraint VIOLATED: Desired: K1<10 Achieved: =28.0124 Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={186.21,28.012,92.359,81.174,62.292,-44.494,41.06,-39.933,67.941,317.68,0} MasterCoefs[10]={131.78,106.81,83.53,19.419,7.0219,-0.12899,70.851} V_chisq= 34571.2;V_npnts= 86;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 85; W_sigma={6.62,4.25,5.7,6.48,8.45,11.8,12.8,13.1,7.75,28.1,21.5,26.5,33.8,146,403,2.19e+04,39.9} Coefficient values one standard deviation K0 =186.21 6.62 K1 =28.012 4.25 K2 =92.359 5.7 K3 =81.174 6.48 K4 =62.292 8.45 K5 =-44.494 11.8 K6 =41.06 12.8 K7 =-39.933 13.1 K8 =67.941 7.75 K9 =317.68 28.1 K10 =131.78 21.5 K11 =106.81 26.5 K12 =83.53 33.8 K13 =19.419 146 K14 =7.0219 403 K15 =-0.12899 2.19e+04 K16 =70.851 39.9 Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 34571.2 V_npnts= 86 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 186.206 +- 6.62156 1 GlobalAH 28.0124 +- 4.24637 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 92.3588 +- 5.69757 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 81.174 +- 6.48263 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 62.2921 +- 8.44763 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -44.4936 +- 11.8269 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 41.0601 +- 12.7701 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -39.933 +- 13.1305 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 67.9409 +- 7.74527 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 317.685 +- 28.1424 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.783 +- 21.4554 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.806 +- 26.473 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.5304 +- 33.8495 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 19.4188 +- 145.604 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 7.02187 +- 402.897 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] -0.12899 +- 21932.7 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 70.8512 +- 39.907 1 GlobalAH 28.0124 +- 4.24637 ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** Hmm... Global Fit stopped for an unknown reason. Global fit results Fit stopped due to limit of iterations with no decrease in chi-square V_chisq = 0 V_npnts= 86 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 10 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 186.206 +- 6.62156 1 GlobalAH 10 +- 4.24637 *HELD* Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 92.3588 +- 5.69757 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 81.174 +- 6.48263 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 62.2921 +- 8.44763 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -44.4936 +- 11.8269 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 41.0601 +- 12.7701 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -39.933 +- 13.1305 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 67.9409 +- 7.74527 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 317.685 +- 28.1424 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.783 +- 21.4554 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.806 +- 26.473 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.5304 +- 33.8495 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 19.4188 +- 145.604 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 7.02187 +- 402.897 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] -0.12899 +- 21932.7 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 70.8512 +- 39.907 1 GlobalAH 10 +- 4.24637 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={186.16,10,92.349,81.164,62.282,-44.477,41.037,-39.913,67.93,317.65,131.78,0} MasterCoefs[11]={106.8,83.527,19.403,6.9493,15.873,70.857} V_chisq= 43632.2;V_npnts= 86;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 85; W_sigma={6.9,0,5.98,6.81,8.87,12.4,13.5,13.9,8.13,31.4,23.9,29.5,37.7,162,454,199,44.5} Coefficient values one standard deviation K0 =186.16 6.9 K1 =10 0 K2 =92.349 5.98 K3 =81.164 6.81 K4 =62.282 8.87 K5 =-44.477 12.4 K6 =41.037 13.5 K7 =-39.913 13.9 K8 =67.93 8.13 K9 =317.65 31.4 K10 =131.78 23.9 K11 =106.8 29.5 K12 =83.527 37.7 K13 =19.403 162 K14 =6.9493 454 K15 =15.873 199 K16 =70.857 44.5 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 43632.2 V_npnts= 86 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 7 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 186.161 +- 6.9015 1 GlobalAH 10 +- 0 *HELD* Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 92.3494 +- 5.98107 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 81.1642 +- 6.80532 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 62.2821 +- 8.86849 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -44.4768 +- 12.4188 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 41.0368 +- 13.501 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -39.9128 +- 13.8812 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 67.9295 +- 8.1312 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 317.646 +- 31.3797 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.781 +- 23.9227 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.803 +- 29.5176 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.5271 +- 37.7429 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 19.403 +- 162.478 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] 6.94927 +- 453.923 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] 15.8727 +- 198.733 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 70.8568 +- 44.4918 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={181.2,10,91.521,80.201,61.118,-42.79,38.386,-37.541,66.548,315.24,131.54,0} MasterCoefs[11]={106.5,83.14,17.889,-3.349,0.38932,68.043} V_chisq= 7300;V_npnts= 86;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 85; W_sigma={3.39,0,4.14,3.61,3.35,4.73,8.78,8.02,4.1,1.12,0.536,0.682,0.761,2.14,11.6,139,3.95} Coefficient values one standard deviation K0 =181.2 3.39 K1 =10 0 K2 =91.521 4.14 K3 =80.201 3.61 K4 =61.118 3.35 K5 =-42.79 4.73 K6 =38.386 8.78 K7 =-37.541 8.02 K8 =66.548 4.1 K9 =315.24 1.12 K10 =131.54 0.536 K11 =106.5 0.682 K12 =83.14 0.761 K13 =17.889 2.14 K14 =-3.349 11.6 K15 =0.38932 139 K16 =68.043 3.95 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 7300 V_npnts= 86 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 13 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 181.201 +- 3.38989 1 GlobalAH 10 +- 0 *HELD* Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 91.5211 +- 4.14316 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 80.2013 +- 3.61046 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 61.1179 +- 3.34589 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] -42.7898 +- 4.72879 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 38.3856 +- 8.77651 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] -37.5414 +- 8.01577 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 66.548 +- 4.10039 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH3 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH3] 315.241 +- 1.12415 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH4 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH4] 131.54 +- 0.536386 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH5 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH5] 106.501 +- 0.68201 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH6 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH6] 83.1402 +- 0.760537 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH7 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH7] 17.8888 +- 2.14076 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH8 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH8] -3.34899 +- 11.5739 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH9 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH9] 0.389317 +- 139.171 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH Data Set: root:KD_pH10 vs root:kappa_nm ; Function: FittingDynamic_constCharge 0 ZP[FittingDynamic_constCharge][root:KD_pH10] 68.0432 +- 3.947 1 GlobalAH 10 +- 0 *HELD* ** LINKED to data set root:KS_pH3 coefficient 1: GlobalAH I_slopes_DLS() pH3_fit_DLS() Make/D/N=2/O W_coef W_coef[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /M=maskSLSpH3 /D Fit converged properly fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={249.26,-130.81} V_chisq= 514.452;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.92,3.66} Coefficient values one standard deviation ZP =249.26 1.92 AH =-130.81 3.66 Make/D/N=2/O W_coef W_coef[0] = {100,10} FuncFit/X=1/NTHR=0 FittingDynamic_constCharge W_coef KD_pH3 /X=kappa_nm /W=sdKD_pH3 /I=1 /M=maskSLSpH3 /D /C=T_Constraints_Fitting Fit converged properly --Curve fit with constraints-- Active Constraint: Desired: K1>-0 Achieved: =-1.33227e-15 fit_KD_pH3= FittingDynamic_constCharge(W_coef,x) W_coef={291.93,-1.3323e-15} V_chisq= 1789.48;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={1.64,3.66} Coefficient values one standard deviation ZP =291.93 1.64 AH =-1.3323e-15 3.66 I_slopes_GlobalFit_SLS() Legend/C/N=text0/J "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7\r\\s(KS_pH8) Exp pH=8";DelayUpdate AppendText/N=text0 "\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10" I_slopes_GlobalFit_SLS() *** Doing Global fit *** Fit converged properly Duplicate/O YCumData,WMCF_TempXWave WMCF_TempXWave = x NewGlblFitFunc(MasterCoefs,FitY,WMCF_TempXWave) FitY=FitY[p] NewGF_ResidY = YCumData[p] - FitY[p] KillWaves/Z WMCF_TempXWave MasterCoefs={232.69,35.311,98.113,87.105,67.414,52.298,56.968,54.468,75.443,8.802,0} MasterCoefs[10]={4.5056,4.0596,3.3882,2.6928,2.4882,2.6512,3.3617} V_chisq= 5327.97;V_npnts= 96;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 95; W_sigma={1.66,1.46,3.93,3.42,3.15,4.04,6.15,5.72,3.77,0.0609,0.119,0.132,0.158,0.199,0.216,0.202,0.16} Coefficient values one standard deviation K0 =232.69 1.66 K1 =35.311 1.46 K2 =98.113 3.93 K3 =87.105 3.42 K4 =67.414 3.15 K5 =52.298 4.04 K6 =56.968 6.15 K7 =54.468 5.72 K8 =75.443 3.77 K9 =8.802 0.0609 K10 =4.5056 0.119 K11 =4.0596 0.132 K12 =3.3882 0.158 K13 =2.6928 0.199 K14 =2.4882 0.216 K15 =2.6512 0.202 K16 =3.3617 0.16 Global Fit converged normally. Global fit results Fit converged normally V_chisq = 5327.97 V_npnts= 96 V_numNaNs= 0 V_numINFs= 0 Number of iterations: 2 Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH3] 232.694 +- 1.65862 1 Global AH 35.311 +- 1.46239 Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH4] 98.1126 +- 3.93374 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH5] 87.1051 +- 3.41994 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH6] 67.414 +- 3.15023 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH7] 52.298 +- 4.0418 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH8] 56.9679 +- 6.15338 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH9] 54.468 +- 5.72468 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constCharge 0 ZP[FittingStatic_constCharge][root:KS_pH10] 75.4431 +- 3.7706 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH3 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH3] 8.80201 +- 0.0609282 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH4 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH4] 4.50564 +- 0.119027 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH5 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH5] 4.0596 +- 0.132104 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH6 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH6] 3.38823 +- 0.158281 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH7 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH7] 2.6928 +- 0.199157 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH8 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH8] 2.48821 +- 0.215533 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH9 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH9] 2.65121 +- 0.202282 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH Data Set: root:KS_pH10 vs root:kappa_nm ; Function: FittingStatic_constPotential 0 PsiP[FittingStatic_constPotential][root:KS_pH10] 3.36166 +- 0.159532 1 Global AH 35.311 +- 1.46239 ** LINKED to data set root:KS_pH3 coefficient 1: Global AH !<3@ $4tSKP!DLS_input0< ????4/-^5PK? O?'xP?p ՝T?j^&њV?Z2jY?2/Z?jD~D[?mU^?s igc?)e?j^&њf?Z(i?jD~Dk?͐q?W歺u?j^&њv?jD~D{?b}?p}E?j^&њ?, PSˆ?RD~D?q >?!H2t>9Ry>S8#>t1t>'NiJ>QG`|>>NŻCT>~X5H>0l>>t1t>>T>>̪ ?5 F>1t> >R?!(G~)?n1t>lP̳&??ȧOC?߿F?%:R>!>>_=t>l>sd>S0s>`4>˾+D:>EfMt>TDm>`>p.*>k4>U)>*BHf>f>`4>t— ?R0"?l> niԜ ?`4>Q@@)X%@Q@= t@@%X@b/@촁N@촁N@Q@R贁N@:m@:m@’_,@333333%@5"""""&@#@333333&@/@NDDDD1@/@5@LUUUUU0@ x.KQ? Q?/?IFT7?tj?Mn96?z?w??{Gz?;82?_%ř?2?\gP?{Gz?r?,?{Gz?♙?{yE?}?LXz @ e?.N?fP?E?Q?Y@{Q?L R?ĀE9X? Y?$[? nl[?W+\?nXH(\?kfc?d?X|[Tg?Ssfg?؃ i? k?|Qo3q?yN q?_.ws?[5zs?̓ y? {?<|?i~?f@?}<ݭ,?#-#? ?$?>F>>%f_>ڷa>KIS>~ӫ>#^j6>e7>R>Fn>vǻW>2#У>g^>KIS>~ӫ>t\2>,LS>puH.k>|_?KIS?~ӫ?elu=>^>%?=@?%|?KIS?~ӫ?v ^mF?p}\H?/I?I?^ٕ>VqA>%Li>?oH>Ne>cَ">]>B>>9>-@>pr>zo~`&>06>0\T>cَ">\>B>J?h'5>7Ac>/XF>PD7>cَ">]>B>/> i>j8c?d/±>Is? ?cَ"? ]>B ?Œ_,@(\@>m:@@Y@3i6@G~K@N贁@6i@(\@K~@%X@>m:@{Gz@)Œ_,@%X@촁N@@g/b@K~@{Gz@)Œ_,@RQ@333333@i6@N贁@333333@N@\(\@>m:@2?Gz?Ow?|7`u?K̮&?*ܮ?H?R_%ř??Gz?J?wkJNb?>`N?,?[gP?f[gP?{H?Gz?[gP?[gP?,?H?Gz?Gz?_%ř?[gP?{Gz?P[$]?{Gz?/?p=4O?c0'">(>T+->u^>zA>Xk>Ps@p)>RĨ}<>NŻCT>$LakU>G޸>u^>RĨ}<>oL2>.?VS>u^>k>DĨ}<?Mͱ?} l>?u^ ?DĨ}<?GF?\efG?2ȻJ?u!N? M AR?[R?h*dS?tv~ U?XtݣU?w3Җ\? Smu_?|͓a? M Ab?Xtݣe?gh?oH7j?y'2:n? M Ar?x|Tt?Xtݣu?8u?b]z?Vix? M A?Xtݣ?u>߄/>AK_PP>1Ōq> a|H> >_b>P .> ;>˾+D:>XN>SM6> a|H> ;>6O>,>>a|H>L,.J> ;?Pm_?pwF5>LQz?a|H? ;?q= ףp@\(\@@p@ t@K~@i6@(\@(\@K~@@= t@@)Œ_,@HDDDDD@p@ t@/b@>m:@贁N@= t@@p@ t@N贁@Q@ףp= @p= ף@c/@ t@ @Gz?|w?WL?[gP?z?w?,?,??Uq?/?H?w?/?Ow?H?H?w?[gP?R_%ř? w?{Gz?Gz?H?z?ILQ L?9OO?lj,T?`/bW? &dW?OQCZ?/$\?`/7_?O}c?֦f? &dg?۳h?fQCj?Xp?;8؛s?;2Tt? &dw?[QCz?4>{?'??Lσ? &d?rQC?cF 4?㽩=>@ T+->gw>?|/g>7>A>T>W>3?e^_>|/g>puH.k>7?T5L ?EjWZ>Y_Y >v/g>7?[X,?1:o1>r8#.?_:?/g?~7 ?rD?Qe<&G?1KtM??B/Q?5u/{Q?1R?|6U?N]V?M;\?n*֙`?5u/{a?t<b?Hb?1Tg?L_l?ٙ!LSn?5u/{q?Hr?f(ps?x?R.1{?b|?5u/{?H?8 >R`A>Ōq>Oc?5+>q)[>-*>dM,.J>Z~ ?3@>5+>/XF>)[>@lK5?gs0 >(">5+>)[?_5ھ{$?tw5>h; 1?Հ>5+>)[?q= ףp@6i@q= ףp@K~@@\%X@6i@\(\@@@@@(\@%X@g/b@RQ@@{Gz@p@ t@RQ@>m:@%X@p@ t@f6i@ w?H? w?I[gP?_%ř?U#?H?|w?H? w?H?{Gz?Gz?w?w?Gz?H?{Gz?/?N>@u?R_%ř?[gP?w?[gP?2p0!M?86WSN?tIP?BT?/iYX?@DX?A:#s[?)Ǧw^? !`?ןd?+h?5@Dh?eEi? Ȼp?K0lt?"Lu?.Q5u?n[w?O?>x?)@Dx?h{?v/Ɂ? Bl;?C(^em?@D߈?L>xx>FA> Ѐ8>+JK>rG[D>fdL>#>UH>{D)>=>rG[D>dJ>خc?6.w?v>%>>?bN=6?(rG[D?\N}?>>O ,?X ?ErG[D?%DE?'R p[F?H?8҅N?ycFQ?3(R?p)O T?ᇉV? &~cX?e`0Q]?bB6?S>b:>sBE>+g> ҬL>GS>G,gi6>?1H>i>NZb> ҬL>/C>Wޕ?$Xk>>C>ٖ>9?CPe0? ҬL?AOF׉ ?h~>ܥ$?Rl? ҬL? :m@K~@ t@ @4b/@"""""@"""""@Gz@Q@ :m@贁N@@ t@ ףp= @6i@6i@%X@ t@@촁N@i6@g/b@Q@i6@X%@N@g/b@@[$]?/y_ӠA?Ow?/??Ow?{Gz?{Gz?_%ř?w?r?Gz?0\gP???r??w?w?|w?/?/?[gP??H?,>7uM?bC{|M??Yz=O?QȌ`S?@o"X?.X?TtwAZ?%ڸ]?z^?;d? δe?@o"h?}"Oi?9R=x,Lq?~EQs?l\Ѡ==t?F2Bu?Tlw?NB=sw?@o"x?J|?PLπ?ډ?`8P͂?4o"?d$7>sb׬>݄>~X5H>U>LS>7i>tN>ʼnK>` >QG`|>U>̔>ҿ4f?> :>{;ό>xޜ>00?U>^ ? ʹ+j> H>1B ?U?* ՅE?6C;jE?on0F?%!L?kGQ?)m.R?8᮫*S?vrhU?p]KU?1 )N^?#_?kGa?ob?r4"Ai?K4l?Jm?ap p?d>q?r;\]q?kGq?g9 u?Mhx?%~{?Pps{?kG?Β$>v;>=@ߛc>EfMt>> >iBJ>i> 9gd>.ҧ>5T{>S0s>> >[L?{>#g>*%ys>/6N>Qn>Jک>'C| ?> >MsH+?ы3>"n>v}??> ?’_,@ףp= @Gz@@ףp= @/b@q= ףp@촁N@i6@@i6@Q@@p@ t@N@\,Œ_@R贁N@贁N@@q= ףp@Œ_,@ffffff@6i@@Gz@kJNb?*N>@u?|w?{Gz?{Gz??Gz?(& ?0\gP?Gz?H?Gz?H?H?[gP?H?H?H? w?{Gz?/?{Gz?/? Gz?{Gz?lL?\jkL?ֺM? RQ?yxeU?a!pU?)eW?N ^Y?/ \?D1Oa?g a?#b?0Md?)eg?)kh?֑;n??~I=n?5fuq?Ry=t?)ew?5x?wx?21y?hy?8aA ~?{7 z?EcL?)e?AI%>< |>:Ѝ*X>Ԏ>_>Y1\>R}>lxDH>_)n>s؝В>RG`|> \Wv>U4,>%f_>lxDH>buH?>NŻCT>q>&F>lxDH?)%mg>gX bq??<>} s>f?LX > >lxDH?NĶD?ߨ D?kE?m,%#J?3=O?&>O?8EQ?XȷR?7AU?MFY?*n%-Y?,4k|Z?s'z^?!Ea?4@,b?L%VYf?e#f?6Ŕi?axxn?,Eq?q?s=r?bdr?hr?Pu?Nuy?5s0-|?,E?e>\$>AvE>U$*>sn>1G2O>EvF>UrX@>Ɉ0z>S0s>è~>uo>?oH>QvF>!}"o>7>˾+D:> qN> f°.>BvF?%>NJVb?oeᩛ>`> .?UC><>BvF?贁N@@ t@@zG @Q@ 6i@q= ףp@ @zN贁 @ffffff@HDDDDD@(\@RQ @Q@RQ@q= ףp@6i@[/b@’_,@ t@ @i6 @3m: @b/@p@ t@4Œ_,@Gz@6i@pwwwww@?H?_%ř?,?,?H?N>@u??/?{Gz?[gP?{Gz?cb? w?N>@u? w?_%ř?Mr?/?H??#w?w?H??{Gz?Mn96?#w?LM?M'\O?_VFR?Jpc&X?[Z@X?D T^AY?N=`G ^?ޭ,Yfa?ua?ZRd?D T^Ai?&Li?mANeYm? cp?͂=Yu?d*v?/Q(x?EVhx?D T^Ay?*{? m9⪂?}u?aũ,?D T^A?^X>f>?$>/%%>tN>uI>Ts>wU/>Rמ?uI>$8>ga>ߗ^ ?La>C+(>TZX:>"!)?uI>C~y?4?s>cp>k??uI?h%YE?F?YkK?H#Q?rQ?YEoR?7vU?ZF,ZgY?Z?a߂a]?pEob?0hb?^IՌle???|{h?>+o?'e|.p?Ĭݗq?=#r?eEor? Egt?=:,A{?[VO{?/t}?jEo?u|Z>>K>iy>8gd>KZ*C)>Iex>ѡ˧>ҡ˧>LԹ>KZ*C)>$4@$>Oe>Wi1p?5Ne>%>@>l\?3Z*C)>Tʂ~??z>?yNc>q >?QZ*C)> t@@)X%@i6@%X@RQ@3i6@Q@6i@= ףp=@>m:@= ףp=@’_,@)X%@c/@6i@K~@X%@X%@촁N@HDDDDD@Q@K~@:m@贁N@u !?­+F?H?H?,?XU#?{Gz?w?Gz?H? w?H?R_%ř?H?0\gP?H?/?#w?w?H?|w?H?H?_%ř?=M?'%RQ?LR?9CqǛV?c~7X? a[?صݒ\?yY\?j\z`?ec?3F.f?c~7h?3457?@T>kP>%3 >݇i?U*1>j > `>` ~k>~@Z ?%3 >B&F>j ?r̤>u?ďf3>%3 ?c ?ݙ{>H"?m>gU@7>,3 ?\ #?uQE?^jJI?)`rJ?ZRP?CQ?s*=T?w0T?T?8|bX?A\"]?2`?Ca?Nd?d?l4fZh?-uTk?s:=p?Cq?t?at? Fw?Iuz?GJV!?C??e*Ç> АT>`G~$>)`I>P1H>R<>܇3>bR>!>Z­aZ>EC?P1H>e°.>%bR>/v>b?.M>P1H?%bR ?>ϻ?{ مQ>t>P1H?4bR?_,Œ@@= ףp=@@ t@zG@ffffff@@>m:@q= ףp@@{Gz@HDDDDD@(\@g/b@)\(@>m:@K~@@4b/@X%@ףp= @:m@RUUUUU@\(\@c/@H?O?O?/?r|J? w?|7`u?[gP?Gz? Gz?Gz?w?{Gz?[gP?w?/?kJNb?[gP?0\gP?z?,?[gP?2? x.KQ??wP2P?9MrQ?V,"`Q?~vT?&GU?xgͬY?N(/v\?nd` \?g$\?EL^?!J^?pd?cg?'sh?gͬi?ps݁'j?N(/vl?}Aq?Ds?Kt?(QGu?gͬy?N(/v|?U|?V%}?镌?98>?s?gͬ?7ec*>H i>1E> \Wv>[Hl>{a0U> ;Iz>7lk>lVn>ڷa>2#У>A'>>-LS>dn>{a0U>%D[;> ;Iz>Ҟ\.1>^ H>31p?Ѝ^(>{a0U? ;Iz?6m>&F>/ ?ShOO ?}TO'?{a0U? L缞G? ҊyI?ZJ;J?fM?\ßO?ӴR?KbzT? U?U?U?m}GC|V?[)^?䛃"=a?{a?Ӵb?fc?Kbzd?`{1i?]b6m?xTwWm?3;^>G+!>è~>/f^>m -[KN>'-#,>̈́A;>8mcn>Ne>06>:^ J>A8Ac>`>a -[KN>(b>'-#,>|>n>׊W6>ht>a -[KN>'-#,>&H㹏>f°.>H-???WJ!?p -[KN ?p= ף@:m@(\@(\B@ t@ @ףp= @ףp= @HzG@ t@ @@Gz@R贁N@K~@HzG@4b/@p@ t@)\(@@g/b@%X@촁N@@ t@N@@%X@@K~@HDDDDD@ ףp= @Gz?/?O?*O|?r?C鸥?*N>@u? w?f[gP? w? x.KQ?_%ř?PS?|w?[gP?ٴ?|w?H?w?H?H?H?_%ř??Ow?[gP?>tã?H?Gz?d:P?2{Q? S?Y?P3'LjSZ?n3[??} LP?Ķ?P3'LjS?=<^?S?W?Q >@ֻ >.s|>B^>$ZH>:Y>(0ɉ>S>#a>x1>Qm& ?;ZH> Hl>(0ɉ>oa> n@ ?Pqs*>ZH>(0ɉ?&F>^Me?Vg?,ZH?Ђ AQ?(0ɉ?R"ŨH?J~H?]K?3.̨NR?^7S?az S?xU?iքzW? OX?نZX_?`;]u`?G7c?',d?mxe?v|4ӧj?Fnk?u2p?G7s?xxu?* v?jnv?'ЅR{?G7?X A?x?;/H}{>~37>8>͡i>/>>@>vs>> > xT>B>/>f^>vs>dNe>@b?9;^>/>vs? f°.>5'|Y?C?/?&/0I?vs?= t@@>m:@)\(@)Œ_,@RQ@ffffff@R贁N@\%X@)Œ_,@{wwwww@b/@%X@\,Œ_@ t@@(\@@Q@Q@Œ_,@N@K~@@ t@@K~@@z?Ow?,?[gP?|w?Gz?I[gP??H???/?w?w?Gz?r?{Gz?bQ?w?w?H?[gP?_%ř??Gz?]Q?Yj2R?ꫫX?"lZ?G}v;<[?]\?%`?(a?8\f?nT8h?"lj?sfl?]l?w/r?SH9t?Fc$,w?"lz?]|?6ņO?Qo3?@?f*?"l?]?ʜ&>Qz>` ~k>&An>E&?>A3>]9>>ݗ~?G]>2An>b/>2A3>~l %? Ҟ\.1>#&>#An?AA3?ξ2?[#v >>a!һ!?U~kr?#An?AA3?6V&H?YIJ?&A R? 'TS?ۥS?l"U?e3aX?ȉ Y?6 "`?!Gla?( 'Tc?Xd?l"e?ΰ8k? # m?&wp? 'Ts?l"u? YSw?g6x?9hO{?cw{?# 'T?l"?M$>kz3ҵT>Z­aZ>d@?s> 1 s?zy< >ʾ>X3N>8\5?E6XE >X@?s>.ĭH>zy< >vR^Y?|>)Z k>X@?s>yy< >DyQ*?)z+(> -n#?ڑ?g@?s ?yy< ?R@)Œ_,@333333@4b/@i6@R贁N@Q@= t@@f6i@\,Œ_@ ףp= @K~@q= ףp@@Q@f6i@= t@@N贁@K~@HDDDDD@p= ף@R贁N@p@ t@K~@jc2?(& ?Gz??m]?w?Gz?{7`u?/?H?s-@w?Gz?{Gz?{Gz?H?H?H?w?w?{Gz??/??>(>>Vg_>舌oW>J:ľX>H>ŪXk>{ǟ?k>Vg_>S8#>9&?}>|Zql?_i\?^,? [2>Vg_??I?rS> ?jf\C>Vg_?=D\1,J?c_ L?FRR?u ݼS?NS?Uv>U?l1gY?bdZ?%E`?$b?^ ݼc?he?ke?7Ak?kGo?5o?lq?ruuq?ٺq?i ݼs?1*v?IEnz?/i{?3~|?i ݼ?O$G>US+ >I^ J>d!]>;mٻ>|S>pJ,.J>_b>[Sq?L,.J>{!]>_=t>5uh ?i/f>Ɔ ?䵬$?et>N=h'5>^!]>T> ?K>)> ,/`>Mm3>^!] ?@6i@촁N@@Gz@@6i@ףp= @i6@(\@@i6@/b@@_,Œ@6i@N贁@6i@@N贁@6i@\%X@RQ@f6i@O??w? Gz?O?H?w?|w?H?|w?H?_%ř?H?Ow?/?_%ř?[gP?_%ř?Gz?w?H?H?Gz?Ow?C?cvP?#F8R?IA;TS?u6Y?@}Z?"_/[?X,%]?{V`?a?%GO'Cg?Ҏzu{6h?@}j?wb֋l?FDbs?p$t?ξ]u?Ew?>ܣvw?fw?K}z?d'?X{?iς?r)?K}Ċ?m!Aw>ڕ>>A~j>R1S>!&*> $>eS>lu=>i!F>f3P >R1S?h-w>dV:>>⾄?:_'9>3m?H9ixA>R1S? z?E6>ioH3?]Fx>?`1S$?l]lH?@יJ?mdK?ŅꃸR?hoQS? s`T?p"VU?R_%X?ܩgӣ;Z?{9C`?ށp]a?hoQc?nd?ɵpMl?jim?Q1o?ip?< q?X.mq?hoQs?y}ݕw?>^wx?;׿v{?6Q2}?moQ?=Ͱcl>ʚ>}4qY>d]>ZK4>Z>+Nv>>)/>ye>?WPu>ZK4>ASQ>j>:\>Kj>81y> e?p>ZK4?!)>eM*<>ժ,?9 {.=?=K4?%X@{wwwww@q= ףp@= t@@K~@(\@Gz@(\@ffffff@G~K@촁N@\(\@)Œ_,@(\@RUUUUU@%X@i6@3i6@(\@HDDDDD@X%@Œ_,@ t@ @p= ף@’_,@kJNb?w?8PZ?w?w?Gz? w?,?{Gz?_%ř?[gP?|w?H?DZ>yv??H?H?H?Q?[gP?w?!Q^?H?Q?H?n\(N?TfP?;OnR?/ިU?4vX?ɐcY?9Z?Fn%\?%){8n^?Ř,b?Ƌbd?Sbd?e?ͫ:h?Pi?Pj?)p?X5;Nq?`Xt?3 t?@Zx?Ez?^*RP|?L}?2\?\_?~΃?E?)L=>:>p_>Y1\>@1Q>;~&> U*1>3v >s +V >{K?RG`|> 0"?J>6I>_>>@?d>Bv ? >Tqs*>G8#>>*9?Bv ?x=a>jWZ>ė,7? r*?E&?Iv $?5]F?H-H?)'$J?^1O?7Q?]{R?W[S?b)T?cn6V?V)4Z?[o]?,.6^?#C^?V8b?,V{b?o[c?%wh?>$Di?e`>n?n?p96q?o[s?/8Ft?fU8-6u?;u֌y?bTy?é|?o[? >>pA>sn>,">!{iY>܇3>(o>9>n40>T0s>Ѝ"*>)UK=0>L,.J>d/±>?>(o>vGx>;^>S=t>M,.J>yi0?(o ?CY>fs0 >&~&71?([j>3Hܥ?(o?zG@X%@RQ@|@ t @ ףp= @\(\@K~@:m @=DDDDD @ffffff@:m@X% @333333@(\ @= ףp=@(\@pwwwww@/b@(\ @@û @Gz@Q@R贁N@X%@= ףp=@{Gz@Q@,?pH?uM̵u?/?Gz?Gz?#w?H?(҃?M>@u?H?#w?{Gz?&ތ?Gz?,?H?Ow?wsC?[gP?H?Gz? w?H?pH?Gz?Gz?Gz?YHP?F LQP?XַGR?7 \Y?<ܴY?\;j{Z?'!V]?شRb?gd?J"de?r2a!`j?E;j{j?&Wn?;qq?rC@u?rsv?яx?%<y?P;j{z?;ч}?!]?zɂ?6nf?\;j{?3He>۾>]`:>MG>ư>9>N>y#У>l6m>O]c7w>;G>9>^>-Xc> >'k'D>*?A'>>9 ?!VZ(>xa? jN3>rNR?9?X0G?,G?'*[J?R?aFR?v&US?M~ U?[?w^`^?}';_?w Ac?v&Uc?[&f?Bj?zo?'Up?8tq?s8 IKr?v&Us?70u?~8z?x"WPm{?bx}?v&U?G`G >_P>Cگ>%c>_~>|E/{>:| q>Y16>&H㹏>m=>FI^>E/{> i> >oZ>Hn%څ>گJ>:^ J>sE/{?Fi>Mcd?]gU >Bdg h?zE/{?\,Œ_@c/@zGa@q:m@"""""@HDDDDD@b/@Q@Q@>m:@@Gz@c/@Œ_,@3i6@(\@\%X@X%@/b@K~@c/@Œ_,@ t@ @)Œ_,@[gP?M/6?$W?Ow?H?w?Ow?Gz?,?[gP?H?Gz?0\gP?w?Ow?{Gz?w??H??w?w?H?/? &O?86 Q?c|zv8R?abT?D,2H)Z?pPXJ[?.c}[?3.\?RH2w]?#d?#f?#Oh?-,2H)j?3.l?4t q?s/s?o[tt?8,2H)z?O}|?3.|?j.{? #>_?yD?O,2H)?3.?,`穲>3>}, >v>1<Γ0>L:\S>wU/>u@a>.>>0"pw?_>1<Γ0?u@a>@Ox>3t2?TUH>8<Γ0?l<Tt?u@a?_mLl?D6>j6??<Γ0%?@a?fYYG?|H? sYJ?!KN?KKS?ZxiT?y~[>2:I>D>kq >* j>ѡ˧>۶>{,uEYV>^;\>Ff[>L,.J>q >۶>E>*L?1H>zq ?Qh{>۶?x?5?cM*<>|B?kq ?۶?N@\%X@:m@3i6@:m@K~@Q@{Gz@ףp= @G~K@6i@q= ףp@HDDDDD@ffffff@ffffff@>m:@R贁N@)\(@333333@R贁N@N@_,Œ@Q@q= ףp@@l?*!T ?w?Ow?­+F?I[gP?ْP:i>ng>h㈵>*VcQ>EƔ˅>QG`|>>_XN>e&">Zi>-LS>)ݚ|>4S35>`Ǭ?EƔ˅>GXN>u*>pU, ?X8#>EƔ˅>4>eXN>O(%?aI??& x[?EƔ˅>eXN?TH?<DI? QJ?X,QIL?OmZN?}MD5S?L4T?NT?šT?79T??ǁ+cU?MX]?{M>`?oa?iYc?eMD5c?šd?Irh?q3m?GiB>d>7P>Poܟ>rq>S0s>٢x>2>>"_OM>>7Ac>wZ>ykG>ùrv]?rq>2>>As>J.f?k=t>rq>D4U>&>>i%|*?k ?ra~?rq>5>?b/@Q@)X%@@ t@{wwwww@/b@K~@333333@@N贁@ :m@@N贁@’_,@3i6@@/b@q= ףp@HzG@)\(@RUUUUU@6i@K~@촁N@@3i6@%X@%X@Ow?,?_%ũ? ?z??H?O?[gP?H?_%ř?{7`u?R_%ř?Ow?/?O?/?,?{Gz?{Gz??H?_%ř?H?w?Mn96?/?_%ř?XR? R?2|:T?U[Ċ-W?1h([?hg\?B]?^S_?.i_?p$d? h? zk?h(k?.io?Ip?>J5t?4E5u?h({?ĐL|?.i?63?[(?$|T?%h(Nj?.i?@n>&u&>wc>>#n>;G>%T>Tqs*>:>Qz*><FH?3D>#n>:>RG`|>o:<?Ddpz>#n>S熈ȣ>: ?~n  ?d?l,W*?#n?I? fJ?$^K?GsM?+<W|P?|ErGT?=56T?Ͱ²U?je=V?RV?ji]?ߏUb?a1r2d?|ErGd?Rf?`h?{"n?JDyn?|ErGt? Ht?Rv?n+Ly?Hʕy?% M?|ErG?R?H>>|+o">)+%ys>甡I\>XFI^>d: >;^>r J>p>Raf>rb<>甡I\>r J> T0s>QU>R ?R>I\>,- >r J?Ǖ3?pIiK>0\(#?I\>r J?"""""@ :m@@K~@c/@6i@4b/@Œ_,@4b/@333333@RQ@)Œ_,@= t@@HzG@@\,Œ_@= t@@@@q:m@@{Gz@3i6@/b@6i@?H??w?(& ?Mn96?0\gP?H?w?ǁ?{Gz?/?[$]?Gz???{7`u?H? y_ӠA?/?[gP?{Gz?i\gP?kJNb?/?rYQ?W(XQ?R?v͢ W?.g:Z?O[?GQ\?Bd?N]?9_?UCc?;g?ùj?(.g:j?+d?Nm?;خ q?p\f?Vs?u?(.g:z?/3l{?+d?N}?M4?m2d?\fꈆ?(.g:ӊ?6d?N?L۠> ?E >.>xC#>L=zc>]?R1>5uH.k>_NN>HYݤF?m(?xC#>D1 ?T:?۸޺&?vt?xC#>jy>D1?ίa2??'s%?xC#>D1+?GiH?:)p]/J?`K?g|gLP?$S? ЩMT?T?#2U?}H(W?r ]? ea?4 c? c? 2e?L.h?]gl?+ n? s?/it?2u?#V(x?z?+Ns? ? 2?;q >ǧ̿?!V:>R0E>ȈR>w1C>?0>9/XF>\ё|>,7T?'M?ȈR>0?O)]??XmƗ ?E/㉀?ȈR>t(> 0? +?E?`?R>0$?ffffff?= t@@Q@"""""@HDDDDD@>m:@)\(@333333@@)\(@4b/@Gz@Gz@)\(@HzG@)\(@Œ_,@"""""@)X%@K~@333333@i6@= ףp=@ t@ @ ףp= @{Gz?Sy_ӠA?AO?[gP?H?Ow?{Gz? Gz?mH?Gz?w? w?,?|w?{Gz?|w?H?Ow?/??w?H?Gz?f[gP?AGz?'P?R?ˎR?U_& V?8|Y?Z 2[?N \?^y{]?!J^? ce?$)%g?8|i? "5bj?&aq?I]Is?wuu?O0vu?y`Hw?ivw?8|y?Xa}?gJ?o>n?,+MJA?8|?ZN,;@> >j7z>4>Y>?Zӳ>LUާY>NQfz>W".>%>L0>Y>Gg~X?v>*>8 ?=I>4)>ј5w?Y>=>XjF ?Gq?`|?Y>_,zG?HJ?Cq_~K?lYRP?.jR??TqFT?UT?8=U?m}GC|V?b^?7q^`?.jb?#wCc?26ђi?%((l?&WSo?WUo?{KLp?cg !q?.jr?+ɓ6ru?qtww?}ENz?Q$P?.j?|/> V>ӛ>ZLi>Pd.>h>Bl5>O>sY >9G7>u:2>gd.>8\>h >ԋ>/rT?MG.>J>!rR=?gd.>NZb>mt.?LpN>Js? ?[d.>33333@Q@zG@ףp= @@N@i6@@@(\@X%@Q@@3i6@_,Œ@K~@{Gz@g/b@촁N@:m@g/b@HDDDDD@)\(@K~@4b/@+C鸕?O?Gz?Gz?|7`u?[gP?H?w?Gz?m?H?r|J?mH?[gP?/?I[gP?Gz?w?H?kJNb?/??|w??H?!8AQ?WQ? R?oA=V?:`u[?OD[?B$([?l]?_?,;c?i(tg?5j?#`uk?*"_p?\+s?2WIru?Ccíu?Bw?B8m%w?/`u{?pݧ{?T!?mu5?K?!?:`u?1Ƕ>⟫>hs>å[x?\a!>v>n9>s >=I>2 l>\[ل>Vh?i\a!>%f_>:YBj2>ws? 9ixA?=(?[>x\a! ?0E6>-c*>B;sj>]bU@7>Z\a!?J0I?[gI?,K?_PS?4S?|RE'T?zU?#W?\?wod`?%?+xc?>_Pc?"Ah?k?ozPo?so?.A)p?Ŷ!Cp?>_Ps?\Fk5@t?pŕ\aSw?!z?˯ (?>_P?}=>%u+>Zne>D>Ld?>!h > Sh>1\>MG.>nwF5>dJ,T ?Fd?>RoH>r >#Kn>Dp>uYFd??dM*<>8_\^> ure>Rt>Md??Q@\%X@Gz@6i@b/@ ףp= @{K~@ ףp= @Q@ףp= @g/b@333333@{K~@R贁N@>m:@%X@c/@= t@@i6@= ףp=@4b/@@@p= ף@X%@,?kJNb?{Gz?QB?H?,?r?Gz?Q?w?[gP?Gz?[gP?w?H?H?H?w?w?Gz?H?I[gP?H?{Gz?w?jO?Eg, jQ?q$R?K(cT?Y?yZ?w[?4|\?F\?!-dd?wge?h+f?/Ch?wk?~ &q?Кq?qns?/Fax?w{?n|?V}?.ꏀ?(7d?w?ɥ>tG`C>p \Wv>3D?x >wU/>+$>r6*f?v>v1KX0>p>lu=>iz@vu>+$>sBZ>u2f7>,$?-ߡQ*?+$ ??0E?k*/Y?KL!?yf:`!?+$?%G?_t?<0u?fG.x??)mX?/6?J|>>Dè~>b<?U+ʶ>ѡ˧> 9>T%?>Dh >"&>F$S>/>&]m]>9>u>d3IET>nw>S3OZ#?9?>M9?[?-7/?9?(\@b/@f6i@)\( @͒_, @HDDDDD@Q@:m @%X@p@ t@q= ףp@%X@S~K@û@@ףp= @K~@û @ :m@X%@Gz@X%@ƒ_,@pwwwww@,?w?A?5v?/?_%ř? w?ib?/?z?{Gz?/?[gP?? Gz?Q?[gP?H?pH?w?{Gz??H?{7`u?L"+P?_YP?ᫍR?Z}uUV?ݥȚ Z?;΂F[?fr(V ]?(ȯ_?͗e?8e?j?;΂Fk?քq?}r?Mg'u?Аu?#9x?qx?;΂F{?P#~?j%s'~?bk'?kHcC?R΂F?ӫm>3G>ӻt>_>Y1\>J>(3g>4~X5H>y l>2RG`|>Ryü>U;I?(3g?;ό>~G?nם>B|>6+?Q-O?03g?X8#>GH ?"`o1?`Ej?03g$?@Y#G?y>VH?h0K?SXgP?PS?U DjS?]AΊU?.!W?7n^?30_?+柘tc?U Djc?X7i?PMn1>Ķ:>sn> `\z*>zPm>EfMt>[owF5>JF>Z]);>zPm>Qn>?hG:>Qܪ>x> K$?[- ?yPm?k=t>,f?Y"u)?>?ͮ?yPm?p= #@K~@6i@@3i6@3i6@ t@ @(\@:m@Q@@Gz@= t@@zG@6i@_,Œ@:m@\(\@@ t@HDDDDD@\(\@ :m@(\@333333@+C鸕??_%ř??Ow?Ow?H?{Gz?H?|w? w?{Gz?/?Gz?/?Ow??,?/?H?|w?/?Gz? w?ȩ! Q? Q?dKR?c#W?̶_[?-ұp[? )hC[\?s"\?湫D`?`Hd?:bg?̶_k?Btl?"l?&(Wp?'s?&+v?̶_{?~"|?B>٬|?jh?ْUn?#j ?̶_?s"闌?7g>/:B׮>@Ղ> ɖ>->^>Yh>i,>B|>Ѐ8>suaW?-?9'I>i,>o>5&? ɖ>-?i,?5I??Y?@2?9'I?(;?-!?i,?@H?vm+I?/e@J?8 JvQ?͔{S?JT?SU CT?WBT?J }X?>>]?`E @a?͔{c?H:vd?nBd?:Th?[l?p?͔{s?bBt?x'u?j> >I9>!|> i>bp>ѽI>x>rBE>,et>?|>*v\>ѽI>#(j=l>T6 ?/I9>0| ?ѽI?? ?N{?Hv\ ?N?7|?ѽI?RQ@6i@\(\@c/@%X@= t@@)\(@\%X@ t@@@K~@Q@c/@@N贁@b/@@f6i@N贁@)Œ_,@HDDDDD@RQ@Q@RUUUUU@R贁N@{Gz?w?{Gz??w?#q6?Gz?[gP?_%ř?S7Y?w?{Gz??I[gP???I[gP?r?R_%ř?r?kJNb?Gz?,??H?E|Q?~Q?2ؖS?g|_\V?\bW?Թ +[?nd` \?8fٓ\?u9<]?I`?w0ba?zbv)d?h?,M8i? +k? p—l?u9긜>& >>l6m>Q@k`>X+>Ѐ8>''Y>mc>a{;>x>ky>^>Q@k`>-LS> 'Y>7lk>> [2>1g)` ,?Q@k`?d? 'Y?y~u` ?< >J|^ ?Q@k`?'Y?=2I?KFlgI?˞K?"R%P?N_ZQ?Lq9jT? U?$vTU?~PU?vUwW?OgY?f\]?N_ra?Yqb?5q9jd?@B=ld?i~Pe?ǰh?/5j5m?"#n? |)q?5q9jt?E&}u?i~Pu?qK-Wx?06z?'tW?5q9j?R~P?iΘ~>Rv@>_~>H㹏>e>h4>rBE>&.>|8e'>o">lS>Ԯ.>i>e>A8Ac>=.>A;>'>N=h'5>q s>e??> .>;KA?7h#$>Օ7n?e? .?HDDDDD@@K~ @= ףp=@H t@@@c/@q= ףp@ :m@RUUUUU@@q= ף@:m@Q@N@Q@3i6@zG@@6i@>i6@%X@q:m@= ףp=@G~K@3i6@贁N@= ףp=@{wwwww@Mn96?Gz?,̂?Jx.KQ?^?w?{7`u?R?I[gP?kJNb?[gP?+C鸕??r|J??Z$W?Ow?{Gz?,?3H?w?f[gP?­+F?Gz?H?H?[gP?Gz?w?jF_R?"xR?S?8Z?Ic:\?n\?g\?6J^?Ura?Dd?Qh?Ic:l?_>Y1\m?Jn?¾Dq?Mi-t?^2w?Ic:|? h|?J~?-Um?Ƿw ?Q?~Ic:?6J?@$>1Nփa>r۳0>#&>@ >-}>+y>O_K>v>/>L?@ >S熈ȣ>O_K>S?e* HCd?_>Y1\>@ >]@T5?^_K?(?2?JɊK?@ >V_K?J?#K?# M?Vn`n S?($CT?& U?Ѡ>`!U?ԕR`U?h̫ Z?鄲^?v a?($Cd?sne?ԕR`e?Y&i?p;m?n unq?($Ct?W+t?ԕR`u?I\x?%{?.b ?($C?ԕR`?i >J`>e$!O>MZ k>9Py>->pᄢ>H>D>٢x>L'>9Py>,- >H>p8 ?x?sn>9Py>kž<?H>@?M ?C@yF?9Py>H?Q@{Gz@Œ_,@Gz@@|@ t@(\@ ףp= @ ףp= @"""""@Q@贁N@ :m@K~@ t@ @@"""""@)\(@4b/@ :m@ ףp= @Q@= t@@Q@c/@_@? w?8Pŵ?,?Ow?#w?}x.KQ?Gz?Gz?H?Gz?[gP?w?w?wkJNb?#w?Ow?,?_%ř?w?w?N>@u?H?O??+oQ?3DR?=e4S?C Y?^[?,,}\?N}^?+Q'^?x&Qa?p$d?R:hi?^k?\Lzl?*Q'n?q?!C0t?{uhkw?^{?f(ϼ|?*Q'~?F(\??g?^?E]>(?@`[}>DJ>HN^eA>(>>U/C?䄁E>@ T+->G޸>)Rрc(?HN^eA>:}|;>䄁E?oZ?}R4?F?HN^eA>a ?ƄE?#t@?>?HN^eA ?0ZJ?]MK?3+ L?QڸFLR?#P3_T?8T?sU?[V?XwZ?ji]?L@b?#P3_d?(rMJ e?Cf?0xi? (z)kn?*ڥq?#P3_t?xt?Ov?";MYy?)Q){?![?#P3_?~B>yx a>l!>Zo_>сH>^ J> \? xp8>Ōq>SM6>emn!?ׁH>` > xp8?(P?(W -?;lO?сH>? xp8?ȷ Ĺ8?+%ys>J3LA?сH?\(\@(\@= t@@c/@)X%@)X%@= ףp=@"""""@K~@)Œ_,@@(\@6i@c/@ :m@%X@i6@%X@@ףp= @N@Q@:m@ףp= @{Gz?Bj$?[gP?0\gP?H?|7`u? w?Ow??H?Ow?Gz?w?_%ř?_%ř?H?0\gP?f[gP?[gP?,??Gz?H?Gz?ZD\uQ?YpjS?H%OlX?#G[?m1h\?d~]?-^?mh|La?O^Q7=e?î?#G?.9 >MD%>k>Eۓ>`q>>w-/>v>.s>F^f>Eۓ>U*1>v>NM>AI>NŻCT>u1ء0>I=q"?Eۓ ?r^??? P23\?6N?Eۓ?}I?L?;6L/Q?S?KwT?=ߢU?׎V?EAY?`QU_?i/LWa?c?d?Uj? ~Bl?|o?p?95q?fq?s?`e gv?&h% x?9 ZnVz?IJQ??gϠ>EtPJ>L,.J>J>U> |>Cs>D>`>S_k>J>܇3>D>מHx>cv>˾+D:>nB>#gE?J?iN[>둹>G/w?EfW1]?J?’_,@333333@@촁N@ffffff@6i@@ t@Œ_,@p= ף@X%@@/b@q= ףp@b/@@Q@f6i@@ t@Q@4b/@"""""@"""""@zG@)\(@kJNb?*u]`Ͱ?[gP?H?{Gz?ٴ?/?w? w?r?Mn96?Ow? w?Ow?w?,?/?/?Uq?0\gP??R_%ř?{Gz?Gz?y&CQ?S=R?cR?hX?[?^'7w[?2{# >p=]>k> }>>ڤ1G>_]`>h8~>k{>G]>KW?$#-{> }>>0*? Gf?̧6>rY2?iNjQ?k{N ? }>?a ~k>^K4?&YO@?B!?}>?!DHlH?K?.vK?e :G R?3˒S?ޅhT?ﵰT?B}rU?z!"Y?{ 2]?x鷺]?=a?J˒c?ڣ\d?z芼l?P|o?իp?op?k 3Pq??˒s?t?Bsw?轢qcz?7.i?E˒淃?g'[>Bo!$>R&=>>L,.J><-p>G;g>s( r>q>>E6XE >-ȮłQ?U ><-p>^w>Y }>$>ل8% ?- U|?~?<-p?Z­aZ>h5h8?O?L"$?<-p?\%X@p@ t@(\@(\@6i@6i@q= ףp@6i@= t@@@K~@\,Œ_@Hz@>m:@>m:@@K~@ffffff@X%@3i6@)\(@@@6i@X%@rܮ?H?{Gz?Gz??H? w?H?[gP?Gz?H?kJNb?C鸕?H?Ow?[gP?w?,?/?/?w?w?w?H?r?zWQ?֏2oQ?:d ]KT?[RK=1Z><>b%I>-y>ݦ|:>67>?>ZX:>Y;>2 l>P3>>q%I?/?Hp<_?Up>Ӱ>#5?)#?q%I?֛cE?J?Nf>$j<)?K ?b%I!?TQI?otI? ;M?AlR?N)~gT?@w9nT?GIՌlU?PA|?(V?#lAV?JČxY?x璢|^?hZ\Sa?ыb?N)~gd?BCd?W`i?%%Dl? ,n?]q?!.r?M)~gt?@`u?(9x?3y?@L…<{?C?M)~g?7Z_\>u/nR>3< >AR>>iBJ> y>L@>u>nwF5>ؠᙒ>Li>3< >Xv&>= r>A[դ>J ;R>GI ?҆EK?3< ?0,^?p!L?c` Z>At\"?R%h?3< ?N贁@@ףp= @Gz @]UUUUU@(\@Gz@ᴁN @\(\@N @Q@ ףp= @K~@(\@S~K@ ףp= @@ףp= @ףp= @ @ ףp= @’_,@@\,Œ_@@ t@ @q= ףp@w?#w?O?C鸕?H?Gz?,?PH?Gz?+ B?Gz?Gz?[gP?Gz?#w?Gz?H?Gz?Gz?w?{Gz?H?{Gz?_%ř? w?H?{Gz?h7BP?I3kQ?5VR?^H0~Z?Ռ|?[?š=[?Ϩ]?}\^?*GNa?K>le?f?š=k?xl?2{Gr??~r?<M% v?w?x?š={? iz?Q&HB?`8P͂? ?ٚ=ҋ??>9F>q LHV>_>Y1\>!!>'>o%>Bfe>dIS>p \Wv>D>< ?>o%?`ͻ >X>ejX ?8ɗ???n* ? >o%?T-t?lI͝? *8?Z?/>o%!?jH? ( H?HJ?"VS?:S?!OT?6dU?PU?DY?S`g_?[k`?!Od?ZDe?Dzj?G^k?1tp?iLq?tE$r?!Ot?Gfw?3>w?Pps{?:w(?!O?a/>Q1A<>]qXN>sn>I)JT>>3 *>5>Dè~>K,.J>wh(>>jI'M>Lq2>c!Bl?]q?/>jИڙ? ?w7?2V?|???"""""@(\@:m@"""""@ t@ @)\(@:m@’_,@@_,Œ@333333@K~@@{K~@Œ_,@i6@ t@@f6i@’_,@p@ t@HDDDDD@)\(@b/@R贁N@[gP?|w??H?/?Gz?_%ř?H?,?_%ř?{Gz?? w?[gP?/??|7`u?H?H?/?w?{Gz?/?I[gP?Bk]R?jp?[xR?PtTR?{P=U?^+[?o\?'Bn]?/iE]?*ԭ^_?\URd?HvDh?E\j?ol?/iEm?Sq?]8t?/ިu?+'Q|?o|?0iE}?+nـ?Py?&Bz?oŒ?0iE?fNi?+Bx>9+>pL2>=>ͦ>*M ?% G\>c-LS>4~X5H>| ?wU/>ͦ?% G\?K>kf?@1Q>>ͦ?% G\?=YϪ"?">c:?ͦ.?& G\ ?lQJ?.. J? al)K?0bp+O?&׍8T?0tT?3w6AU?%CU?hV?hh]?Nc-WǶa?A(>c?10td?%Ce?P'h?m?^1o??)t?10tt?%Cu?0Mx?tz?7.i?0t?%C椅?wq w>&Us4>O>Zb>xY |^>|.>V>)8Ac>EfMt>*|?ѡ˧>xY |^?V>.ҧ>O,(j=l>xY |^?'V?IA?lM>չ" ?Y |^&?'V? ףp= @\(@贁N@ :m@4b/@K~@\(\@{Gz@f6i@ףp= @@@/b@ףp= @ffffff@G~K@= t@@@)Œ_,@HzG@@@)Œ_,@:m@(\@,?O|??H??3|l?{7`u?Gz?C鸥??,?J?,?Mn96?O?Q?w?w?,?H?Gz??H?/?/?,?W[WQ?d R?1BbjS?nV?zV?, X\?]6o\?tL!]?PI `?4qd?qg?Aj?t6ol?tL!m?Oo3q?s?wEJv?h6o|?i+|?tL!}?g?ne΂?؞Y?6o?tL!?> =pC>T>"J">[Hl>q$V>G*Y@> Xĕ6> ʹ+j>_a>jst>}>F*Y@>#Xĕ6>X8#> \l>La>G*Y@?=/?Xĕ6>Lڲ? %Ȕ> tȾ#?F*Y@?Xĕ6?Wv(J?XZJ?AK?ZWP?h˗P?bJT?RRU?|?U?эjW?\f\c ^?~h>a?3+c׀c?iRe?|?e?Bݓ[i?7YwԼl?]zaEp?iRu?U*u??u?Qw?| =9u{??RR???:e!>>"\>(>/f^>~9 Ո>>_>Bы3>@QeҾ>0\G>i/f>>^>k=t>">5Ne>?91 ?^>??E[>ⷪ$??^?{Gz@HzG@p= ף@(\ @{Gz@"""""@RUUUUU@’_,@Q@@{K~@|@ t@b/@@Œ_,@_,Œ@{Gz@K~@Q@@@K~@@%X@贁N@N>@u?Gz?{Gz?{Gz?,???H?,?&x.KQ? ;82?_%ř?/?Ow?I[gP?/?AGz??{Gz?Ow?H?PH?_%ř?/?H?i#g*aG?x]PS?E2kS? _W?%L5]?ıZ5^?^t^?L`?vzd?LBi?:7' l?%L5m?ıZ5n?TaFFq?Z3bf~u?^v?n(u|?%L5}?ıZ5~?QU? -1?Z珆?%L5?ıZ5?g>Na>>:>ڷa>x}s.>5rH>^>v>&v>j>a ?}}s.>)rH>;G>XSW?N;G>elu=>}}s.>/rH>+F"6< ? F?=d)f?}}s.?5rH>sA?!Ci2L?ZGDL?k8@t~Q?XmR/U?mYV?etpV?WFX?Qn]?`53b?ĖcRwd?XmR/e?mYf?8i?ao?,x p?r *t?XmR/u? mYv?t*&z?7q8*~?Vix?XmR/? mY?bG> Sj0;>HK>Ne>>@~6>b->!h >h >u N0>{U?>@~6>LFI^>|A>FI^>/>>@~6>u=?@?nt ?>@~6>Œ_,@@c/@Q@{Gz @Œ_,@촁N@@6i@ ףp= @Q@@Q@Gz@%X@@K~@K~@K~@zG@N@Œ_,@Q@Gz@w?[gP??,?O?I[gP?Mn96?{Gz?0\gP?Gz?Gz?[gP?Gz?|w?f[gP?kJNb?[gP?_%ř?H? w?H?I[gP?Gz?Gz?޹R?S?V?}B L\?Q\?뇯]?0xՓ^? _?fvd?(1{i?+qj?Ql?뇯m?28*7q?\wft?bu?Q|?!i|?뇯}? j? gƵ?6k?Q?뇯?ur>z?d)>>E6>Q^Z@T> 5-U>ZWsF?jWZ>UcQ>`n ?_5?h^Z@T>5-U>X"?<2;b+?&#&>K^Z@T>S> 5-U?%6?(XMK?_$?Z^Z@T?5-U? ѩK?ժK?>gB}P?GNUҨT?g:LT?ۤWU?>PpWU? W?'g]?nBNb?妐c?g:Ld?ۤWe?;u"i?Z㕃n?/o?s:Lt?wbt?ۤWu?my?Tn<~?ep?:L?ФW?E>D537?ťNB(>eM*<>U,#>>̹ >]Poܟ>#??>U,#>>̹ >Q#t>4_#?pZ k>U,#>iL>)>>̹ >sz0?;;JjD?M?U,#>>̹ ?@4b/@Q@HzG@4b/@Gz@Œ_,@(\@zG@6i@촁N@@c/@촁N@ףp= @Gz@@ t@:m@ t@@(\@>m:@b/@’_,@p@ t@%X,x?H? w?Gz?0\gP?Gz?r?Gz?|w?H?w?H?H??w?Gz?Ow???{Gz?H?/?Ow?_%ř?5R?ϕ/b_S?803pS?rW?o]?%;]?-s]?+]?FBj5a?e?Q@Th?_o?unr?6 6ƶt?)؛ Du?gsu?Jv?'pw?d}?@=~?rX`B?7e?u!Ld͇?{䈍?f'#">q >O>>ڷa>xtt>∰p>h㈵>p2U>H>}>ώ{f>Wf?$cMF>WL>Ѐ8>>=7?xtt ?tN>$I\:>ttu? '?xtt?]JK?TWHL?AaL?%-POwQ?sU?FU? U?cQU?BY?K]яp_?:%b?7pZHg?giQj? >n?DN o?o?ap?MS\p?su?=u?ml3y?yp{?``?vs?dzƣ>>H(ݙ>1K>>Ne>h>U>7P>l>VJ>pJ,.J>/f>>塚>)~ʣ>2>I%ا>-tBE>}4qY>SN8U ?_?8gd>d+> l2դ>*1 ?f?ףp= @Q@Q@촁N@@Gz@t@ @:m@@_,Œ@p= ף@6i@ffffff@p@ t@ t@@q:m@g/b@Q@Q@G~K@K~@ ףp= @ףp= @ ףp= @{Gz?*N>@u?{Gz?[gP?Ow?C鸥?( )f?/?Gz?/?{Gz??w?w?_%ř?Ow?w?|w?Gz?_%ř??Gz?Gz?Q?f8Q?_>Q?}{.)S?1hV?#EdX[?lS\?4e؟\?َŻ_]?*_?E ҟ`?Vljg?$,4j?Sl?IH&s?Yu?^,u?Л w?CJw?S|?N|?pTm~?=<ʦ?:y 5?f?xS?"&N>?> =C"> >S>#>@p.>Xsڤ>>ӍZ%J?\eMˑ>͎q(:>#>q"~?x+>[2>q0+>$> ?#>g{>)uMw?YG>%?e2c?i㈵>#?J?%'J?8*K?,ÄBP?;(rET?xЭT?GST?U?٤V?btEX?Fia?_Xe c?xЭd?ʜm?*o?j o?{p?H)p?xЭt?t?Gv?ךY/x?E~yz??xЭ?-`$z>X>!.>')j=l><=q>Z$>ʟQ&>>(j=l>C?Z0 >LѤi9> Z$> }?X>F>h'5>S4f_>Z? Z$>3>Eq?x ?pS>8P> Z$?ffffff@ t@@g/b@ffffff@촁N@%X@q:m@)\(@RUUUUU@p= ף@ffffff@= t@@"""""@= t@@K~@ :m@@ t@ףp= W@333333@)X%@_,Œ@(\@@K~@X%@,?ٴ?ܾ?{Gz?w?H?Ow?{Gz?w?Gz?{Gz?w?(& ?H?[gP?H?Ow?*O|?{Gz?Ow??{Gz?Gz?H?[gP?I|S?\NLT?6LU?cDW?tX?IbI\?|Z0c]?B_?D]1_+`?\޽`?St$`?  Rd?{ i?ZMHl?qjl?|Z0cm?Wq?}u?+@ȟw?sw? Bx?e^4 x?^-wf|?|Z0c}?a?-E?1&?|,}?Tȭ>X> >R>k{>@Ѐ8>5Zz>h-W>vPB >'j>| \Wv>]j6>a;j> ]>k{>>#У>h-W? Lr>ьx>m>JG>xn?n1>'Pu(?h-W?wXud ?ͯ@ ?P4B?d?֕G?K?뾛M?O?c'hQ?n tQ?e(U?O#GU?eV?- {W?E5l|X?mRX??8e^?ϦTb?s&¥d?hd?O#Ge?+ZQi?Q7o?${X2@q?[q?衋q?GfI֋q?=f=Cu?Z#Gu?n={Bz?j`Gz?pH_}?d;ƀ?!;9e>`,>2+^K>>XsBE>p>)(kz>#^>^'5m>Dè~>>Ny>+>>06>7(kz?Ó>XyX>E"">(KxM>S ?3|a> ?7(kz?JC/?Xz?8;?0v_t?K~@>i6@p= ף @\%X@zG @@K~@@:m @K~@(\ @p@ t@ t@ @ףp= @X%@K~@4b/@贁N@b/@@Gz @RQ @X%@ƒ_,@@= t@@K~@)\(@w?w?{Gz?w?hWz?w?/?Gz?#w?[gP?Gz?H?/?*N>@u?pH?/?_%ř???{Gz?AGz?O|?H??{Gz?H?Mr?{Gz?o?PQ?& 9R?2wV?nC\?VQ88]?^y{]?x!^?;f_?{݁'e? 0DYh?NZY~ k?nCl?_ Pjr?m}Jt? ?8:v?,8x?zC|?O~?0?ŋ!?+@5?nC?T> >S>ɟ2f>I>Y[-8> U*1>6VcQ>R>Wn% >-LS>ɟ2f>>s>I1^?Vv>TlE?ɟ2f ?g>ܼS/$?ǚ ?6 X\$?2f?u\(5J?= J?kl"P?ݥR!U?ĢiTU?8=U?[ZU?+ZW?\3%|_?\-wa?Cc?ƥR!e?0|ej?Km?.n':p?tq?ƥR!u?Wv?pVx?c#xz??R!?צC>kkp><=q>~ٗ>qW8>Uxf$>܇3>Poܟ>@>H>7Ac>~ٗ>7?z>?T<> YgZ ?~ٗ?|DM>0D?k?1w?~ٗ?"""""@"""""@)Œ_,@Gz@Gz@ףp= @i6@@i6@贁N@Q@ ףp= @@@@Q@’_,@= ףp=@q= ףp@= t@@b/@HDDDDD@[gP?[gP?w?Gz?|w?{Gz?/?Ow??w?Gz?Gz?I[gP?,??*O|?A?Gz?{Gz?H?H?_%ř?Oc'R?L0!"!S?gU?Y?gf}[?xb]?ʌ +]?FmEKa?a?>d?ʈ΢h?xbm?2Emm?FmEKq?DZ!q?t?h,{x?`t|?xb}?FmEK??Z F?I2喆?xb?;mEK?G*^6] > ?h8L>v>N`^>m05?p:Z3>0e>y4> `>8 ?m05?Iy>0e ?I*R>op?O6m>>"m05$?0e?3iQ ? K?+|J%?m054?0e)?K2J?K?@jO?]ZPR?4fbT?zqtsU?۔BÔU?ecX?UCABY?"Ԏ]?a a?zqtse?C{e?ech?1tUi?&\Hm?-Izq?-Nt?zqtsu?ecx? $xfx?u;%|?@]}?zqts?ec?쾜> X?$M>C>{,ٶ>CH>p. >}0-̉>4U>!>.|'?CH?]+o>}0-̉?@V>y ?H㹏>r[>BH?}0-̉?2?H@>ڊG?CH.?0-̉"? ףp= @4b/@q= ףp@@q= ףp@_,Œ@(\@@ t@ @>m:@q= ףp@ :m@{wwwww@p@ t@:m@3i6@N@ t@ @ffffff@@c/@@@i6@ ףp= @w?/?Gz?ߖ ? x.KQ?#w?{Gz?r?_%ř?[gP?,?w?H?_%ř?H??H?/? w? |7`u?_%ř?w???|w?Q?zLR?.8S?\?:Fp60\?І]?5H]?=s[b_?otnWd?<.9d?;8g?Іm?=s[bo? ; q?ݥ#q?.s?{{#2{?B~#|?І}?=s[b?S0}?46Vcf>ht>H\^b>m>4ɸ,>v>Ɠr>>p>2"O>4ɸ,>Փr?Lx>fÞ!>z>XXq?v>4ɸ, ?Փr?Ie??UMu>4ɸ,?ܓr$?-?ʗI?JzK?ކҳM?eT?]#U?7U?kmuU?>YV?2N]?S"^?uUa?7e??Yf?|i?qSdi?Fbl?Y>)t? !t?+u??Yv?içx?1vK?@]}? ?'?Y?q>Pr?>JcB>[k>Q"">ݿ`>D>H>Q0E>q@yNc>F%`>ҿ`>H>BM>j.X><>\\>9q>@h >`?H ??f40M">J3LA?.j_>`?H?\,Œ_@G~K@@K~@\%X@R贁N@q= ףp @K~@{K~@\(\ @4b/@RUUUUU@贁N@f6i@= ףp= @"""""@H t@ @@\%X@333333@HDDDDD@HzG @{wwwww@HDDDDD@HDDDDD@w?H??H?H??{Gz?[gP?[gP?Gz?[gP??w? 9<Ƽ?O|?H?/?_%ř?[gP?,?H?Gz?{7`u?w?mH?PrkS?+-nOV?Q[?hg\?愰^?ت(`?`?sA{Rc?!c?Xl?愰n?DB >Iy>E6>VO>j6>yV͞3>%1>kP>eY?VO>y4>^6>9Ee>|?g{>l~>VO?m6?S`{?A-&?R?VO?m6?HsL?,XIP?T?=56T?/ۀV?02W?n*X?e@N5\??Bb& ]?u+Ad?ۀf?SiY1;g?G2g?J_bqh?>OOq?r?K<t?ۀv?;2w?.w|?;+i~?R__?ۀ?R2?o E>c}>-+o>eM*<>JXτ>ٰ 2 >Ɛ}>wT>)`I>ZP# >?hXτ>4U>Ͱ 2 >,\>0dg ?3>i!jEo>YXτ?밇 2 >r(x~?b:S0 ?`#6 ?`Xτ?ܰ 2 ?%X@i6@ ףp= @Gz@i6@:m@ףp= @K~@%X@(\@N@Gz@@6i@ t@@N贁@%X@(\@/b@R贁N@贁N@333333@)Œ_,@p= ף@f[gP?w?Gz?{Gz?H?z?{Gz?H?{7`u?{Gz?H?{Gz?Gz?H?_%ř?w?w? w?/?H?w?Gz?_%ř?Q?|AR?);*NXT?m *U?ږU Y?V\?}]?Gc_?Aa?ia?-hMZd? Z+l?l,\Nm?}m?Gco?۠[;q?_w?¯Lllx?-ԇ}?}}?Gc?{b*߃?g@ZZ?6k?$}?Gc?%Ѝ>QA "}v>&x?h> U*1>o>Yq >vI`?K}>UR>@l>+i&%?o?Yq >AVcQ>i-?[Ȃ*ğ1?;ό>o?Yq ?4!6?F_=?L=zc?o!?Yq ?zK?j3 M?8nO0SO?Bo"HR?dw`T?A፪U?XZV?E@5Y? \Y?S-͢]?`Se?bee?A፪e?oZf?e(i?|{q?SDq?zZ?u?A፪u?oZv?lkVC}?&t]}?ep?A፪?{Z?F?.>Et>H9?5>܇3>yt!>H >LĆ?/f>Ƴ@>~>P?yt!>T >Poܟ>J>/-)?Qn>yt! ?T >@D?QRPq5?A1C?yt!?E ?@(\@Q@K~@Q@4b/@zG@촁N@6i@(\@N@’_,@{wwwww@Q@ t@@g/b@%X@@%X@’_,@(\@K~@ t@ @Q@f6i@ Gz?3R?Gz?H?C鸕?@Pŵ?{Gz?w?_%ř?,?w?Ow?';82?{Gz?[gP?w?[gP?H?w?[gP?Gz?H?\gP?{Gz?A?-#x`RgS?a2U0*S?e<"qT?IZW?WEU&^?Ȝv2^?z4^?y'7gD`?LtPȻ`?Յ2ge?&k?JIwjk?z4n?@r?/YWu?}{v?\qqTnv?H)K*_Ww?(̄w?k~?z4~?$A!?ӂ?rtC?z4? Q> 4hjy>@]U+>#At">Ӧ#&>duc>pl/>zZl>L \Wv>;G>GK?>_NN>pl/>| \Wv>?i_D>eDe9>s+3)?)yn) ?<3u>pl/>NhB ?@R>(R!?pl/ ?f0JTL?pDkL?}UN?JNfQ?XJuU?)< V?{_?+yc?m{d?~p? tBp?myx q?d$9q?[Fu? ?>w>B@>Y k>sN>C#>Q> è~>XFI^>r!>\ё|>I#>Dè~>j> 5> 3#_>'Lq?{'5?zs>I#>8h?I>l>~I ?I#?X%@\(\@@ t@K~@@/b@’_,@Q@i6@X%@R贁N@p= ף@q= ףp@{K~@K~@q:m@f6i@@\%X@@{wwwww@촁N@%X@i6@(\@Mn96?Q?Ow?1~vO%?Ow?/?H?{Gz?/?_%ř?I[gP?,?{Gz??w?H?Mn96? w????w?_%ř?0\gP?Gz?t0R?T@%Bф>R]>Ѐ8>G>oT$>"3>ӻ>p \Wv>1>0Ƿf>K>oT$?%f_>%?R>,>wU/>'-7W?r#?XB ?oT$?٨??ڝ%?UMu?.oT$"?b>rl<>*>rBE>(KxM>Pz}>wGgQ.>L>Dè~>wT> pg>.ҧ>Pz}>ЪoH>*ew>#'E>ѡ˧>0L>U~q ?G{?Pz} ?xTB?=f1?.j_?Pz}?Gz@\(\@(\@q= ףp@@K~@\(\@@f6i@N@ffffff@\,Œ_@"""""@@= t@@G~K@)\(@Gz@b/@Œ_,@RQ@:m@N@N@:m@Gz?u-?,? w?H?H?{Gz?{Gz?/?[gP?Gz?w?2?Mn96?w?[gP?Gz? w?/?_%ř?|w?w?H?_%ř?[gP?8lV?`V?}[?ˉ40]?Ba?u0_a?[a?ѕT b?a_xd?| !d?i3i?,M8i?Bq?{O:'q?3Tq? t?"Gu? ;v?ƛ-x?'#|?Tf ~?B?m4Mr? dP;c?Z珆?*l҇?9(a_??6?B?LH6>R>j>-LS>>h8>=7k >1>͇iRp?.s>dJ>sv>?Z?1>n\2>QbU@7>Z.{v ?bx>2 ve?(4Y>#?q3D>:!1?R? JW%?uh㈵>mXk>%?XwȞ^P?QSP?)ViT?}.OU?X?y\Y?Z? -wZ?0/m ^?J苪L^?}b?Yqb?h?Z'0 i?A3(i??n? o?[Fpp?5q?!ͨt?.u?x?:wyy?51z?Vix?U7d??>q7???fŎ">4臲>]>7Ac>>OB>:>8ޒ>eR>`>/C>h >>Dgo?>V?h'5>Rt>(T:?>C+?ݏϚG>?c<> Qd*?@`#6 ?@(?27P>Z_b>?pwwwww@RQ @ ףp= @_,Œ@@q= ףp @ ףp= @)X%@ ףp= @)Œ_,@ ףp= @%X@Q@K~@Q@ @:m@Q%X@pwwwww @K~@Q@i6@f6i@H t@@R贁N@Q@{Gz@K~@3m:@#w?{Gz?Gz?H? w?Q?w?[gP?Gz?H?Gz?/?Gz??*O|?H?H?w?#w?H? w?[gP?Ow?[gP?H?w?AGz?/?pH?Q?9}GT?)alV?&rW?ax]?Tm^^?g$6`?}EVa?c`a?+~7e?,,}l?W˖^m?g$6p?z Mr?qN u?*JU[w?"Ox?f! ?m$6?ث??ԯG?75ڗYq?a$6?1^ C>aiAM>SN@>1GL>WYB>·a>->k;sj>ciu>k9I>v$>}8?-?j0 ?)vȊl?cU@7>vن۳C?2SV?-?Ii>7E ?> ?-&?׍J?lM?)r=^P?㸥ClQ?ķrU?a+V?i4W?oAOY?DB x(Z?+^?8d? de?i4g?(,j?"΄o?C|* q?^S*r?v?i4w?z.5{?_F~?sH?i4? uDz4>3>AkEX> F>zͳx>Ne>T`@0> ure>AEqn>U$!> nw>ȼR>c>T`@0?Khc?w(9dp>,t>Q?(fH?T`@0? #>KĭG?'/?T`@0 ?i6@@HDDDDD@Q@ t@@\,Œ_@@K~@3i6@ffffff@K~@Gz@X%@贁N@Q@@@ t@촁N@N@6i@R贁N@ףp= @K~@w?H?w?Gz?[gP?H?Ow?[gP?Ow? w?w?Gz?[gP?_%ř? w?H?Ow?w?z?w?H?{Gz?H?_avgConcDLS_pH3_I15_Igor__sdConcDLS_pH3_I15_Igor__avgFractionDLS_pH3_I15_Igor__sdFractionDLS_pH3_I15_Igor__avgDDLS_pH3_I15_Igor__sdDDLS_pH3_I15_Igor__avgConcDLS_pH4_I15_Igor__sdConcDLS_pH4_I15_Igor__avgFractionDLS_pH4_I15_Igor__sdFractionDLS_pH4_I15_Igor__avgDDLS_pH4_I15_Igor__sdDDLS_pH4_I15_Igor__avgConcDLS_pH5_I15_Igor__sdConcDLS_pH5_I15_Igor__avgFractionDLS_pH5_I15_Igor__sdFractionDLS_pH5_I15_Igor__avgDDLS_pH5_I15_Igor__sdDDLS_pH5_I15_Igor__avgConcDLS_pH6_I15_Igor__sdConcDLS_pH6_I15_Igor__avgFractionDLS_pH6_I15_Igor__sdFractionDLS_pH6_I15_Igor__avgDDLS_pH6_I15_Igor__sdDDLS_pH6_I15_Igor__avgConcDLS_pH7_I15_Igor__sdConcDLS_pH7_I15_Igor__avgFractionDLS_pH7_I15_Igor__sdFractionDLS_pH7_I15_Igor__avgDDLS_pH7_I15_Igor__sdDDLS_pH7_I15_Igor__avgConcDLS_pH8_I15_Igor__sdConcDLS_pH8_I15_Igor__avgFractionDLS_pH8_I15_Igor__sdFractionDLS_pH8_I15_Igor__avgDDLS_pH8_I15_Igor__sdDDLS_pH8_I15_Igor__avgConcDLS_pH9_I15_Igor__sdConcDLS_pH9_I15_Igor__avgFractionDLS_pH9_I15_Igor__sdFractionDLS_pH9_I15_Igor__avgDDLS_pH9_I15_Igor__sdDDLS_pH9_I15_Igor__avgConcDLS_pH10_I15_Igor__sdConcDLS_pH10_I15_Igor__avgFractionDLS_pH10_I15_Igor__sdFractionDLS_pH10_I15_Igor__avgDDLS_pH10_I15_Igor__sdDDLS_pH10_I15_Igor__avgConcDLS_pH3_I30_Igor__sdConcDLS_pH3_I30_Igor__avgFractionDLS_pH3_I30_Igor__sdFractionDLS_pH3_I30_Igor__avgDDLS_pH3_I30_Igor__sdDDLS_pH3_I30_Igor__avgConcDLS_pH4_I30_Igor__sdConcDLS_pH4_I30_Igor__avgFractionDLS_pH4_I30_Igor__sdFractionDLS_pH4_I30_Igor__avgDDLS_pH4_I30_Igor__sdDDLS_pH4_I30_Igor__avgConcDLS_pH5_I30_Igor__sdConcDLS_pH5_I30_Igor__avgFractionDLS_pH5_I30_Igor__sdFractionDLS_pH5_I30_Igor__avgDDLS_pH5_I30_Igor__sdDDLS_pH5_I30_Igor__avgConcDLS_pH6_I30_Igor__sdConcDLS_pH6_I30_Igor__avgFractionDLS_pH6_I30_Igor__sdFractionDLS_pH6_I30_Igor__avgDDLS_pH6_I30_Igor__sdDDLS_pH6_I30_Igor__avgConcDLS_pH7_I30_Igor__sdConcDLS_pH7_I30_Igor__avgFractionDLS_pH7_I30_Igor__sdFractionDLS_pH7_I30_Igor__avgDDLS_pH7_I30_Igor__sdDDLS_pH7_I30_Igor__avgConcDLS_pH8_I30_Igor__sdConcDLS_pH8_I30_Igor__avgFractionDLS_pH8_I30_Igor__sdFractionDLS_pH8_I30_Igor__avgDDLS_pH8_I30_Igor__sdDDLS_pH8_I30_Igor__avgConcDLS_pH9_I30_Igor__sdConcDLS_pH9_I30_Igor__avgFractionDLS_pH9_I30_Igor__sdFractionDLS_pH9_I30_Igor__avgDDLS_pH9_I30_Igor__sdDDLS_pH9_I30_Igor__avgConcDLS_pH10_I30_Igor__sdConcDLS_pH10_I30_Igor__avgFractionDLS_pH10_I30_Igor__sdFractionDLS_pH10_I30_Igor__avgDDLS_pH10_I30_Igor__sdDDLS_pH10_I30_Igor__avgConcDLS_pH3_I50_Igor__sdConcDLS_pH3_I50_Igor__avgFractionDLS_pH3_I50_Igor__sdFractionDLS_pH3_I50_Igor__avgDDLS_pH3_I50_Igor__sdDDLS_pH3_I50_Igor__avgConcDLS_pH4_I50_Igor__sdConcDLS_pH4_I50_Igor__avgFractionDLS_pH4_I50_Igor__sdFractionDLS_pH4_I50_Igor__avgDDLS_pH4_I50_Igor__sdDDLS_pH4_I50_Igor__avgConcDLS_pH5_I50_Igor__sdConcDLS_pH5_I50_Igor__avgFractionDLS_pH5_I50_Igor__sdFractionDLS_pH5_I50_Igor__avgDDLS_pH5_I50_Igor__sdDDLS_pH5_I50_Igor__avgConcDLS_pH6_I50_Igor__sdConcDLS_pH6_I50_Igor__avgFractionDLS_pH6_I50_Igor__sdFractionDLS_pH6_I50_Igor__avgDDLS_pH6_I50_Igor__sdDDLS_pH6_I50_Igor__avgConcDLS_pH7_I50_Igor__sdConcDLS_pH7_I50_Igor__avgFractionDLS_pH7_I50_Igor__sdFractionDLS_pH7_I50_Igor__avgDDLS_pH7_I50_Igor__sdDDLS_pH7_I50_Igor__avgConcDLS_pH8_I50_Igor__sdConcDLS_pH8_I50_Igor__avgFractionDLS_pH8_I50_Igor__sdFractionDLS_pH8_I50_Igor__avgDDLS_pH8_I50_Igor__sdDDLS_pH8_I50_Igor__avgConcDLS_pH9_I50_Igor__sdConcDLS_pH9_I50_Igor__avgFractionDLS_pH9_I50_Igor__sdFractionDLS_pH9_I50_Igor__avgDDLS_pH9_I50_Igor__sdDDLS_pH9_I50_Igor__avgConcDLS_pH10_I50_Igor__sdConcDLS_pH10_I50_Igor__avgFractionDLS_pH10_I50_Igor__sdFractionDLS_pH10_I50_Igor__avgDDLS_pH10_I50_Igor__sdDDLS_pH10_I50_Igor__avgConcDLS_pH3_I75_Igor__sdConcDLS_pH3_I75_Igor__avgFractionDLS_pH3_I75_Igor__sdFractionDLS_pH3_I75_Igor__avgDDLS_pH3_I75_Igor__sdDDLS_pH3_I75_Igor__avgConcDLS_pH4_I75_Igor__sdConcDLS_pH4_I75_Igor__avgFractionDLS_pH4_I75_Igor__sdFractionDLS_pH4_I75_Igor__avgDDLS_pH4_I75_Igor__sdDDLS_pH4_I75_Igor__avgConcDLS_pH5_I75_Igor__sdConcDLS_pH5_I75_Igor__avgFractionDLS_pH5_I75_Igor__sdFractionDLS_pH5_I75_Igor__avgDDLS_pH5_I75_Igor__sdDDLS_pH5_I75_Igor__avgConcDLS_pH6_I75_Igor__sdConcDLS_pH6_I75_Igor__avgFractionDLS_pH6_I75_Igor__sdFractionDLS_pH6_I75_Igor__avgDDLS_pH6_I75_Igor__sdDDLS_pH6_I75_Igor__avgConcDLS_pH7_I75_Igor__sdConcDLS_pH7_I75_Igor__avgFractionDLS_pH7_I75_Igor__sdFractionDLS_pH7_I75_Igor__avgDDLS_pH7_I75_Igor__sdDDLS_pH7_I75_Igor__avgConcDLS_pH8_I75_Igor__sdConcDLS_pH8_I75_Igor__avgFractionDLS_pH8_I75_Igor__sdFractionDLS_pH8_I75_Igor__avgDDLS_pH8_I75_Igor__sdDDLS_pH8_I75_Igor__avgConcDLS_pH9_I75_Igor__sdConcDLS_pH9_I75_Igor__avgFractionDLS_pH9_I75_Igor__sdFractionDLS_pH9_I75_Igor__avgDDLS_pH9_I75_Igor__sdDDLS_pH9_I75_Igor__avgConcDLS_pH10_I75_Igor__sdConcDLS_pH10_I75_Igor__avgFractionDLS_pH10_I75_Igor__sdFractionDLS_pH10_I75_Igor__avgDDLS_pH10_I75_Igor__sdDDLS_pH10_I75_Igor__avgConcDLS_pH3_I100_Igor__sdConcDLS_pH3_I100_Igor__avgFractionDLS_pH3_I100_Igor__sdFractionDLS_pH3_I100_Igor__avgDDLS_pH3_I100_Igor__sdDDLS_pH3_I100_Igor__avgConcDLS_pH4_I100_Igor__sdConcDLS_pH4_I100_Igor__avgFractionDLS_pH4_I100_Igor__sdFractionDLS_pH4_I100_Igor__avgDDLS_pH4_I100_Igor__sdDDLS_pH4_I100_Igor__avgConcDLS_pH5_I100_Igor__sdConcDLS_pH5_I100_Igor__avgFractionDLS_pH5_I100_Igor__sdFractionDLS_pH5_I100_Igor__avgDDLS_pH5_I100_Igor__sdDDLS_pH5_I100_Igor__avgConcDLS_pH6_I100_Igor__sdConcDLS_pH6_I100_Igor__avgFractionDLS_pH6_I100_Igor__sdFractionDLS_pH6_I100_Igor__avgDDLS_pH6_I100_Igor__sdDDLS_pH6_I100_Igor__avgConcDLS_pH7_I100_Igor__sdConcDLS_pH7_I100_Igor__avgFractionDLS_pH7_I100_Igor__sdFractionDLS_pH7_I100_Igor__avgDDLS_pH7_I100_Igor__sdDDLS_pH7_I100_Igor__avgConcDLS_pH8_I100_Igor__sdConcDLS_pH8_I100_Igor__avgFractionDLS_pH8_I100_Igor__sdFractionDLS_pH8_I100_Igor__avgDDLS_pH8_I100_Igor__sdDDLS_pH8_I100_Igor__avgConcDLS_pH9_I100_Igor__sdConcDLS_pH9_I100_Igor__avgFractionDLS_pH9_I100_Igor__sdFractionDLS_pH9_I100_Igor__avgDDLS_pH9_I100_Igor__sdDDLS_pH9_I100_Igor__avgConcDLS_pH10_I100_Igor__sdConcDLS_pH10_I100_Igor__avgFractionDLS_pH10_I100_Igor__sdFractionDLS_pH10_I100_Igor__avgDDLS_pH10_I100_Igor__sdDDLS_pH10_I100_Igor__avgConcDLS_pH3_I175_Igor__sdConcDLS_pH3_I175_Igor__avgFractionDLS_pH3_I175_Igor__sdFractionDLS_pH3_I175_Igor__avgDDLS_pH3_I175_Igor__sdDDLS_pH3_I175_Igor__avgConcDLS_pH4_I175_Igor__sdConcDLS_pH4_I175_Igor__avgFractionDLS_pH4_I175_Igor__sdFractionDLS_pH4_I175_Igor__avgDDLS_pH4_I175_Igor__sdDDLS_pH4_I175_Igor__avgConcDLS_pH5_I175_Igor__sdConcDLS_pH5_I175_Igor__avgFractionDLS_pH5_I175_Igor__sdFractionDLS_pH5_I175_Igor__avgDDLS_pH5_I175_Igor__sdDDLS_pH5_I175_Igor__avgConcDLS_pH6_I175_Igor__sdConcDLS_pH6_I175_Igor__avgFractionDLS_pH6_I175_Igor__sdFractionDLS_pH6_I175_Igor__avgDDLS_pH6_I175_Igor__sdDDLS_pH6_I175_Igor__avgConcDLS_pH7_I175_Igor__sdConcDLS_pH7_I175_Igor__avgFractionDLS_pH7_I175_Igor__sdFractionDLS_pH7_I175_Igor__avgDDLS_pH7_I175_Igor__sdDDLS_pH7_I175_Igor__avgConcDLS_pH8_I175_Igor__sdConcDLS_pH8_I175_Igor__avgFractionDLS_pH8_I175_Igor__sdFractionDLS_pH8_I175_Igor__avgDDLS_pH8_I175_Igor__sdDDLS_pH8_I175_Igor__avgConcDLS_pH9_I175_Igor__sdConcDLS_pH9_I175_Igor__avgFractionDLS_pH9_I175_Igor__sdFractionDLS_pH9_I175_Igor__avgDDLS_pH9_I175_Igor__sdDDLS_pH9_I175_Igor__avgConcDLS_pH10_I175_Igor__sdConcDLS_pH10_I175_Igor__avgFractionDLS_pH10_I175_Igor__sdFractionDLS_pH10_I175_Igor__avgDDLS_pH10_I175_Igor__sdDDLS_pH10_I175_Igor_N4RˣRionic<????0415305075100175 3q@ $4}MˑR!DLS_clean< ????41-^5PK? O?'xP?p ՝T?j^&њV?Z2jY?2/Z?jD~D[?mU^?s igc?)e?j^&њf?Z(i?jD~Dk?W歺u?b}?p}E?q >?!H2t>9Ry>S8#>t1t>'NiJ>QG`|>>NŻCT>~X5H>0l>>t1t>>T>>5 F>R?!(G~)?ȧOC?߿F?%:R>!>>_=t>l>sd>S0s>`4>˾+D:>EfMt>TDm>`>p.*>k4>*BHf>t— ?R0"?Q@@)X%@Q@= t@@%X@b/@촁N@촁N@Q@R贁N@:m@:m@’_,@5"""""&@/@NDDDD1@ x.KQ? Q?/?IFT7?tj?Mn96?z?w??{Gz?;82?_%ř?2?\gP?r?♙?{yE?.N?fP?Y@{Q? Y?$[? nl[?W+\?nXH(\?kfc?Ssfg?؃ i?|Qo3q?[5zs?<|?f@?>>KIS>~ӫ>#^j6>e7>R>Fn>g^>KIS>t\2>|_?elu=>%?v ^mF?p}\H?I?3$*ER? GT?;9T?T?i$! IT?k6<]?Lia?3$*Eb?g6h?|yl?ib4t?.w?¥ L>ٕ>%Li>cَ">]>B>>9>-@>pr>0\T>cَ">J?h'5>PD7>/>j8c?Œ_,@(\@@G~K@N贁@6i@(\@K~@%X@)Œ_,@%X@@{Gz@333333@N贁@2?Gz?|7`u?H?R_%ř??Gz?J?wkJNb?[gP?f[gP?Gz?,?Gz?[gP?p=4O?c0'">T+->u^>zA>Xk>Ps@p)>RĨ}<>NŻCT>$LakU>G޸>u^>RĨ}<>oL2>.?VS>k>Mͱ?GF?\efG?u!N? M AR?[R?h*dS?tv~ U?XtݣU?w3Җ\? Smu_?|͓a? M Ab?Xtݣe?gh?oH7j?y'2:n?x|Tt?8u?u>߄/>1Ōq> a|H> >_b>P .> ;>˾+D:>XN>SM6> a|H> ;>6O>,>>L,.J>Pm_?q= ףp@\(\@p@ t@K~@i6@(\@(\@K~@@= t@@)Œ_,@HDDDDD@p@ t@/b@>m:@贁N@p@ t@Q@Gz?|w?[gP?z?w?,?,??Uq?/?H?w?/?Ow?H?H?[gP? w?ILQ L?9OO?lj,T?`/bW? &dW?OQCZ?/$\?`/7_?O}c?֦f? &dg?۳h?fQCj?Xp?;8؛s?;2Tt?[QCz?4>{?'??cF 4?㽩=>@ T+->gw>?|/g>7>A>T>W>3?e^_>|/g>puH.k>7?T5L ?EjWZ>Y_Y >7?[X,?1:o1>r8#.?rD?Qe<&G?1KtM??B/Q?5u/{Q?1R?|6U?N]V?M;\?n*֙`?5u/{a?t<b?Hb?1Tg?L_l?ٙ!LSn?Hr?f(ps?x?R.1{?8 >R`A>Ōq>Oc?5+>q)[>-*>dM,.J>Z~ ?3@>5+>/XF>)[>@lK5?gs0 >(">)[?_5ھ{$?tw5>h; 1?q= ףp@6i@q= ףp@K~@@\%X@6i@\(\@@@@@(\@%X@g/b@RQ@{Gz@p@ t@RQ@>m:@ w?H? w?I[gP?_%ř?U#?H?|w?H? w?H?{Gz?Gz?w?w?Gz?{Gz?/?N>@u?R_%ř?2p0!M?tIP?A:#s[? !`?5@Dh?eEi? Ȼp?K0lt?.Q5u?n[w?)@Dx?h{?v/Ɂ? Bl;?@D߈?L>FA>fdL>UH>rG[D>dJ>خc?6.w?%>>?(rG[D?\N}?>>O ,?ErG[D?%DE?H?p)O T? &~cX?3(b?9Vb?SSnh?0z(m?9o?<~5q?3(r?[t?K+y?ս#̱|?3(??K̅ >b:>GS>?1H> ҬL>/C>Wޕ?$Xk>ٖ>9? ҬL?AOF׉ ?h~>ܥ$? ҬL? :m@ t@ @Gz@ :m@ ףp= @6i@6i@%X@촁N@i6@Q@i6@X%@N@@[$]?Ow?{Gz?_%ř?Gz?0\gP????w?|w?/?/?[gP?H?,>7uM?bC{|M??Yz=O?QȌ`S?@o"X?.X?TtwAZ?%ڸ]?z^?;d? δe?@o"h?}"Oi?9R=x,Lq?~EQs?l\Ѡ==t?F2Bu?Tlw?@o"x?J|?PLπ?`8P͂?4o"?d$7>sb׬>݄>~X5H>U>LS>7i>tN>ʼnK>` >QG`|>U>̔>ҿ4f?> :>{;ό>xޜ>U>^ ? ʹ+j>1B ?U?* ՅE?6C;jE?on0F?%!L?kGQ?)m.R?8᮫*S?vrhU?p]KU?1 )N^?#_?kGa?ob?r4"Ai?K4l?Jm?ap p?d>q?kGq?g9 u?Mhx?Pps{?kG?Β$>v;>=@ߛc>EfMt>> >iBJ>i> 9gd>.ҧ>5T{>S0s>> >[L?{>#g>*%ys>/6N>Qn>Jک>> >MsH+?ы3>v}??> ?’_,@ףp= @Gz@@ףp= @/b@q= ףp@촁N@i6@@i6@Q@@p@ t@N@\,Œ_@R贁N@贁N@q= ףp@Œ_,@ffffff@@Gz@kJNb?*N>@u?|w?{Gz?{Gz??Gz?(& ?0\gP?Gz?H?Gz?H?H?[gP?H?H?H?{Gz?/?{Gz? Gz?{Gz?ֺM?yxeU?D1Oa?)kh??~I=n?Ry=t?EcL?)e?:Ѝ*X>_>Y1\>RG`|>buH?NŻCT>&F> >lxDH?kE?3=O?MFY?4@,b?e#f?axxn?5s0-|?,E?AvE>sn>S0s>!}"o>˾+D:> f°.><>BvF?@Q@ffffff@RQ@6i@’_,@6i@pwwwww@_%ř?,?{Gz?N>@u?_%ř?/?Mn96?#w?M'\O?_VFR?D T^AY?N=`G ^?ua?ZRd?D T^Ai?f>?$>uI>Ts>Rמ?uI>F?YkK?YEoR?7vU?Z?a߂a]?pEob?>K>KZ*C)>Iex>ҡ˧>LԹ>KZ*C)>)X%@i6@3i6@Q@= ףp=@>m:@= ףp=@­+F?H?XU#?{Gz?Gz?H? w?'%RQ?LR?9CqǛV?c~7X? a[?صݒ\?yY\?j\z`?ec?3F.f?c~7h?34kP>%3 >݇i?U*1>j > `>` ~k>~@Z ?%3 >B&F>j ?r̤>u?ݙ{>H"?gU@7>^jJI?)`rJ?ZRP?CQ?s*=T?w0T?T?8|bX?A\"]?2`?Ca?Nd?d?l4fZh?-uTk?at? Fw?GJV!? АT>`G~$>)`I>P1H>R<>܇3>bR>!>Z­aZ>EC?P1H>e°.>%bR>/v>b?>ϻ?t>@= ףp=@@ t@zG@ffffff@@>m:@q= ףp@@{Gz@HDDDDD@(\@g/b@)\(@>m:@X%@ףp= @RUUUUU@O?O?/?r|J? w?|7`u?[gP?Gz? Gz?Gz?w?{Gz?[gP?w?/?z?,?2?V,"`Q?~vT?&GU?xgͬY?N(/v\?nd` \?EL^?gͬi?ps݁'j?N(/vl?Ds?(QGu?gͬy?N(/v|?V%}?1E> \Wv>[Hl>{a0U> ;Iz>7lk>ڷa>{a0U>%D[;> ;Iz>^ H>Ѝ^(>{a0U? ;Iz?&F>ZJ;J?fM?\ßO?ӴR?KbzT? U?U?Ӵb?fc?Kbzd?]b6m?è~>/f^>m -[KN>'-#,>̈́A;>Ne>a -[KN>(b>'-#,>n>ht>a -[KN>'-#,>f°.>(\@(\B@ t@ @ףp= @ףp= @HzG@@4b/@p@ t@)\(@g/b@촁N@@ t@N@%X@O?*O|?r?C鸥?*N>@u? w? w?[gP?ٴ?|w?w?H?H?_%ř?Ow?d:P?2{Q? S?Y?P3'LjSZ?n3[?@ֻ >.s|>B^>$ZH>:Y>(0ɉ>S>#a>x1>Qm& ?;ZH> Hl>(0ɉ>oa> n@ ?Pqs*>ZH>Vg?R"ŨH?J~H?]K?3.̨NR?^7S?az S?xU?iքzW? OX?نZX_?`;]u`?G7c?',d?mxe?v|4ӧj?Fnk?u2p?G7s?'ЅR{?;/H}{>~37>8>͡i>/>>@>vs>> > xT>B>/>f^>vs>dNe>@b?9;^>/>C?= t@@>m:@)\(@)Œ_,@RQ@ffffff@R贁N@\%X@)Œ_,@{wwwww@b/@%X@\,Œ_@ t@@(\@@Q@Q@@z?Ow?,?[gP?|w?Gz?I[gP??H???/?w?w?Gz?r?{Gz?bQ?[gP?Yj2R?ꫫX?"lZ?]\?(a?8\f?nT8h?]l?w/r?SH9t?6ņO?Qz>` ~k>&An>>A3>>ݗ~?G]>2A3>~l %? Ҟ\.1>ξ2?YIJ?&A R? 'TS?l"U?ȉ Y?6 "`?!Gla?l"e?ΰ8k? # m? YSw?kz3ҵT>Z­aZ>d@?s>zy< >X3N>8\5?E6XE >zy< >vR^Y?|>DyQ*?)Œ_,@333333@4b/@R贁N@= t@@f6i@\,Œ_@q= ףp@@Q@K~@(& ?Gz??w?{7`u?/?H?Gz?{Gz?{Gz?w?f.pyY?bA ^?Z5,3b?hp{f?/5 k?*ZLWm?IWr?h@b5u?w?Yĝw?/5 {?r}?Q,?G)?D ?(>>J:ľX>ŪXk>{ǟ?Vg_>S8#>9&?|Zql?^,? [2>Vg_??I?rS> ?jf\C>FRR?Uv>U?bdZ?%E`?^ ݼc?he?ke?7Ak?5o?ruuq?ٺq?i ݼs?1*v?IEnz?/i{?3~|?I^ J>|S>_b>[Sq?{!]>_=t>5uh ?Ɔ ?et>N=h'5>^!]>T> ?K>)> ,/`>Mm3>촁N@@ףp= @i6@@i6@/b@_,Œ@N贁@6i@@N贁@6i@\%X@RQ@w?H?|w?H?H?_%ř?H?/?[gP?_%ř?Gz?w?H?H?Gz?C?cvP?#F8R?@}Z?"_/[?a?%GO'Cg?@}j?wb֋l?p$t?ξ]u?fw?K}z?d'?X{?iς?r)?m!Aw>ڕ>R1S>!&*>lu=>i!F>R1S?h-w>>⾄?H9ixA>R1S? z?E6>ioH3?]Fx>?l]lH?@יJ?hoQS? s`T?ܩgӣ;Z?{9C`?hoQc?nd?jim?Q1o?X.mq?hoQs?y}ݕw?>^wx?;׿v{?6Q2}?=Ͱcl>ʚ>ZK4>Z>)/>ye>ZK4>ASQ>:\>Kj>p>ZK4?!)>eM*<>ժ,?9 {.=?%X@{wwwww@K~@(\@ffffff@G~K@\(\@)Œ_,@RUUUUU@%X@(\@HDDDDD@X%@Œ_,@ t@ @p= ף@kJNb?w?w?Gz?{Gz?_%ř?|w?H??H?Q?[gP?w?!Q^?H?Q?ɐcY?Ř,b?e?Pi?X5;Nq?3 t? U*1>RG`|>_>d>Tqs*>>]{R?V)4Z?#C^?,V{b?>$Di?n?܇3>T0s>L,.J>?>;^>M,.J>\(\@ffffff@333333@= ףp=@/b@@Gz?M>@u?{Gz?Gz?Ow?[gP?F LQP?<ܴY?شRb?J"de?E;j{j?&Wn?;qq?rC@u?۾>ư>y#У>O]c7w>9>^>-Xc> >,G?aFR?[?}';_?v&Uc?[&f?Bj?zo?_P>_~>Y16>m=>E/{> i> >oZ>c/@"""""@Q@>m:@Gz@c/@Œ_,@3i6@M/6?H?Gz?[gP?Gz?0\gP?w?Ow?abT?D,2H)Z?pPXJ[?.c}[?3.\?RH2w]?#f?#Oh?-,2H)j?3.l?s/s?o[tt?O}|?j.{?v>1<Γ0>L:\S>wU/>u@a>.>0"pw?_>1<Γ0?u@a>3t2?TUH>l<Tt?_mLl?!KN?KKS?ZxiT?ykq >* j>ѡ˧>۶>{,uEYV>Ff[>L,.J>q >۶>*L?1H>Qh{>x?5?3i6@:m@K~@Q@{Gz@ףp= @6i@q= ףp@HDDDDD@ffffff@>m:@R贁N@333333@N@Ow?­+F?I[gP?ْng>>_XN>e&">-LS>)ݚ|>4S35>GXN>EƔ˅>eXN><DI? QJ?NT?šT?79T?MX]?{M>`?oa?šd?eMD5s?št?GiB>d>٢x>2>>"_OM>7Ac>wZ>ykG>2>>rq>&>>Q@)X%@333333@@N贁@@N贁@’_,@/b@RUUUUU@K~@,?_%ũ?O?[gP?H?{7`u?R_%ř?Ow?/??_%ř?XR?2|:T?B]?.i_?p$d? zk?h(k?.io?>J5t?h({?.i?@n>wc>%T>:>Qz*>3D>#n>:>o:<?#n>: ? fJ?GsM?Ͱ²U?RV?ji]?a1r2d?|ErGd?Rf?{"n?|ErGt?Rv?H>|+o">d: >r J>p>rb<>甡I\>r J>QU>R ?I\>r J?"""""@@4b/@4b/@333333@)Œ_,@= t@@HzG@\,Œ_@@q:m@??0\gP?w?ǁ?/?[$]?Gz??H?/?GQ\?UCc?+d?Nm?(.g:z?+d?N}?(.g:ӊ?]?_NN>D1 ?xC#>D1?xC#>T?r ]? 2e? s?2u? ??\ё|>0?ȈR> 0?R>)\(@)\(@)\(@"""""@K~@ t@ @{Gz?Gz?|w?Ow??f[gP?'P?ˎR?U_& V?8|Y?Z 2[?N \?^y{]?!J^? ce?$)%g? "5bj?I]Is?O0vu?y`Hw?8|y?Xa}?gJ?o>n?,+MJA?ZN,;@>j7z>4>Y>?Zӳ>LUާY>NQfz>W".>%>L0>Gg~X?*>=I>4)>Y>=>XjF ?Gq?`|?_,zG?Cq_~K?lYRP?.jR??TqFT?UT?8=U?m}GC|V?b^?7q^`?#wCc?%((l?WUo?{KLp?.jr?+ɓ6ru?qtww?}ENz?Q$P?|/>ӛ>ZLi>Pd.>h>Bl5>O>sY >9G7>u:2>8\>ԋ>MG.>J>gd.>NZb>mt.?LpN>Js? ?33333@zG@ףp= @@N@i6@@@(\@X%@@_,Œ@{Gz@g/b@:m@g/b@HDDDDD@)\(@K~@+C鸕?Gz?Gz?|7`u?[gP?H?w?Gz?m?H?mH?/?Gz?w?kJNb?/??|w??!8AQ?:`u[?B$([?i(tg?5j?#`uk?*"_p?\+s?2WIru?Ccíu?B8m%w?/`u{?pݧ{?T!?mu5?K?!?1Ƕ>\a!>n9>\[ل>Vh?i\a!>%f_>:YBj2>ws? 9ixA?[>x\a! ?0E6>-c*>B;sj>]bU@7>J0I?>_PS?|RE'T?wod`?%?+xc?>_Pc?"Ah?k?ozPo?so?Ŷ!Cp?>_Ps?\Fk5@t?pŕ\aSw?!z?˯ (?}=>Ld?> Sh>dJ,T ?Fd?>RoH>r >#Kn>Dp>>Fd??dM*<>8_\^> ure>Rt>Q@b/@{K~@g/b@333333@{K~@R贁N@>m:@%X@c/@i6@= ףp=@4b/@@@p= ף@,?H?r?[gP?Gz?[gP?w?H?H?H?w?Gz?H?I[gP?H?{Gz?q$R?yZ?F\?!-dd?h+f?~ &q?p \Wv>wU/>v>v1KX0>lu=>sBZ>[ywL"K?CSS?"T?]?`c./`?ı2t i?Dè~>ѡ˧>Dh >"&>/>u>f6i@HDDDDD@%X@p@ t@%X@@A?_%ř?/?z?/? Gz?L"+P?8e?j?;΂Fk?;΂F{?kHcC?ӫm>Ryü>U;I?(3g?03g?`Ej?@Y#G?30_?+柘tc?U Djc?J Djs?V?A4>JF>Z]);>zPm>yPm?>?ͮ?p= #@Q@@Gz@@ t@(\@+C鸕?|w? w?{Gz?/?Gz? Q?c#W? )hC[\?s"\?湫D`?:bg?̶_k?Btl?"l?&+v?B>٬|?jh?/:B׮> ɖ>Yh>i,>B|>suaW?-?9'I>i,> ɖ>5I??Y?@2?vm+I?8 JvQ?SU CT?WBT?J }X?`E @a?͔{c?H:vd?nBd?p?x'u?I9>bp>ѽI>x>,et>?|>*v\>ѽI>/I9>? ?N{?6i@c/@)\(@\%X@ t@@K~@Q@c/@@@)Œ_,@HDDDDD@w??Gz?[gP?_%ř?w?{Gz??I[gP?I[gP?r?kJNb?E|Q?~Q?nd` \?8fٓ\?u9<]?h? +k?&$H q? \t?ȹ +{?hM?X9H+*>긜>X+>Ѐ8>''Y>ky>Q@k`>7lk>>Q@k`?y~u` ?=2I?KFlgI? U?$vTU?~PU?N_ra?5q9jd?ǰh?/5j5m?5q9jt?qK-Wx?iΘ~>h4>rBE>&.>Ԯ.>e>A;>'>e?;KA?HDDDDD@@c/@q= ףp@ :m@:m@N@zG@@%X@G~K@Mn96?Gz?{7`u?R?I[gP???{Gz?,?f[gP?H?S?Ic:\?6J^?Ura?Ic:l?_>Y1\m?Jn?¾Dq?^2w?Ic:|? h|?Q?r۳0>@ >O_K>v>@ >S熈ȣ>O_K>S?_>Y1\>@ >]@T5?JɊK?# M?($CT?ԕR`U?h̫ Z?($Cd?sne?ԕR`e?Y&i?n unq?($Ct?W+t?.b ?e$!O>9Py>H>D>9Py>,- >H>p8 ?sn>9Py>kž<?C@yF?Œ_,@@ ףp= @ ףp= @贁N@ :m@K~@ t@ @"""""@)\(@4b/@= t@@8Pŵ?Ow?Gz?Gz?[gP?w?w?wkJNb?Ow?,?_%ř?H?x&Qa?^k?\Lzl?*Q'n?!C0t?f(ϼ|?*Q'~?@ T+->HN^eA>:}|;>䄁E?}R4?a ?ƄE?XwZ?#P3_d?(rMJ e?Cf? (z)kn?xt?Ov?Ōq>ׁH>` > xp8?(W -?? xp8?K~@(\@6i@c/@%X@@ףp= @?Gz?w?_%ř?H?[gP?,?ZD\uQ?H%OlX?#G[?d~]?-^?O^Q7=e?k>Eۓ>>w-/>.s>F^f>Eۓ>v>NM>NŻCT>u1ء0>r^??? P23\?}I?;6L/Q?S?=ߢU?׎V?`QU_?i/LWa?c?Uj? ~Bl?p?95q?`e gv?&h% x?9 ZnVz?gϠ>L,.J>J> |>Cs>`>S_k>J>D>מHx>˾+D:>nB>iN[>둹>G/w?’_,@@촁N@6i@@ t@p= ף@X%@@q= ףp@b/@Q@f6i@4b/@"""""@"""""@kJNb?[gP?H?ٴ?/? w?r?Mn96? w?Ow?,?/?0\gP??R_%ř?[?2>_]`>G]>$#-{>0*? Gf?̧6>rY2? }>?a ~k>^K4?B!?3˒S?ﵰT?{ 2]?=a?ڣ\d?z芼l?P|o?իp??˒s?t?Bsw?7.i?<-p>s( r>E6XE >U >^w>Y }>$>ل8% ?<-p?Z­aZ>h5h8?L"$?6i@q= ףp@@\,Œ_@>m:@>m:@@K~@3i6@)\(@@6i@? w?Gz?kJNb?H?Ow?[gP?w?/?w?w?H?zWQ?#^?CRm{?:#T{?M;?ZX:>q%I?J?TQI?#lAV?M)~gt?(9x?3< ?p!L?N贁@\(\@ ףp= @@w?Gz?{Gz?{Gz?h7BP?^H0~Z?Ռ|?[?š=[?*GNa?f?š=k?xl??~r?<M% v?š={? ?ٚ=ҋ??>_>Y1\>!!>'>o%>p \Wv>< ?>o%?`ͻ >ejX ?8ɗ?? >o%?Z?/>o%!?jH?"VS?:S?!OT?DY?[k`?!Od?ZDe?G^k?1tp?!Ot?:w(?!O?a/>sn>I)JT>>Dè~>wh(>>jI'M>c!Bl?]q? ???"""""@"""""@ t@ @)\(@@333333@K~@@Œ_,@i6@’_,@b/@R贁N@[gP?H?/?Gz?,?{Gz?? w?/??H?/?I[gP?Bk]R?jp?[xR?PtTR?{P=U?^+[?o\?'Bn]?/iE]?*ԭ^_?\URd?HvDh?E\j?ol?/iEm?Sq?]8t?/ިu?+'Q|?o|?0iE}?+nـ?Py?&Bz?fNi?+Bx>9+>pL2>=>ͦ>*M ?% G\>c-LS>4~X5H>| ?wU/>ͦ?% G\?K>kf?@1Q>>ͦ?% G\?=YϪ"?">c:?lQJ?.. J? al)K?0bp+O?&׍8T?0tT?3w6AU?%CU?hV?hh]?Nc-WǶa?A(>c?10td?%Ce?P'h?m?^1o??)t?10tt?%Cu?0Mx?tz?7.i?wq w>&Us4>O>Zb>xY |^>|.>V>)8Ac>EfMt>*|?ѡ˧>xY |^?V>.ҧ>O,(j=l>xY |^?'V?IA?lM>չ" ? ףp= @\(@贁N@ :m@4b/@K~@\(\@{Gz@f6i@ףp= @@@/b@ףp= @ffffff@G~K@= t@@@)Œ_,@HzG@@@)Œ_,@,?O|??H??3|l?{7`u?Gz?C鸥??,?J?,?Mn96?O?Q?w?w?,?H?Gz??H?/?d R?, X\?]6o\?qg?t6ol?s?h6o|?i+|?g?؞Y? =pC>q$V>G*Y@>jst>F*Y@> \l>G*Y@?=/?Lڲ? tȾ#?XZJ?bJT?RRU?~h>a?iRe?7YwԼl?iRu?U*u?Qw??>~9 Ո>>0\G>>">?91 ???ⷪ$?HzG@"""""@RUUUUU@{K~@b/@_,Œ@K~@Q@@@Gz??? ;82?/?/??{Gz?H?_%ř?i#g*aG?E2kS?ıZ5^?%L5m?ıZ5n?^v?ıZ5~?g>>:>5rH>}}s.>)rH>N;G>/rH>sA?ZGDL?mYV?XmR/e?mYf?,x p? mYv?bG>HK>@~6>>@~6>FI^>@~6>Œ_,@c/@Œ_,@@Q@@K~@w??I[gP?[gP?Gz?kJNb?H?޹R?뇯]?0xՓ^? _?fvd?(1{i?+qj?Ql?뇯m?28*7q?\wft?bu?!i|?뇯}? j?6k?뇯?ur> 5-U>ZWsF?jWZ>UcQ>`n ?_5?h^Z@T>5-U>X"?<2;b+?&#&>S> 5-U?%6?_$?5-U? ѩK?ۤWU?>PpWU? W?'g]?nBNb?妐c?g:Ld?ۤWe?;u"i?Z㕃n?/o?wbt?ۤWu?my?ep?ФW?E>>̹ >]Poܟ>#??>U,#>>̹ >Q#t>4_#?pZ k>iL>)>>̹ >sz0?M?>̹ ?@Gz@Œ_,@(\@zG@6i@촁N@@c/@촁N@ףp= @Gz@:m@ t@@(\@b/@p@ t@%X,x?Gz?r?Gz?|w?H?w?H?H??w?Gz???{Gz?/?_%ř?ϕ/b_S?rW?o]?+]?FBj5a?_o?6 6ƶt?)؛ Du?gsu?Jv?d}?@=~?rX`B?7e?u!Ld͇?q >ڷa>xtt>p2U>H>Wf?WL>Ѐ8>>xtt ?tN>$I\:>ttu? '?TWHL?%-POwQ?sU?cQU?BY?7pZHg? >n?DN o?o?ap?su?=u?ml3y?yp{?``?H(ݙ>Ne>h>l>VJ>pJ,.J>塚>2>I%ا>-tBE>}4qY>_?8gd>d+> l2դ>*1 ?Q@촁N@@:m@@6i@p@ t@ t@@q:m@g/b@Q@G~K@K~@ ףp= @ףp= @*N>@u?[gP?Ow?/?Gz??w?_%ř?Ow?w?Gz?_%ř??Gz?Gz?1hV?4e؟\?*_?Vljg?$,4j?Sl?IH&s?Yu?^,u?=<ʦ? >@p.>>\eMˑ>͎q(:>#>q"~?x+>[2>YG>%?,ÄBP?GST?٤V?Fia?_Xe c?xЭd?ʜm?*o?j o?ךY/x?')j=l>ʟQ&>(j=l>Z0 >LѤi9> Z$> }?X>F>h'5>x ?ffffff@q:m@RUUUUU@ffffff@= t@@"""""@= t@@K~@ :m@(\@{Gz?Ow?w?{Gz?w?(& ?H?[gP?H?{Gz?cDW?\޽`?  Rd?ZMHl?Wq?sw?|Z0c}?k{>| \Wv>a;j>k{> Lr>JG>h-W?c'hQ?E5l|X??8e^?s&¥d?+ZQi?[q?Z#Gu?>Dè~>Ny>>Ó>(KxM>7(kz?\%X@K~@p@ t@ףp= @4b/@@ƒ_,@w?[gP?H?*N>@u?_%ř?{Gz??o?PQ?& 9R?2wV?nC\?VQ88]?;f_? 0DYh?NZY~ k?nCl? ?8:v?,8x?0?T> >S>ɟ2f>I>6VcQ>Wn% >-LS>ɟ2f>Vv>TlE?ܼS/$?u\(5J?= J?kl"P?ݥR!U?ĢiTU?+ZW?\-wa?Cc?ƥR!e?.n':p?tq?pVx?צC>kkp><=q>~ٗ>qW8>Poܟ>H>7Ac>~ٗ>T<> YgZ ?0D?"""""@"""""@)Œ_,@Gz@Gz@@贁N@Q@ ףp= @@Q@q= ףp@[gP?[gP?w?Gz?|w?Ow?w?Gz?Gz??*O|?{Gz?ʈ΢h?2Emm?FmEKq?DZ!q?h,{x?xb}?FmEK?Z F?8 ?Iy>0e ?I*R>O6m>"m05$?0e? K?a a?C{e?ech?1tUi?-Izq?zqtsu?ecx?u;%|?.|'?]+o>}0-̉?@V>H㹏>BH?}0-̉?H@>q= ףp@{wwwww@p@ t@:m@N@ffffff@@@,?H?_%ř?H?H? w? |7`u?w?otnWd? ; q?S0}?>Lx>Ie?2N]?|i?içx?Q0E>BM>?f40M">{K~@f6i@HDDDDD@[gP? 9<Ƽ?H?+-nOV?愰^?sA{Rc?愰n?DVO>%1>VO>y4>9Ee>g{>l~>S`{?R?,XIP?/ۀV?e@N5\?ۀf?SiY1;g?J_bqh?r?K<t?.w|?R__?c}>JXτ>wT>hXτ>4U>,\>3>i!jEo>r(x~?`#6 ?i6@i6@K~@N@Gz@6i@N贁@%X@R贁N@333333@w?H?H?H?{Gz?H?w?w?H?Gz?|AR?ږU Y?Gc_?Aa? Z+l?l,\Nm?۠[;q?_w?¯Lllx?{b*߃?g@ZZ?%Ѝ>h>Yq >vI`?@l>+i&%?AVcQ>i-?[Ȃ*ğ1?4!6?F_=?zK?Bo"HR?XZV?E@5Y?`Se?bee?e(i?|{q?SDq?lkVC}?&t]}?F?.>5>H >LĆ?~>P?Poܟ>J>/-)?@D?QRPq5?@K~@zG@촁N@N@’_,@ t@@g/b@%X@(\@K~@ Gz?H?{Gz?w?w?Ow?[gP?w?[gP?Gz?H?e<"qT?WEU&^?Ȝv2^?z4^?y'7gD`?LtPȻ`?Յ2ge?JIwjk?@r?}{v?\qqTnv?(̄w?$A!?ӂ?rtC?@]U+>Ӧ#&>duc>pl/>zZl>L \Wv>;G>_NN>| \Wv>i_D>eDe9>)yn) ?NhB ?@R>(R!?}UN?XJuU?)< V?{_?m{d?rJKj?(ϐ>~p? tBp?d$9q?P 7z?F}{?YJ?w>Y k>sN>C#>Q> è~>XFI^>\ё|>Dè~> 5> 3#_>{'5?8h?I>l>~I ?@ t@@/b@’_,@Q@i6@X%@p= ף@{K~@q:m@f6i@\%X@촁N@%X@i6@Ow?Ow?/?H?{Gz?/?_%ř?,??H?Mn96??w?_%ř?0\gP? p#S?vӂW?oL]?H.*`?uو3h?{L4k?G&{m?_7Ut?9]v?@Maw?x7)F}?R]>Ѐ8>"3>p \Wv>0Ƿf>K>oT$?%?wU/>'-7W?XB ?2K?Ok?)Q?D6{U?voBX?<*b?;B0c?rbe?nՠGn?S_ jSp?jp?怒A_u?*>rBE>wGgQ.>Dè~> pg>.ҧ>Pz}>*ew>ѡ˧>0L>G{?(\@q= ףp@\(\@f6i@ffffff@\,Œ_@"""""@= t@@)\(@Gz@Œ_,@,? w?{Gz?/?Gz?w?2?w?Gz? w?_%ř?ѕT b?| !d?"Gu?B?1>.s>QbU@7>#? -wZ?J苪L^? o?x?8ޒ>`>Rt>?)X%@)Œ_,@:m@i6@[gP?H?H?[gP?Tm^^?c`a?,,}l?W˖^m?*JU[w??ԯG?·a>ciu>v$>}8?cU@7>7E ?a+V?DB x(Z?8d? de?C|* q?_F~?Ne>AEqn> nw>ȼR>c>,t>KĭG?\,Œ_@3i6@K~@Gz@@R贁N@H?Ow?w?Gz?H?H?_avgConcDLS_pH3_I15_Igor__sdConcDLS_pH3_I15_Igor__avgFractionDLS_pH3_I15_Igor__sdFractionDLS_pH3_I15_Igor__avgDDLS_pH3_I15_Igor__sdDDLS_pH3_I15_Igor__avgConcDLS_pH4_I15_Igor__sdConcDLS_pH4_I15_Igor__avgFractionDLS_pH4_I15_Igor__sdFractionDLS_pH4_I15_Igor__avgDDLS_pH4_I15_Igor__sdDDLS_pH4_I15_Igor__avgConcDLS_pH5_I15_Igor__sdConcDLS_pH5_I15_Igor__avgFractionDLS_pH5_I15_Igor__sdFractionDLS_pH5_I15_Igor__avgDDLS_pH5_I15_Igor__sdDDLS_pH5_I15_Igor__avgConcDLS_pH6_I15_Igor__sdConcDLS_pH6_I15_Igor__avgFractionDLS_pH6_I15_Igor__sdFractionDLS_pH6_I15_Igor__avgDDLS_pH6_I15_Igor__sdDDLS_pH6_I15_Igor__avgConcDLS_pH7_I15_Igor__sdConcDLS_pH7_I15_Igor__avgFractionDLS_pH7_I15_Igor__sdFractionDLS_pH7_I15_Igor__avgDDLS_pH7_I15_Igor__sdDDLS_pH7_I15_Igor__avgConcDLS_pH8_I15_Igor__sdConcDLS_pH8_I15_Igor__avgFractionDLS_pH8_I15_Igor__sdFractionDLS_pH8_I15_Igor__avgDDLS_pH8_I15_Igor__sdDDLS_pH8_I15_Igor__avgConcDLS_pH9_I15_Igor__sdConcDLS_pH9_I15_Igor__avgFractionDLS_pH9_I15_Igor__sdFractionDLS_pH9_I15_Igor__avgDDLS_pH9_I15_Igor__sdDDLS_pH9_I15_Igor__avgConcDLS_pH10_I15_Igor__sdConcDLS_pH10_I15_Igor__avgFractionDLS_pH10_I15_Igor__sdFractionDLS_pH10_I15_Igor__avgDDLS_pH10_I15_Igor__sdDDLS_pH10_I15_Igor__avgConcDLS_pH3_I30_Igor__sdConcDLS_pH3_I30_Igor__avgFractionDLS_pH3_I30_Igor__sdFractionDLS_pH3_I30_Igor__avgDDLS_pH3_I30_Igor__sdDDLS_pH3_I30_Igor__avgConcDLS_pH4_I30_Igor__sdConcDLS_pH4_I30_Igor__avgFractionDLS_pH4_I30_Igor__sdFractionDLS_pH4_I30_Igor__avgDDLS_pH4_I30_Igor__sdDDLS_pH4_I30_Igor__avgConcDLS_pH5_I30_Igor__sdConcDLS_pH5_I30_Igor__avgFractionDLS_pH5_I30_Igor__sdFractionDLS_pH5_I30_Igor__avgDDLS_pH5_I30_Igor__sdDDLS_pH5_I30_Igor__avgConcDLS_pH6_I30_Igor__sdConcDLS_pH6_I30_Igor__avgFractionDLS_pH6_I30_Igor__sdFractionDLS_pH6_I30_Igor__avgDDLS_pH6_I30_Igor__sdDDLS_pH6_I30_Igor__avgConcDLS_pH7_I30_Igor__sdConcDLS_pH7_I30_Igor__avgFractionDLS_pH7_I30_Igor__sdFractionDLS_pH7_I30_Igor__avgDDLS_pH7_I30_Igor__sdDDLS_pH7_I30_Igor__avgConcDLS_pH8_I30_Igor__sdConcDLS_pH8_I30_Igor__avgFractionDLS_pH8_I30_Igor__sdFractionDLS_pH8_I30_Igor__avgDDLS_pH8_I30_Igor__sdDDLS_pH8_I30_Igor__avgConcDLS_pH9_I30_Igor__sdConcDLS_pH9_I30_Igor__avgFractionDLS_pH9_I30_Igor__sdFractionDLS_pH9_I30_Igor__avgDDLS_pH9_I30_Igor__sdDDLS_pH9_I30_Igor__avgConcDLS_pH10_I30_Igor__sdConcDLS_pH10_I30_Igor__avgFractionDLS_pH10_I30_Igor__sdFractionDLS_pH10_I30_Igor__avgDDLS_pH10_I30_Igor__sdDDLS_pH10_I30_Igor__avgConcDLS_pH3_I50_Igor__sdConcDLS_pH3_I50_Igor__avgFractionDLS_pH3_I50_Igor__sdFractionDLS_pH3_I50_Igor__avgDDLS_pH3_I50_Igor__sdDDLS_pH3_I50_Igor__avgConcDLS_pH4_I50_Igor__sdConcDLS_pH4_I50_Igor__avgFractionDLS_pH4_I50_Igor__sdFractionDLS_pH4_I50_Igor__avgDDLS_pH4_I50_Igor__sdDDLS_pH4_I50_Igor__avgConcDLS_pH5_I50_Igor__sdConcDLS_pH5_I50_Igor__avgFractionDLS_pH5_I50_Igor__sdFractionDLS_pH5_I50_Igor__avgDDLS_pH5_I50_Igor__sdDDLS_pH5_I50_Igor__avgConcDLS_pH6_I50_Igor__sdConcDLS_pH6_I50_Igor__avgFractionDLS_pH6_I50_Igor__sdFractionDLS_pH6_I50_Igor__avgDDLS_pH6_I50_Igor__sdDDLS_pH6_I50_Igor__avgConcDLS_pH7_I50_Igor__sdConcDLS_pH7_I50_Igor__avgFractionDLS_pH7_I50_Igor__sdFractionDLS_pH7_I50_Igor__avgDDLS_pH7_I50_Igor__sdDDLS_pH7_I50_Igor__avgConcDLS_pH8_I50_Igor__sdConcDLS_pH8_I50_Igor__avgFractionDLS_pH8_I50_Igor__sdFractionDLS_pH8_I50_Igor__avgDDLS_pH8_I50_Igor__sdDDLS_pH8_I50_Igor__avgConcDLS_pH9_I50_Igor__sdConcDLS_pH9_I50_Igor__avgFractionDLS_pH9_I50_Igor__sdFractionDLS_pH9_I50_Igor__avgDDLS_pH9_I50_Igor__sdDDLS_pH9_I50_Igor__avgConcDLS_pH10_I50_Igor__sdConcDLS_pH10_I50_Igor__avgFractionDLS_pH10_I50_Igor__sdFractionDLS_pH10_I50_Igor__avgDDLS_pH10_I50_Igor__sdDDLS_pH10_I50_Igor__avgConcDLS_pH3_I75_Igor__sdConcDLS_pH3_I75_Igor__avgFractionDLS_pH3_I75_Igor__sdFractionDLS_pH3_I75_Igor__avgDDLS_pH3_I75_Igor__sdDDLS_pH3_I75_Igor__avgConcDLS_pH4_I75_Igor__sdConcDLS_pH4_I75_Igor__avgFractionDLS_pH4_I75_Igor__sdFractionDLS_pH4_I75_Igor__avgDDLS_pH4_I75_Igor__sdDDLS_pH4_I75_Igor__avgConcDLS_pH5_I75_Igor__sdConcDLS_pH5_I75_Igor__avgFractionDLS_pH5_I75_Igor__sdFractionDLS_pH5_I75_Igor__avgDDLS_pH5_I75_Igor__sdDDLS_pH5_I75_Igor__avgConcDLS_pH6_I75_Igor__sdConcDLS_pH6_I75_Igor__avgFractionDLS_pH6_I75_Igor__sdFractionDLS_pH6_I75_Igor__avgDDLS_pH6_I75_Igor__sdDDLS_pH6_I75_Igor__avgConcDLS_pH7_I75_Igor__sdConcDLS_pH7_I75_Igor__avgFractionDLS_pH7_I75_Igor__sdFractionDLS_pH7_I75_Igor__avgDDLS_pH7_I75_Igor__sdDDLS_pH7_I75_Igor__avgConcDLS_pH8_I75_Igor__sdConcDLS_pH8_I75_Igor__avgFractionDLS_pH8_I75_Igor__sdFractionDLS_pH8_I75_Igor__avgDDLS_pH8_I75_Igor__sdDDLS_pH8_I75_Igor__avgConcDLS_pH9_I75_Igor__sdConcDLS_pH9_I75_Igor__avgFractionDLS_pH9_I75_Igor__sdFractionDLS_pH9_I75_Igor__avgDDLS_pH9_I75_Igor__sdDDLS_pH9_I75_Igor__avgConcDLS_pH10_I75_Igor__sdConcDLS_pH10_I75_Igor__avgFractionDLS_pH10_I75_Igor__sdFractionDLS_pH10_I75_Igor__avgDDLS_pH10_I75_Igor__sdDDLS_pH10_I75_Igor__avgConcDLS_pH3_I100_Igor__sdConcDLS_pH3_I100_Igor__avgFractionDLS_pH3_I100_Igor__sdFractionDLS_pH3_I100_Igor__avgDDLS_pH3_I100_Igor__sdDDLS_pH3_I100_Igor__avgConcDLS_pH4_I100_Igor__sdConcDLS_pH4_I100_Igor__avgFractionDLS_pH4_I100_Igor__sdFractionDLS_pH4_I100_Igor__avgDDLS_pH4_I100_Igor__sdDDLS_pH4_I100_Igor__avgConcDLS_pH5_I100_Igor__sdConcDLS_pH5_I100_Igor__avgFractionDLS_pH5_I100_Igor__sdFractionDLS_pH5_I100_Igor__avgDDLS_pH5_I100_Igor__sdDDLS_pH5_I100_Igor__avgConcDLS_pH6_I100_Igor__sdConcDLS_pH6_I100_Igor__avgFractionDLS_pH6_I100_Igor__sdFractionDLS_pH6_I100_Igor__avgDDLS_pH6_I100_Igor__sdDDLS_pH6_I100_Igor__avgConcDLS_pH7_I100_Igor__sdConcDLS_pH7_I100_Igor__avgFractionDLS_pH7_I100_Igor__sdFractionDLS_pH7_I100_Igor__avgDDLS_pH7_I100_Igor__sdDDLS_pH7_I100_Igor__avgConcDLS_pH8_I100_Igor__sdConcDLS_pH8_I100_Igor__avgFractionDLS_pH8_I100_Igor__sdFractionDLS_pH8_I100_Igor__avgDDLS_pH8_I100_Igor__sdDDLS_pH8_I100_Igor__avgConcDLS_pH9_I100_Igor__sdConcDLS_pH9_I100_Igor__avgFractionDLS_pH9_I100_Igor__sdFractionDLS_pH9_I100_Igor__avgDDLS_pH9_I100_Igor__sdDDLS_pH9_I100_Igor__avgConcDLS_pH10_I100_Igor__sdConcDLS_pH10_I100_Igor__avgFractionDLS_pH10_I100_Igor__sdFractionDLS_pH10_I100_Igor__avgDDLS_pH10_I100_Igor__sdDDLS_pH10_I100_Igor__avgConcDLS_pH3_I175_Igor__sdConcDLS_pH3_I175_Igor__avgFractionDLS_pH3_I175_Igor__sdFractionDLS_pH3_I175_Igor__avgDDLS_pH3_I175_Igor__sdDDLS_pH3_I175_Igor__avgConcDLS_pH4_I175_Igor__sdConcDLS_pH4_I175_Igor__avgFractionDLS_pH4_I175_Igor__sdFractionDLS_pH4_I175_Igor__avgDDLS_pH4_I175_Igor__sdDDLS_pH4_I175_Igor__avgConcDLS_pH5_I175_Igor__sdConcDLS_pH5_I175_Igor__avgFractionDLS_pH5_I175_Igor__sdFractionDLS_pH5_I175_Igor__avgDDLS_pH5_I175_Igor__sdDDLS_pH5_I175_Igor__avgConcDLS_pH6_I175_Igor__sdConcDLS_pH6_I175_Igor__avgFractionDLS_pH6_I175_Igor__sdFractionDLS_pH6_I175_Igor__avgDDLS_pH6_I175_Igor__sdDDLS_pH6_I175_Igor__avgConcDLS_pH7_I175_Igor__sdConcDLS_pH7_I175_Igor__avgFractionDLS_pH7_I175_Igor__sdFractionDLS_pH7_I175_Igor__avgDDLS_pH7_I175_Igor__sdDDLS_pH7_I175_Igor__avgConcDLS_pH8_I175_Igor__sdConcDLS_pH8_I175_Igor__avgFractionDLS_pH8_I175_Igor__sdFractionDLS_pH8_I175_Igor__avgDDLS_pH8_I175_Igor__sdDDLS_pH8_I175_Igor__avgConcDLS_pH9_I175_Igor__sdConcDLS_pH9_I175_Igor__avgFractionDLS_pH9_I175_Igor__sdFractionDLS_pH9_I175_Igor__avgDDLS_pH9_I175_Igor__sdDDLS_pH9_I175_Igor__avgConcDLS_pH10_I175_Igor__sdConcDLS_pH10_I175_Igor__avgFractionDLS_pH10_I175_Igor__sdFractionDLS_pH10_I175_Igor__avgDDLS_pH10_I175_Igor__sdDDLS_pH10_I175_Igor_W@3 $5%?NR@&SLS_clean<" ????52p ՝T?2/Z?X[?mU^?s igc?j+c?Z(i?H8p?=֌ rq?W歺u?Rk0{?p}E?, PSˆ?S8#>QG`|> IG>NŻCT>~X5H>-'ʸ ?>T>NN>- ?5 F>?!(G~)?lP̳&?e N?9bS? ɩS?̟U?-JQ\?{v]?Qu]b?KXh?&h?Wvn?^gt?v9<{?E#Dɣ?_=t>S0s>C >˾+D:>EfMt>'<?p.*>ё|>k?*BHf>I\r>R0"? niԜ ?6λ4>`&>PPO>o7@|>Tv>A> >Gڷ>>*>/PK>uŪ?.1R ?*j따=?9w-{>gƜ>]6p><7o2>[ Qޠ>j>%+7'>W2] >fď> g>]J>ՔJ>ty>ĀE9X?nXH(\?˦\?kfc?d?|Qo3q?yN q?<|?i~?ڷa>R><1A>Fn>vǻW>t\2>,LS>elu=>^>`R?i$! IT?hG快U?k6<]?Hk^?g6h?. `i?ib4t? \|Iv?Ne>-@>KJ>pr>zo~`&>J?h'5>7Ac>/> i>3<@>8>$‚H>8>o;^>Xv>^v>O*{/\>EH>nۇq>ו)>P]><כ>< > ?>;ٽܛ>< >>\~8>/{A[?Voc?p?i|?Z珆?A} ?Xk>NŻCT>oL2>k>?zFR?h*dS?w3Җ\?gh?x|Tt?Vix?'CH,?_b>˾+D:>6O>L,.J>LQz?¨WJ?ƢR>"/>s-D>>ȈP D> >GHZO> C>jXVF>1n֯>r;I>?G>+\X?`/7_?}D'=jOa?֦f?y\1o?;8؛s?Yz?'?Lσ?mRm?Plt$ >W>2Wa>e^_>Z?EjWZ>R*| ?1:o1>_:?Wr1??ð>Q?N]V?54EY?n*֙`?f?L_l?) s?x?b|?s߮4?7xߪ>dM,.J>Y,>3@>2u>gs0 >鹐鵆?tw5>Հ>z!0E`6? >EՒ>>6s>:p>g>k"|µ>#5K>z>5;T>\z[>xςƟ> 0M>->@e>휔g۝>՚>KmT-_>j&>bS>)Ǧw^?eEi?"Lu?.Q5u? Bl;?bl?#>dJ>v>%>>O ,?=Ly|:?ᇉV?9Vb?G"cn?9o?ս#̱|?ָ( ?G,gi6>/C>>C>ٖ>ܥ$?9U3?w SZ>w#>)Ӻh@>գ'M>>_z>{ޛ>88>*> >l)">(+k&;>lh}V?Mx`?Ȗo?zz?)Ly>S>-p2?opQk ?ghC"kP??X?0sf?}YQs?dʄ?>z>4z?V%a>I/S>qQc>.S>\dX>QcW>xi>0>˝| ]?0Md?5fuq?8aA ~?no?%f_>q>f?-3U?s'z^?6Ŕi?Pu?T&>?oH> qN> .?HF>Ag>>/+$>3&>g>w>+7k>*YL >zA^?ޭ,Yfa?9fe?&Li?9r?aũ,?~JU\?wU/>qP>$8>>k??o/gHV?ZF,ZgY?%_?0hb?ѡ˧>;д>$4@$>'@Ci>q >?&>XN s> 1>RJ>g>k.>?B>8&>udQ>W#}8~>ngUm>7>صݒ\?]?ec?#qe?L.*p?iv[Րr?娶|?sȁ?p?V?U*1>ԭC>` ~k>\U?r̤>Ck?ݙ{>u0?m>gU@7>w0T?`4U?A\"]?5)DO_?l4fZh?›#k?at?aPYsy?Iuz?GJV!?܇3>0&j>Z­aZ>Sɜ>/v>?>sB_ ?{ مQ>t>o >M/&_>RLhX>pK >?>Ni>y*H>. Ɔ5>t>y8Po>)`>(K>w-ښ>"h'>2+`>"d=>e$l>jX>/pA>X>EL^?pd?}Aq?Ds?U|?YNzRӄ?ڷa>A'>>Ҟ\.1>^ H>6m>Gёѽ'?U?[)^?`{1i?]b6m?5PF"u?|g~?Ne>:^ J>|>n>&H㹏>@T!?ݶ>ʇ*>Tj->ՙ>3;Aw@>=C>J{ >> Z>^ \w>񲀞>+oM>1?74e_?_m#e? Ge?[Hq?MNAr?%Ί>?z޺?aA?=<^?S>z[>x1>ߕj>oa>&F>֒K?BFVA?Ђ AQ?iքzW?8_?نZX_?)Pi?v|4ӧj?* v?y?: &i?X A?>> xT>I L>dNe> f°.>X>ØN O9?&/0I?D2>!c_>D5>={uH>]>bHK">M^>4M>W>X >O7r> #ϐ>ͷy,0>>amQgH>ѮR|>lK>h1>~iNc?ц5p?SH9t?H?Qo3?:ّy?s7>(34> Ҟ\.1>WI>[#v >>%T$?1gۄR/\?qy5g? # m?L0Jx?g6x? MZ?#ߝVM>?`>|>\/>)z+(>Y?7J?PoN?>ZG>rTN>a\>3>ot>vM>H?!Q>p A> /]>yH)X>^#g>ra?k>kZe7>}> [2> ?@1?l1gY?$b?§,Oi?kGo?ٺq?/i{?Ψ?pJ,.J>L,.J>ۑ>i/f>N=h'5> ,/`>5qOO)?Ȭ> (Ql>$eZ>^>JT2>Vь>-E*>>>* >^Rz>hmt>3Fy>5;ƛ>_N G>g1\>h]?fw? ݪ?r)?JYʄ?e&>H9ixA>5W.?]Fx>?y%X)?-&xU?X.mq?ܡ#5z?6Q2}?ԳxZ~?\ϵ>p>۶?9 {.=?2gO"?+{>1mZ>{F> Sxn>iÉ>XLJx>43->I!> K^>E5U!>%){8n^?ͫ:h?+_q?`Xt?3 t?2\?ʞs ?AWH?{K?>@?9(j>G8#>>ė,7?pnbҫ?tqT>/?cn6V?V8b?O]i?e`>n?n?;u֌y?XS1Az? ̈~?n40>d/±>~3>S=t>M,.J>&~&71?wѣ?lbǎ'? ]h>ֻ>9š\6>-v>l >>U>ɽFm>ȴ}R?>5D>֮3m>tZp&>]Cp`k>T茢|>Uz>}N >bEdx>\?yu1d?r2a!`j?%Ϫq?rC@u?_A9>J1?;G>q@$> >BAT?n E{]?w Ac?; Mi?zo?MF> 1)T?FI^>ҩ>oZ>f >% |M>ޔ>{>\1>wTș>$[>OzZ>'"P>9'|>.c}[?#d?4t q?vq{?O}|?|0C?wU/>>@Ox>ƠA2?l<Tt?o!?y^;\>E>&z1|>Qh{>~eF?^ )g]>,>f>ݬ>YVdk>źe>->->gU>P>.Ԟ>·qT>J>,/<\?Q~W]?Bd?jWj? \q?PW\|?W@n?>uU>-LS>`Ǭ?u*>4>& x[?NT?5 kU?MX]?iYc?Irh?8a t?_W,`?٢x>N!>7Ac>ùrv]?As>D4U>ra~?6ُ>\ܺi>N}ݎ%>hu>'⦤>FC=>z&>-zÖ>L(>?hB>Rw>[95>G[h>7L|>Xj;S\?۟:Jd?dq?E:%;|?<A?:s>Ѥ|>?K= U>I(?wx<?!"kfT?Y]?ˆh?t<Лt?DAl?JN>ՈT>8>,vM>d;?=&< >:=->D9֯Q>Z;>'G>/>eZo>'= >k>|>*-S [?9<b?ùj??( p?;خ q?u?Z=%{?/3l{?m2d?8I !?ݷW>I J?m(? w> >T:?vt?) >jy>?o g?@V|S?gsɒ[?4 c?lslg?L.h?+ n?,Jt?/it?z?CDܥC ?Dw=>t>'M?S>O)]?E/㉀?8^C>t(>E??ϑS>0>9w.>*(P3>`kc>gQ1>/CEV>eIˢ!>er>uă>v}>Q2ӛ>ӥ>-">3R>b.n̛>3Uz>tUKҜ>v5>5Ldd? "5bj?O0vu?o>n?f# ?Gg~X?=I>Gq?+Q~=^?#wCc?WUo?}ENz?]O?8\>MG.>LpN>t >!`ʋ">n.>騰>Au>1}>q|@ >@b~`>avZ?@$Sc?5j?Ccíu?R%Tg|?mu5?BF6>AtSrX ?Vh? 9ixA?;Tq8y+ ?B;sj>Z[kS?T u\?%?+xc?so?%t?!z? = 6S>搀?J,T ?Dp>LsqsAK? ure>lׯ>D>%->t<>H/Y>8k>wA4>,)>9l>]!%>rqYJ>CGf>K(cT?yZ? Vx\?2/c?h+f?iۧp?qns?.ꏀ?3D?wU/>2W>>E[?lu=>?,$?KL!?dJN?CSS?-KT?A96%\?`c./`?Ҭ_h?Fd^l?fG.x?b<?ѡ˧>&w=>exW>/>{v*>nw>[?~8^XV>z >,ҵ>Z>Zpg>}O>U 6>u޺>I?V>;AU}>x7%k>FmVr>u3{8>ԻQ>_C6>m1b8 >(E^?(ȯ_?͗e?JIf?;Mr?Аu?d?bk'?GGn>y l>2RG`|>>.]>Pf?B|>bfb?"`o1?Y欌V?.!W?7n^?FD`?iz{tk?Qp? w?|Oz?G_>[owF5>b2PLS>?x>i ?Y"u)?Ql7>>8 |r>Pu#>uV>MQ>zf>u3U>K>94>ޤxV!}>׍ ?>,1$v >x[k+>3}m=>*=>-ұp[?`Hd?CQp?&(Wp?B>٬|?#j ?͂/?^>Ѐ8>ܵZ<'>o>5I??(;?2\TB?JT?>>]?NI(hh?:Th?x'u?R__? W? i>rBE>x2zvm>#(j=l>? ?N?>]+?/*^>ЅP>E>v/z>[C\>VH>=5>yfܖ>U#@>eY>/Elt͖> >0?> e>"v>I`?,M8i?-:u?T޴?]I`x?mc>^> [2>< >sxȠ?vUwW?Yqb?"#n?06z?znz?|8e'>i>N=h'5>7h#$>C}?'6>?>n L}>ccC> 䉶>u˛l>ſB;b>4g>쁗>;4>g\?Dd?¾Dq? h|?Q?+y>/>S?]@T5?JɊK?Ѡ>`!U?鄲^?Y&i?W+t?.b ?pᄢ>٢x>p8 ?kž<?C@yF?ZpM>h6>)lB>v)d>:>r ].c>'`J>HY>2c >_&>^`[?Ҿc?/p?X9(|?ZLW*>[L>ډ5 v?}F?g3iT?\?gwh?qt?P?>&w4S>:>?gcu}?.yϏ>[h_>buN0>sE9>Cx _>HxVݙ>aFN>ֿ>q`?mh|La? !l?i]W=.w?'x]O?v>U*1>NŻCT>BkX?EAY?d?p?)+F?D>܇3>˾+D:>]; >>t)-w>7>B,I>|>z[>RKeŗ>^'7w[?67a?Ded?4W0?j?ڤ1G>k{><$,>&YO@?*f) ?ޅhT?z!"Y? r7]?轢qcz?S2X]?G;g>>Y>|9`>O?-vh?A>S>%N> |įL>3>a>+9>Pv#/>Cڂg>a>d ˀ9>:#`G^?#^?kAAd? LH~zi?5ep?Ρ U1u?! x?)exr-|?e?LY?qf#?ZX:>)MB/>>+-?Ӱ>)#? ->Nf>\Y?;V?#lAV?ܛy]?ыb?h? ,n?!.r?yёt?3y?|r?l*|?L@>!>Li>q>J ;R>҆EK?I\>c` Z>lȝJ?}UI>=:aN>ؚ><3\>Vw>zm>V=~>+|(>CA2s>ۻ2>zdt֩>(Q >7s>$S[>V@oo>TK>?H3NG>Qe>Yו×>I_?K>le?Nf?2{Gr?}"r?y? {?" >D>=!?X><?B ?K]5?Ӱ֡}1W?S`g_?k/`?Dzj?"lj2k?4]x?qST?׼G>K,.J>/*G?Lq2>ڠ^ ?Z?{P6?w>c>skV>Fb>a1g>8\>=> ^> [wU}>؀m>R[}>K5j>pB:>]=>\URd?&5p?Sq?+'Q|?s.Ue߅?4~X5H>-K7?K>>:Z?hh]?aXjAh?P'h??)t?Vl0?EfMt>{h: ?.ҧ>(j=l>Y~?c`Yׇ>7[>[ >όs>ǟH>)=$vw>_6\>s|P>b6Nʞ>q:>Oʤ6k?wEJv?ne΂?csצ>La> %Ȕ>5+]c?]zaEp?| =9u{?Wz>5Ne>E[>C =>D>Hlr>'2>8>ئl }>{]?vzd?W\e?TaFFq?n(u|?Z`t?%f_>&v>Zp?;G>elu=>j6?\ŧU?Qn]?vR]^?8i?r *t?zy?ЪoH>h >l >LFI^>/>|B?r&#>?Dy>#력>m2G>@eB'>h}]>nA> >4Vv>B]91>p*n>ܪ[?)^dc?fvd?28*7q?4*p |?!i|?6k?@4u>Ќ>UcQ>X"?A?S>_$?1hϪoT?(ח\?'g]?;u"i?/J3zt?wbt?ep?+s>kf>]Poܟ>Q#t>kZԇ>iL>)>M?ڻ T>7>VR<>%F >[b\ >I v>/>^>ΣuJ>>nMDb>XlL>+f>?vt>Q\>-s]?e?Rq?nT8?h㈵>}>4K7>=d)f? U?K]яp_?XhΗji?.ۀ?7P>/f>{h:>nt ?5'Co>Y): )>$1>6k>N1{>Oi{>|h:#>) ϣ> &lV?հc?ap?}qJ[|?N|?T=?1 C?>@Ф>p,2h*?]j6>g{>[2_N!?@vP?g£K]?m2OSph?hUlHt?t?]T?;;?/p>K >>3>WD?01%>ŒHiT>NJ>1Z >'eSYAi>ut E>5W1>@X>&i͙>4W>q>1hv>tX?\޽`?St$`?ZMHl?qjl?+@ȟw?1&?@Ѐ8>| \Wv>]j6>k{>>#У>m>P4B?n tQ?E5l|X?mRX?s&¥d?hd?${X2@q?pH_}?XsBE>Dè~>>>06>E"">8;?Y܎> Z^4>r@>̵> 3>&RU >x>و!ە>$xm>o2Iޔ>mB>jD>05Y>4 Y>*)j$\?l\c? ESp? #|?O~?OcoÅ?PR>9π>q V $>Vg ?g>T%?}AK9T?VQ#]?>>@g?ktu?Wv?[!K?4M>;C>>C?|DM>(?bW2>2$Su>>y#>W2>9x>aŵ%>ãa缜>IXֿϛ>W>hњ>ݻf> c>IG*b?>d?DZ!q?`t|?[Hl> `>I*R>>yAn[?"Ԏ]?1tUi?-Nt?Af^>!>@V>r[>e>T >f{\>j*#i(>Q) >z;>J2 2>$Ș>x1!b?p\M 4o?50#5z?5>jWZ>l? W[?) &Gf?O(ګ!s?@G>hs0 >$Կ ?pd>Ơ>"p&k>4s&>Z>%^1؜>^?/p?$]3f{?#j ?&c>9Ee>l~>R?,rV?J_bqh?K<t?R__?H|8e'>,\>i!jEo>`#6 ?mSZ>F‚>yR;X>@|>Qp>!D/>7>S[Z>Ƚ\?-hMZd?kDp?-ԇ}?e`\?6k?=>ڤJ>O>;ό>.L=zc>L=zc?!T?S-͢]?kg?zZ?u?B|<?ep?+>/C>#B>Qn>0C>A1C?`2Y>DuX#> [Nb>te||>~G>l)*>5RFLY>1{Ō>ȟ>KN;>:b> aM>LtPȻ`? e?JIwjk?ق?r?\qqTnv?Wzm6Vb~?L \Wv>~X5H>_NN>Φ v>eDe9>RP1? RnX?3um_?m{d?~Muj? tBp?@/.v? è~>EfMt>\ё|> 5> 3#_>eLn ? 7O>vc &>g>[>>K_:S9W>I/pG]>;m>ݥ>#$qE>ԩܚ>E>zng>D?{[?H.*`?Q"d?{L4k?񧳀p?9]v?x7)F}?1`p?G>p \Wv>1>K>%f_>wU/>XB ?ڝ%?gT?voBX?d]?;B0c? h?S_ jSp?怒A_u?TSy?(KxM>Dè~>wT>.ҧ>ЪoH>ѡ˧>G{?=f1?y '>ls^.>M>aX#!>Pw>?p>+8{X>[]Ȑ>U1>p{>ck4~Y>PO׿y>D6>w9>T>?@T}l>ˉ40]?ѕT b?,M8i?"Gu??6?-LS>1>sv>QbU@7>mXk>}.OU? -wZ?Yqb? o?>q7?7Ac>8ޒ>h >Rt>Z_b>D;>pO޲>ڽ 4>p>fX>W^d}>i[>)7{ݕ>k5B>/!}EVa?!@c?,,}l?L9Rp?x W-}?ث?k;sj>S8#>v$>NY>Uީ>Ii>oAOY?_YiG\?8d?y5g?Ɖu?z.5{? ure>G=t> nw>EGyb >F*Xgz> #>!>W,>t]>h<Ў>}a>'e>h,g>.E>¼7]Z>" >_ v>>)KRW>_avgConcSLS_pH3_I15_Igor__sdConcSLS_pH3_I15_Igor__avgFractionSLS_pH3_I15_Igor__sdFractionSLS_pH3_I15_Igor__avgKCRSLS_pH3_I15_Igor__sdKCRSLS_pH3_I15_Igor__avgConcSLS_pH4_I15_Igor__sdConcSLS_pH4_I15_Igor__avgFractionSLS_pH4_I15_Igor__sdFractionSLS_pH4_I15_Igor__avgKCRSLS_pH4_I15_Igor__sdKCRSLS_pH4_I15_Igor__avgConcSLS_pH5_I15_Igor__sdConcSLS_pH5_I15_Igor__avgFractionSLS_pH5_I15_Igor__sdFractionSLS_pH5_I15_Igor__avgKCRSLS_pH5_I15_Igor__sdKCRSLS_pH5_I15_Igor__avgConcSLS_pH6_I15_Igor__sdConcSLS_pH6_I15_Igor__avgFractionSLS_pH6_I15_Igor__sdFractionSLS_pH6_I15_Igor__avgKCRSLS_pH6_I15_Igor__sdKCRSLS_pH6_I15_Igor__avgConcSLS_pH7_I15_Igor__sdConcSLS_pH7_I15_Igor__avgFractionSLS_pH7_I15_Igor__sdFractionSLS_pH7_I15_Igor__avgKCRSLS_pH7_I15_Igor__sdKCRSLS_pH7_I15_Igor__avgConcSLS_pH8_I15_Igor__sdConcSLS_pH8_I15_Igor__avgFractionSLS_pH8_I15_Igor__sdFractionSLS_pH8_I15_Igor__avgKCRSLS_pH8_I15_Igor__sdKCRSLS_pH8_I15_Igor__avgConcSLS_pH9_I15_Igor__sdConcSLS_pH9_I15_Igor__avgFractionSLS_pH9_I15_Igor__sdFractionSLS_pH9_I15_Igor__avgKCRSLS_pH9_I15_Igor__sdKCRSLS_pH9_I15_Igor__avgConcSLS_pH10_I15_Igor__sdConcSLS_pH10_I15_Igor__avgFractionSLS_pH10_I15_Igor__sdFractionSLS_pH10_I15_Igor__avgKCRSLS_pH10_I15_Igor__sdKCRSLS_pH10_I15_Igor__avgConcSLS_pH3_I30_Igor__sdConcSLS_pH3_I30_Igor__avgFractionSLS_pH3_I30_Igor__sdFractionSLS_pH3_I30_Igor__avgKCRSLS_pH3_I30_Igor__sdKCRSLS_pH3_I30_Igor__avgConcSLS_pH4_I30_Igor__sdConcSLS_pH4_I30_Igor__avgFractionSLS_pH4_I30_Igor__sdFractionSLS_pH4_I30_Igor__avgKCRSLS_pH4_I30_Igor__sdKCRSLS_pH4_I30_Igor__avgConcSLS_pH5_I30_Igor__sdConcSLS_pH5_I30_Igor__avgFractionSLS_pH5_I30_Igor__sdFractionSLS_pH5_I30_Igor__avgKCRSLS_pH5_I30_Igor__sdKCRSLS_pH5_I30_Igor__avgConcSLS_pH6_I30_Igor__sdConcSLS_pH6_I30_Igor__avgFractionSLS_pH6_I30_Igor__sdFractionSLS_pH6_I30_Igor__avgKCRSLS_pH6_I30_Igor__sdKCRSLS_pH6_I30_Igor__avgConcSLS_pH7_I30_Igor__sdConcSLS_pH7_I30_Igor__avgFractionSLS_pH7_I30_Igor__sdFractionSLS_pH7_I30_Igor__avgKCRSLS_pH7_I30_Igor__sdKCRSLS_pH7_I30_Igor__avgConcSLS_pH8_I30_Igor__sdConcSLS_pH8_I30_Igor__avgFractionSLS_pH8_I30_Igor__sdFractionSLS_pH8_I30_Igor__avgKCRSLS_pH8_I30_Igor__sdKCRSLS_pH8_I30_Igor__avgConcSLS_pH9_I30_Igor__sdConcSLS_pH9_I30_Igor__avgFractionSLS_pH9_I30_Igor__sdFractionSLS_pH9_I30_Igor__avgKCRSLS_pH9_I30_Igor__sdKCRSLS_pH9_I30_Igor__avgConcSLS_pH10_I30_Igor__sdConcSLS_pH10_I30_Igor__avgFractionSLS_pH10_I30_Igor__sdFractionSLS_pH10_I30_Igor__avgKCRSLS_pH10_I30_Igor__sdKCRSLS_pH10_I30_Igor__avgConcSLS_pH3_I50_Igor__sdConcSLS_pH3_I50_Igor__avgFractionSLS_pH3_I50_Igor__sdFractionSLS_pH3_I50_Igor__avgKCRSLS_pH3_I50_Igor__sdKCRSLS_pH3_I50_Igor__avgConcSLS_pH4_I50_Igor__sdConcSLS_pH4_I50_Igor__avgFractionSLS_pH4_I50_Igor__sdFractionSLS_pH4_I50_Igor__avgKCRSLS_pH4_I50_Igor__sdKCRSLS_pH4_I50_Igor__avgConcSLS_pH5_I50_Igor__sdConcSLS_pH5_I50_Igor__avgFractionSLS_pH5_I50_Igor__sdFractionSLS_pH5_I50_Igor__avgKCRSLS_pH5_I50_Igor__sdKCRSLS_pH5_I50_Igor__avgConcSLS_pH6_I50_Igor__sdConcSLS_pH6_I50_Igor__avgFractionSLS_pH6_I50_Igor__sdFractionSLS_pH6_I50_Igor__avgKCRSLS_pH6_I50_Igor__sdKCRSLS_pH6_I50_Igor__avgConcSLS_pH7_I50_Igor__sdConcSLS_pH7_I50_Igor__avgFractionSLS_pH7_I50_Igor__sdFractionSLS_pH7_I50_Igor__avgKCRSLS_pH7_I50_Igor__sdKCRSLS_pH7_I50_Igor__avgConcSLS_pH8_I50_Igor__sdConcSLS_pH8_I50_Igor__avgFractionSLS_pH8_I50_Igor__sdFractionSLS_pH8_I50_Igor__avgKCRSLS_pH8_I50_Igor__sdKCRSLS_pH8_I50_Igor__avgConcSLS_pH9_I50_Igor__sdConcSLS_pH9_I50_Igor__avgFractionSLS_pH9_I50_Igor__sdFractionSLS_pH9_I50_Igor__avgKCRSLS_pH9_I50_Igor__sdKCRSLS_pH9_I50_Igor__avgConcSLS_pH10_I50_Igor__sdConcSLS_pH10_I50_Igor__avgFractionSLS_pH10_I50_Igor__sdFractionSLS_pH10_I50_Igor__avgKCRSLS_pH10_I50_Igor__sdKCRSLS_pH10_I50_Igor__avgConcSLS_pH3_I75_Igor__sdConcSLS_pH3_I75_Igor__avgFractionSLS_pH3_I75_Igor__sdFractionSLS_pH3_I75_Igor__avgKCRSLS_pH3_I75_Igor__sdKCRSLS_pH3_I75_Igor__avgConcSLS_pH4_I75_Igor__sdConcSLS_pH4_I75_Igor__avgFractionSLS_pH4_I75_Igor__sdFractionSLS_pH4_I75_Igor__avgKCRSLS_pH4_I75_Igor__sdKCRSLS_pH4_I75_Igor__avgConcSLS_pH5_I75_Igor__sdConcSLS_pH5_I75_Igor__avgFractionSLS_pH5_I75_Igor__sdFractionSLS_pH5_I75_Igor__avgKCRSLS_pH5_I75_Igor__sdKCRSLS_pH5_I75_Igor__avgConcSLS_pH6_I75_Igor__sdConcSLS_pH6_I75_Igor__avgFractionSLS_pH6_I75_Igor__sdFractionSLS_pH6_I75_Igor__avgKCRSLS_pH6_I75_Igor__sdKCRSLS_pH6_I75_Igor__avgConcSLS_pH7_I75_Igor__sdConcSLS_pH7_I75_Igor__avgFractionSLS_pH7_I75_Igor__sdFractionSLS_pH7_I75_Igor__avgKCRSLS_pH7_I75_Igor__sdKCRSLS_pH7_I75_Igor__avgConcSLS_pH8_I75_Igor__sdConcSLS_pH8_I75_Igor__avgFractionSLS_pH8_I75_Igor__sdFractionSLS_pH8_I75_Igor__avgKCRSLS_pH8_I75_Igor__sdKCRSLS_pH8_I75_Igor__avgConcSLS_pH9_I75_Igor__sdConcSLS_pH9_I75_Igor__avgFractionSLS_pH9_I75_Igor__sdFractionSLS_pH9_I75_Igor__avgKCRSLS_pH9_I75_Igor__sdKCRSLS_pH9_I75_Igor__avgConcSLS_pH10_I75_Igor__sdConcSLS_pH10_I75_Igor__avgFractionSLS_pH10_I75_Igor__sdFractionSLS_pH10_I75_Igor__avgKCRSLS_pH10_I75_Igor__sdKCRSLS_pH10_I75_Igor__avgConcSLS_pH3_I100_Igor__sdConcSLS_pH3_I100_Igor__avgFractionSLS_pH3_I100_Igor__sdFractionSLS_pH3_I100_Igor__avgKCRSLS_pH3_I100_Igor__sdKCRSLS_pH3_I100_Igor__avgConcSLS_pH4_I100_Igor__sdConcSLS_pH4_I100_Igor__avgFractionSLS_pH4_I100_Igor__sdFractionSLS_pH4_I100_Igor__avgKCRSLS_pH4_I100_Igor__sdKCRSLS_pH4_I100_Igor__avgConcSLS_pH5_I100_Igor__sdConcSLS_pH5_I100_Igor__avgFractionSLS_pH5_I100_Igor__sdFractionSLS_pH5_I100_Igor__avgKCRSLS_pH5_I100_Igor__sdKCRSLS_pH5_I100_Igor__avgConcSLS_pH6_I100_Igor__sdConcSLS_pH6_I100_Igor__avgFractionSLS_pH6_I100_Igor__sdFractionSLS_pH6_I100_Igor__avgKCRSLS_pH6_I100_Igor__sdKCRSLS_pH6_I100_Igor__avgConcSLS_pH7_I100_Igor__sdConcSLS_pH7_I100_Igor__avgFractionSLS_pH7_I100_Igor__sdFractionSLS_pH7_I100_Igor__avgKCRSLS_pH7_I100_Igor__sdKCRSLS_pH7_I100_Igor__avgConcSLS_pH8_I100_Igor__sdConcSLS_pH8_I100_Igor__avgFractionSLS_pH8_I100_Igor__sdFractionSLS_pH8_I100_Igor__avgKCRSLS_pH8_I100_Igor__sdKCRSLS_pH8_I100_Igor__avgConcSLS_pH9_I100_Igor__sdConcSLS_pH9_I100_Igor__avgFractionSLS_pH9_I100_Igor__sdFractionSLS_pH9_I100_Igor__avgKCRSLS_pH9_I100_Igor__sdKCRSLS_pH9_I100_Igor__avgConcSLS_pH10_I100_Igor__sdConcSLS_pH10_I100_Igor__avgFractionSLS_pH10_I100_Igor__sdFractionSLS_pH10_I100_Igor__avgKCRSLS_pH10_I100_Igor__sdKCRSLS_pH10_I100_Igor__avgConcSLS_pH3_I175_Igor__sdConcSLS_pH3_I175_Igor__avgFractionSLS_pH3_I175_Igor__sdFractionSLS_pH3_I175_Igor__avgKCRSLS_pH3_I175_Igor__sdKCRSLS_pH3_I175_Igor__avgConcSLS_pH4_I175_Igor__sdConcSLS_pH4_I175_Igor__avgFractionSLS_pH4_I175_Igor__sdFractionSLS_pH4_I175_Igor__avgKCRSLS_pH4_I175_Igor__sdKCRSLS_pH4_I175_Igor__avgConcSLS_pH5_I175_Igor__sdConcSLS_pH5_I175_Igor__avgFractionSLS_pH5_I175_Igor__sdFractionSLS_pH5_I175_Igor__avgKCRSLS_pH5_I175_Igor__sdKCRSLS_pH5_I175_Igor__avgConcSLS_pH6_I175_Igor__sdConcSLS_pH6_I175_Igor__avgFractionSLS_pH6_I175_Igor__sdFractionSLS_pH6_I175_Igor__avgKCRSLS_pH6_I175_Igor__sdKCRSLS_pH6_I175_Igor__avgConcSLS_pH7_I175_Igor__sdConcSLS_pH7_I175_Igor__avgFractionSLS_pH7_I175_Igor__sdFractionSLS_pH7_I175_Igor__avgKCRSLS_pH7_I175_Igor__sdKCRSLS_pH7_I175_Igor__avgConcSLS_pH8_I175_Igor__sdConcSLS_pH8_I175_Igor__avgFractionSLS_pH8_I175_Igor__sdFractionSLS_pH8_I175_Igor__avgKCRSLS_pH8_I175_Igor__sdKCRSLS_pH8_I175_Igor__avgConcSLS_pH9_I175_Igor__sdConcSLS_pH9_I175_Igor__avgFractionSLS_pH9_I175_Igor__sdFractionSLS_pH9_I175_Igor__avgKCRSLS_pH9_I175_Igor__sdKCRSLS_pH9_I175_Igor__avgConcSLS_pH10_I175_Igor__sdConcSLS_pH10_I175_Igor__avgFractionSLS_pH10_I175_Igor__sdFractionSLS_pH10_I175_Igor__avgKCRSLS_pH10_I175_Igor__sdKCRSLS_pH10_I175_Igor_k5W_coef?UUz>r@ؼ3Օ 5fit_DLS_clean%pZx?a+V?RRsvF@FJI@Curve fit with data subrange: DLS_clean[*][286] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][286] - (W_coef[0]+W_coef[1]*DLS_clean[p][284]) W_coef={4.3745,-40.978} V_chisq= 5.8728;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 286;V_endCol= 286; W_sigma={0.00748,2.67} Coefficient values one standard deviation a =4.3745 0.00748 b =-40.978 2.67 W5RˣR M_Jacobian<????5am]P@Ge@e@Y@am]P@m]P@?.SA/?[ε#?Lkӛ?g cq?##?5W_sigma?UUYK?N @ P53}MRfit_pH3I15_DLS_clean<x"2x????ȧOC? 57Uq.5@Qv/@Curve fit with data subrange: DLS_clean[*][4] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][4] - (W_coef[0]+W_coef[1]*DLS_clean[p][2]) W_coef={3.9457,1818.9} V_chisq= 799.273;V_npnts= 17;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 4;V_endCol= 4; W_sigma={0.0167,11.9} Coefficient values one standard deviation a =3.9457 0.0167 b =1818.9 11.9  P$53}MRcoef_pH3I15_DLS_clean<????8-@QN`>k@YP53}MRSigma_pH3I15_DLS_clean<????9Ӧ?S'@,P53}MRfit_pH3I30_DLS_clean<XX~????^jJI?5:ɳ"@yx@Curve fit with data subrange: DLS_clean[*][52] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][52] - (W_coef[0]+W_coef[1]*DLS_clean[p][50]) W_coef={4.166,305.18} V_chisq= 103.21;V_npnts= 18;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 52;V_endCol= 52; W_sigma={0.00906,4.16} Coefficient values one standard deviation a =4.166 0.00906 b =305.18 4.16 SP53}MRcoef_pH3I30_DLS_clean<????;0)@HiHrs@P483}MRSigma_pH3I30_DLS_clean<????<0vc?{~9@~nI88Res_DLS_clean?RR>l0=P^ncB"Wfk`?Еjr^ևp5qw/?g?$r? ׃C a眿غ^j v5jH!gy?w?D翿{t?,CF?r9k˅?'ʹ}<%@@"?(a?m4 k#vٿp0p6U}MRRes_pH3I15_DLS_clean<????> äQAޭ?Kd0so˿Xb#?oȿ 7l?[ݟ'Q yŷ?Ѕ|ڿ+z9cE!MؿE #?d?D?Q: x$ns@/?.P?q ,CF?v9x)? OSx?-L?<%@@"?(a?m4 k#vٿp0r6U}MRRes_pH3I30_DLS_clean<?????oh[?$S["|"_Fٙ/1?AEMC\MZ? `/mpM?|\?$^rPe @I&mI6?D?䜦Lϕx$ns@/?dœƣJvָ?,CF?0PI OSx?-L?<%@@"?(a?m4 k#vٿ$SPr6MRfit_pH3I50_DLS_clean<a\ys????!KN?r6@+qJ@G@Curve fit with data subrange: DLS_clean[*][100] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][100] - (W_coef[0]+W_coef[1]*DLS_clean[p][98]) W_coef={4.1553,182.97} V_chisq= 62.9227;V_npnts= 14;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 100;V_endCol= 100; W_sigma={0.00677,2.56} Coefficient values one standard deviation a =4.1553 0.00677 b =182.97 2.56 Pr6MRcoef_pH3I50_DLS_clean<????A5@WjC/f@p 0\t6MRRes_pH3I50_DLS_clean<????Boh[?$S|Y?LaQFYקy!y }?.rGj Zɢ:??нh䜦LϕQ˕9`dœƣPF%ӁP{+'?*i OSx?Q[p<%@@"?(a?m4 k#vٿʚPt6MRSigma_pH3I50_DLS_clean<????C=5׹{?)Mr@#?HPt6MRfit_pH3I75_DLS_clean</'t????vm+I?t6DE8 o @t@Curve fit with data subrange: DLS_clean[*][148] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][148] - (W_coef[0]+W_coef[1]*DLS_clean[p][146]) W_coef={4.1574,130.3} V_chisq= 84.2511;V_npnts= 12;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 148;V_endCol= 148; W_sigma={0.00698,3.66} Coefficient values one standard deviation a =4.1574 0.00698 b =130.3 3.66 Pt6MRcoef_pH3I75_DLS_clean<????EQ/@!ËI`@p0t6MRRes_pH3I75_DLS_clean<????Foh[?5wDZAAYקy!Ġ,}?}k_$Q?ɢ:??'q䜦LϕQ˕9`dœƣ <:{?P{+'?hK OSx?Q[p<%@@"?(a?m4 k#vٿPhu6MRSigma_pH4I50_DLS_clean<????[٥?Ȉ?ɝW~@%vePpu6MRfit_pH4I75_DLS_clean<vO&u????=2I?tu6\(@A2Lr@Curve fit with data subrange: DLS_clean[*][154] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][154] - (W_coef[0]+W_coef[1]*DLS_clean[p][152]) W_coef={4.2403,62.593} V_chisq= 73.6682;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 154;V_endCol= 154; W_sigma={0.00926,3.11} Coefficient values one standard deviation a =4.2403 0.00926 b =62.593 3.11 P|u6MRcoef_pH4I75_DLS_clean<????]c@$KO@p0u6MRRes_pH4I75_DLS_clean<????^d?vkA?obRDZAAY@LreK@Curve fit with data subrange: DLS_clean[*][202] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][202] - (W_coef[0]+W_coef[1]*DLS_clean[p][200]) W_coef={4.2824,36.113} V_chisq= 47.9916;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 202;V_endCol= 202; W_sigma={0.00819,2.24} Coefficient values one standard deviation a =4.2824 0.00819 b =36.113 2.24 ɭPu6MRcoef_pH4I100_DLS_clean<????a [z.!@#}B@p0u6MRRes_pH4I100_DLS_clean<????b^E,lZ3fA?@67%ePFSRߦ q?y?’L?;Ź?;?8WF?-u?R6?dا?X 4,I{2!?Q: }?aޚiJDŽ_u𽖷v9x)? OSx?}<%@@"?(a?m4 k#vٿPu6MRSigma_pH4I100_DLS_clean<????cװÀ?T@(Pu6MRfit_pH4I175_DLS_clean< æp????2N]?u6d\:~@9P@D@Curve fit with data subrange: DLS_clean[*][250] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][250] - (W_coef[0]+W_coef[1]*DLS_clean[p][248]) W_coef={4.3985,-13.927} V_chisq= 0.000577323;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 250;V_endCol= 250; W_sigma={0.0307,6.33} Coefficient values one standard deviation a =4.3985 0.0307 b =-13.927 6.33 Pu6MRcoef_pH4I175_DLS_clean<????e޲@5ᇵ+p0u6MRRes_pH4I175_DLS_clean<????f^E,lZ3fA?@67%ePFSRߦ q?y?шw?;Ź?m28WF?8XOeE #?X 4,D?Q: %f7zS? >,CF?v9x)? OSx?}<%@@"?(a?m4 k#vٿSPu6MRSigma_pH4I175_DLS_clean<????g?Qd?ψT@l2Pu6MAPfit_pH5I15_DLS_clean<r????GF?u6h c@h^ \@Curve fit with data subrange: DLS_clean[*][16] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][16] - (W_coef[0]+W_coef[1]*DLS_clean[p][14]) W_coef={4.4853,160.33} V_chisq= 186.71;V_npnts= 18;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 16;V_endCol= 16; W_sigma={0.00604,2.59} Coefficient values one standard deviation a =4.4853 0.00604 b =160.33 2.59 Pu6MAPcoef_pH5I15_DLS_clean<????ij@g# d@p!0u6MAPRes_pH5I15_DLS_clean<????j4Pp֊?dc΃ /r?d]4bP?-?_r܁4?@'7 tǓ?E=i]ٳS?}^̫?ﷶF@7xp0hv6MAPRes_pH5I100_DLS_clean<????z@ziBң? /r?:CUD|?pO}k? h/q?P͸3HzHFa@xAOGG?P8Osͯmj?.Qx?aH]?FP?;E,@#xPv62MPfit_pH6I75_DLS_clean<lno????XwZ?v6uLb@&'@Curve fit with data subrange: DLS_clean[*][166] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][166] - (W_coef[0]+W_coef[1]*DLS_clean[p][164]) W_coef={4.544,-15.789} V_chisq= 0.762596;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 166;V_endCol= 166; W_sigma={0.0147,5.15} Coefficient values one standard deviation a =4.544 0.0147 b =-15.789 5.15 Pv62MPcoef_pH6I75_DLS_clean<???? -@c/ؓ/p'"0v62MPRes_pH6I75_DLS_clean<????0)2?慿I+DהȞ. 4o? ~t??gg'r? /sSa(C)U t ?ü=T?jox?F4a?ٚl?@ NL?} r.!6?m阓?H?`t _ ?m@%Pv63MPfit_pH6I100_DLS_clean<J: ???? ѩK?v6Y @c9J@Curve fit with data subrange: DLS_clean[*][214] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][214] - (W_coef[0]+W_coef[1]*DLS_clean[p][212]) W_coef={4.5228,-18.928} V_chisq= 34.1469;V_npnts= 17;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 214;V_endCol= 214; W_sigma={0.0058,1.43} Coefficient values one standard deviation a =4.5228 0.0058 b =-18.928 1.43 Pv63MPcoef_pH6I100_DLS_clean<???? R@K2p0v63MPRes_pH6I100_DLS_clean<????rpr8?慿I+DהȞ. 4o?֪ʖ?t2plIy,䔒CL?`G$S_fb?Jz?7d~?Q[jox? %]6b} r.ҝ?m阓?x?t G?XOA&op(?Z%?yoo?ۥc?}7R8 1m?RT@^lݰ)?,G [rx#2Ibt #ܒ?0.ݝ?x?(pE&D?%~PDw6۔MkPfit_pH7I50_DLS_clean<4h°????_,zG?Lw6*B3@!\@Curve fit with data subrange: DLS_clean[*][124] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][124] - (W_coef[0]+W_coef[1]*DLS_clean[p][122]) W_coef={4.4864,-29.868} V_chisq= 21.4948;V_npnts= 19;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 124;V_endCol= 124; W_sigma={0.00589,1.6} Coefficient values one standard deviation a =4.4864 0.00589 b =-29.868 1.6 oPTw6۔MkPcoef_pH7I50_DLS_clean<????ˤ@JS G=p/0Xw6۔MkPRes_pH7I50_DLS_clean<????`A.? Ʀ?wh?4*?g: \r"t?$[i?Zhr?-?Dk5?Tb?(?TI?ιS?}s?5v٭bA9/?dؕfȏ_ˊ??)|Ӏ?: Dp?^z?0.ݝ?go|?IH@'bP$x6MˬPfit_pH8I100_DLS_clean< jI(t????,ÄBP?(x6n@[@Curve fit with data subrange: DLS_clean[*][226] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][226] - (W_coef[0]+W_coef[1]*DLS_clean[p][224]) W_coef={4.3909,-33.458} V_chisq= 10.5949;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 226;V_endCol= 226; W_sigma={0.00568,2.22} Coefficient values one standard deviation a =4.3909 0.00568 b =-33.458 2.22 VP,x6MˬPcoef_pH8I100_DLS_clean<????m|'L@}@p]#00x6MˬPRes_pH8I100_DLS_clean<????-C"^?p#F"wcDrp@[U`1?,?@L)j?Pu†KX(?o?`&A?GlD@ ?6@c?+e2{q[ d@|}鱿Mu?/ ?0)o:jI󦿀Hj?^߂?0Dx6MˬPRes_pH8I175_DLS_clean<????-C"^?p#Fˤyo?2#|p@[U`1?7@L)j?PD%pKX(?tc.?0+~?melD@ ?L4\x?+e2{q`tم KM@n,/ ?0)o:jI󦿀Hj?^߂?Sp{70lx6MPRes_pH9I30_DLS_clean<????-fIB ~f8R?:TX8w"p?Ҕ-7Wzڧ?rF(^m?s7?i!Τ?xge?@0MY,OZ?S:ݽˣ?9TpUp, ?Pƕ\I@aݡ0|?e@Úor[?GPp%0x6$MPRes_pH9I175_DLS_clean<????-fIB ~főٟ:TX8w"p?Z7Wzڧ?n(^m?,e)9vi!Τ?xge?@0MY,~py?S:ݽˣ?vW ?TpUp)N?Pƕ\ ={ȡ0|?e@Úor[?l0=P^ncB"W[`?Еjr^ևf/?M9—xH? ׃C a眿غ^jz$jH!gy?w?D翿{t?,CF?r9k˅?'ʹ}<%@@"?(a?m4 k#vٿr5P$y6%MˣRSigma_pH10I100_DLS_clean<????qun't?xVҟ@%|>P(y6(MˣRfit_pH10I175_DLS_clean<%pZx????a+V?,y6svF@FJI@Curve fit with data subrange: DLS_clean[*][286] fit_DLS_clean= W_coef[0]+W_coef[1]*x Res_DLS_clean= DLS_clean[p][286] - (W_coef[0]+W_coef[1]*DLS_clean[p][284]) W_coef={4.3745,-40.978} V_chisq= 5.8728;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_startCol= 286;V_endCol= 286; W_sigma={0.00748,2.67} Coefficient values one standard deviation a =4.3745 0.00748 b =-40.978 2.67 CP0y6(MˣRcoef_pH10I175_DLS_clean<????Zrt@l0=P^ncB"Wfk`?Еjr^ևp5qw/?g?$r? ׃C a眿غ^j v5jH!gy?w?D翿{t?,CF?r9k˅?'ʹ}<%@@"?(a?m4 k#vٿP0P8y6(MˣRSigma_pH10I175_DLS_clean<????iYO~?UxX@PrRڂ#9>Curve fit with data subrange: SLS_clean[*][250] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][250] - (W_coef[0]+W_coef[1]*SLS_clean[p][248]) W_coef={7.1284e-06,-1.9303e-05} V_chisq= 0.0386307;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 250;V_endCol= 250; W_sigma={6.83e-07,0.000205} Coefficient values one standard deviation a =7.1284e-06 6.83e-07 b =-1.9303e-05 0.000205 Dy6Res_SLS_clean"?RR1Cw+Ll1>b>Jؤ>ehp؂r ?n>)qbC@]r> wd^>@4Éq>SbZW7#KjFBS_ـnb6>صtr>1LPHy6۠MRfit_pH3I15_SLS_clean<^}????e N?Ly6"[_TR> %v?Curve fit with data subrange: SLS_clean[*][4] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][4] - (W_coef[0]+W_coef[1]*SLS_clean[p][2]) W_coef={5.3503e-06,0.0068002} V_chisq= 111.284;V_npnts= 13;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 4;V_endCol= 4; W_sigma={2.9e-07,0.000141} Coefficient values one standard deviation a =5.3503e-06 2.9e-07 b =0.0068002 0.000141 QPPy6۠MRcoef_pH3I15_SLS_clean<????4r֨p>fDgm{?ePTy6۠MR"Res_pH3I15_SLS_clean<"????pKö>`Rۓ>x~q"y>< =>ž$D>ˤڪ#hľ)>v&V#+>@4Éq>@Tt>^y+H>W7#KjFBS_ـnb6>صtr>JcPXy6۠MRSigma_pH3I15_SLS_clean<????'4YW{>7"Y"?8wP\y6۠MRfit_pH3I30_SLS_clean<ͱ[ LK|????w0T?`y6ʣ '>=/>Curve fit with data subrange: SLS_clean[*][52] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][52] - (W_coef[0]+W_coef[1]*SLS_clean[p][50]) W_coef={6.5732e-06,0.00088688} V_chisq= 21.9998;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 52;V_endCol= 52; W_sigma={2.56e-07,6.9e-05} Coefficient values one standard deviation a =6.5732e-06 2.56e-07 b =0.00088688 6.9e-05 >Pdy6۠MRcoef_pH3I30_SLS_clean<????):> M?KPhy6۠MR"Res_pH3I30_SLS_clean<"????pKö>`)ؕ>p=i`-щ>UŠkb`=0W>@xі')GD1>0NphȠƼxeV>avW7쫨ǂDFBS_ـnb6>صtr>0hPly6۠MRSigma_pH3I30_SLS_clean<????GC~/>((G?=EPpy6۠MRfit_pH3I50_SLS_clean<hqF{????y0 '>Curve fit with data subrange: SLS_clean[*][100] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][100] - (W_coef[0]+W_coef[1]*SLS_clean[p][98]) W_coef={5.7576e-06,0.00047345} V_chisq= 2.83134;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 100;V_endCol= 100; W_sigma={3.29e-07,7.84e-05} Coefficient values one standard deviation a =5.7576e-06 3.29e-07 b =0.00047345 7.84e-05 &Pxy6۠MRcoef_pH3I50_SLS_clean<????2Wf:&>H|E/A??1P|y6۠MR"Res_pH3I50_SLS_clean<"????pKö>+Llp=i@)n>)9Z>j.e`=0W>s,u.{)GD1>p>{Ӕ`wb]j>xeV>@!†W7쫨ǂDFBS`C>nb6>صtr>hPy6۠MRSigma_pH3I50_SLS_clean<????s><>B?>BPy6۠MRfit_pH3I75_SLS_clean<rL}????JT?y6ՙP>ww >Curve fit with data subrange: SLS_clean[*][148] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][148] - (W_coef[0]+W_coef[1]*SLS_clean[p][146]) W_coef={5.9949e-06,0.00022736} V_chisq= 5.25885;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 148;V_endCol= 148; W_sigma={2.57e-07,5.37e-05} Coefficient values one standard deviation a =5.9949e-06 2.57e-07 b =0.00022736 5.37e-05 Py6۠MRcoef_pH3I75_SLS_clean<????$>t -?Py6۠MR"Res_pH3I75_SLS_clean<"????1Cw+Ll1>oc­җ|>`aoS> ;qu> 4@>sM@-jWr>`wb]j>vUUǓ>W7쫨ǂDFBS_ـnb6>صtr>bPy6۠MRSigma_pH3I75_SLS_clean<????  rG7><牲# ??oPy6۠MRfit_pH3I100_SLS_clean<UCDx????hh]?y6 Azt>;GԨI>Curve fit with data subrange: SLS_clean[*][196] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][196] - (W_coef[0]+W_coef[1]*SLS_clean[p][194]) W_coef={6.9249e-06,0.00010796} V_chisq= 0.122343;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 196;V_endCol= 196; W_sigma={4.53e-07,9.59e-05} Coefficient values one standard deviation a =6.9249e-06 4.53e-07 b =0.00010796 9.59e-05 Py6۠MRcoef_pH3I100_SLS_clean<???? D >)8>M?Py6۠MR"Res_pH3I100_SLS_clean<"???? 1Cw+Ll1>b>kl>`aoS>p؂r ?n>@>sM wd^>A_SUǓ>W7#Kju*:>_ـnb6>صtr>lPy6۠MRSigma_pH3I100_SLS_clean<???? Yh>u;>&??Py6۠MRfit_pH3I175_SLS_clean<nUek????yAn[?y6~b>{B>Curve fit with data subrange: SLS_clean[*][244] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][244] - (W_coef[0]+W_coef[1]*SLS_clean[p][242]) W_coef={6.2322e-06,3.4974e-05} V_chisq= 0.416263;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 244;V_endCol= 244; W_sigma={4.32e-07,0.000135} Coefficient values one standard deviation a =6.2322e-06 4.32e-07 b =3.4974e-05 0.000135 Py6۠MRcoef_pH3I175_SLS_clean<????)*#>w/V?Py6۠MR"Res_pH3I175_SLS_clean<"????1Cw+Ll1>b>Jؤ>jqp؂r ?n>)qbCsM wd^>@4Éq>SUǓ>W7#KjFBS_ـnb6>صtr>ePy6۠MRSigma_pH3I175_SLS_clean<????&m>1z~!?6Py6MRfit_pH4I15_SLS_clean<K|q????`R?y67-؟>i>Curve fit with data subrange: SLS_clean[*][10] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][10] - (W_coef[0]+W_coef[1]*SLS_clean[p][8]) W_coef={5.6662e-06,0.00062009} V_chisq= 2.39957;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 10;V_endCol= 10; W_sigma={2.7e-07,9.69e-05} Coefficient values one standard deviation a =5.6662e-06 2.7e-07 b =0.00062009 9.69e-05 ݶPy6MRcoef_pH4I15_SLS_clean<????K>CQD?Py6MR"Res_pH4I15_SLS_clean<"????pKö>@Pr>x~q"y>`-щi,r{e>fWH@`=0W>#hľ)>0N#+>0g+>@Tt>avW7쫨ǂDFBS_ـnb6>صtr>`Py6MRSigma_pH4I15_SLS_clean<?????T%6$>HNe?8Py6MRfit_pH4I30_SLS_clean<cNx????U?y6 &>'hRz>Curve fit with data subrange: SLS_clean[*][58] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][58] - (W_coef[0]+W_coef[1]*SLS_clean[p][56]) W_coef={5.8758e-06,0.00052388} V_chisq= 1.3139;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 58;V_endCol= 58; W_sigma={3.54e-07,9.38e-05} Coefficient values one standard deviation a =5.8758e-06 3.54e-07 b =0.00052388 9.38e-05 ʴPy6MRcoef_pH4I30_SLS_clean<????t>O/*A?Py6MR"Res_pH4I30_SLS_clean<"????pKö>`)ؕ>p=i@)n>>j.e`=0W>@xі')GD1>hph`wb]j>xeV>@aGW7쫨ǂDFBS`C>nb6>صtr>ePy6MRSigma_pH4I30_SLS_clean<????s<>W?>jPy6MRfit_pH4I50_SLS_clean<LB3{????NT?y6'ߖ >8ܶU>Curve fit with data subrange: SLS_clean[*][106] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][106] - (W_coef[0]+W_coef[1]*SLS_clean[p][104]) W_coef={5.6914e-06,0.00022246} V_chisq= 2.05076;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 106;V_endCol= 106; W_sigma={2.28e-07,6.04e-05} Coefficient values one standard deviation a =5.6914e-06 2.28e-07 b =0.00022246 6.04e-05 Py6MRcoef_pH4I50_SLS_clean<????F>+rOd(-?Py6MR"Res_pH4I50_SLS_clean<"????pKö>+Ll1>oc)9Z>`aoS>`=0W>s,u.{@>sM{Ӕ`wb]j>xeV>@0$҄>W7쫨ǂDFBS_ـnb6>صtr>ePy6MRSigma_pH4I50_SLS_clean<????iN>wR??Py6MRfit_pH4I75_SLS_clean<uu????vUwW?z6::>}Ev>Curve fit with data subrange: SLS_clean[*][154] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][154] - (W_coef[0]+W_coef[1]*SLS_clean[p][152]) W_coef={6.0821e-06,9.3089e-05} V_chisq= 0.717886;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 154;V_endCol= 154; W_sigma={3.46e-07,7.63e-05} Coefficient values one standard deviation a =6.0821e-06 3.46e-07 b =9.3089e-05 7.63e-05 Pz6MRcoef_pH4I75_SLS_clean<????BYU>2[g?Pz6MR"Res_pH4I75_SLS_clean<"???? 1Cw+Ll1>b>­җ|>`aoS> ;qu>͢|>@>sM@-jWr>A_vUUǓ>W7#Kju*:>_ـnb6>صtr>`P z6MRSigma_pH4I75_SLS_clean<????!sCq4>,,?@"Pz6MRfit_pH4I100_SLS_clean<wDq????5+]c?z6" ٻl>R>Curve fit with data subrange: SLS_clean[*][202] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][202] - (W_coef[0]+W_coef[1]*SLS_clean[p][200]) W_coef={7.0171e-06,9.8307e-05} V_chisq= 0.0302812;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 202;V_endCol= 202; W_sigma={6.21e-07,0.000127} Coefficient values one standard deviation a =7.0171e-06 6.21e-07 b =9.8307e-05 0.000127 Pz6MRcoef_pH4I100_SLS_clean<????#Y'B?ZPz6MR"Res_pH4I100_SLS_clean<"????$1Cw+Ll1>b>kl>`aoS>p؂r ?n>xpgsM wd^>Uqci>SUǓ>W7#KjFBS_ـnb6>صtr>?jP z6MRSigma_pH4I100_SLS_clean<????%+e%Ӥ>Ѫ ?BP$z6MRfit_pH4I175_SLS_clean<K wh???? W[?(z6&o >Rڂ#9>Curve fit with data subrange: SLS_clean[*][250] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][250] - (W_coef[0]+W_coef[1]*SLS_clean[p][248]) W_coef={7.1284e-06,-1.9303e-05} V_chisq= 0.0386307;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 250;V_endCol= 250; W_sigma={6.83e-07,0.000205} Coefficient values one standard deviation a =7.1284e-06 6.83e-07 b =-1.9303e-05 0.000205 f|P,z6MRcoef_pH4I175_SLS_clean<????'rT> ʤ=b>Jؤ>ehp؂r ?n>)qbC@]r> wd^>@4Éq>SbZW7#KjFBS_ـnb6>صtr>!cP4z6MRSigma_pH4I175_SLS_clean<????)3`>BW*?7&P8z6MPfit_pH5I15_SLS_clean<!/`}????h*dS?p>Curve fit with data subrange: SLS_clean[*][16] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][16] - (W_coef[0]+W_coef[1]*SLS_clean[p][14]) W_coef={5.9715e-06,0.0004835} V_chisq= 1.41166;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 16;V_endCol= 16; W_sigma={3.15e-07,7.67e-05} Coefficient values one standard deviation a =5.9715e-06 3.15e-07 b =0.0004835 7.67e-05 nP@z6MPcoef_pH5I15_SLS_clean<????+ 5 >/b??PDz6MP"Res_pH5I15_SLS_clean<"????,KSxgGq$}e X!>@Zs>pm1]&>XvU>@<4B4d1r>q*ks`BXY4KA;SA{D>ɹ7i>`p~>HL>|ߏ /Epصtr>emPHz6MPSigma_pH5I15_SLS_clean<????-'+>,7?8PLz6MPfit_pH5I30_SLS_clean<r????iքzW?Pz6. {?>,Ƙ>Curve fit with data subrange: SLS_clean[*][64] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][64] - (W_coef[0]+W_coef[1]*SLS_clean[p][62]) W_coef={5.8864e-06,0.00035449} V_chisq= 9.5654;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 64;V_endCol= 64; W_sigma={2.79e-07,6.76e-05} Coefficient values one standard deviation a =5.8864e-06 2.79e-07 b =0.00035449 6.76e-05 [PTz6MPcoef_pH5I30_SLS_clean<????/;l>R;7?fPXz6MP"Res_pH5I30_SLS_clean<"????0KSxg T0 X!>&?9>@&E5䎾&> (,n>U3~肾4d1r>G= YY>Y4K6QKɹ7i>`p~>HL>|ߏ /Epصtr>KrP\z6MPSigma_pH5I30_SLS_clean<????1뺒>S(?;P`z6MPfit_pH5I50_SLS_clean<Bn *{????!"kfT?dz62c$>rfF>Curve fit with data subrange: SLS_clean[*][112] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][112] - (W_coef[0]+W_coef[1]*SLS_clean[p][110]) W_coef={6.631e-06,0.0001409} V_chisq= 0.218231;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 112;V_endCol= 112; W_sigma={3.35e-07,7.61e-05} Coefficient values one standard deviation a =6.631e-06 3.35e-07 b =0.0001409 7.61e-05 CPhz6MPcoef_pH5I50_SLS_clean<????3:Q.>Pkw"?LPlz6MP"Res_pH5I50_SLS_clean<"????4KSxg`U X!>&?9>@&E5䎾XVf> (,n>U3~肾|cj>G= Y@uߋ|>Y4K6QKDY#v`p~>HL>|ߏ /Epصtr>1rPpz6MPSigma_pH5I50_SLS_clean<????5%>'??VRPtz6MPfit_pH5I75_SLS_clean<z????Ѡ>`!U?xz66JN>4,>Curve fit with data subrange: SLS_clean[*][160] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][160] - (W_coef[0]+W_coef[1]*SLS_clean[p][158]) W_coef={5.7275e-06,5.2394e-05} V_chisq= 0.214887;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 160;V_endCol= 160; W_sigma={2.54e-07,5.56e-05} Coefficient values one standard deviation a =5.7275e-06 2.54e-07 b =5.2394e-05 5.56e-05 &P|z6MPcoef_pH5I75_SLS_clean<????7.\m,>]&6x ?2Pz6MP"Res_pH5I75_SLS_clean<"????8KSxg`Uݸ~g&?9>@&E5䎾pKv2k (,n>U3~肾t>x>G= Y@uߋ|>Op>6Q^mDY#v`p~>HL>|ߏ /Epصtr>mPz6MPSigma_pH5I75_SLS_clean<????9k^>qX) ?>Pz6MPfit_pH5I100_SLS_clean<u3|????\ŧU?z6:q>gۉ,>Curve fit with data subrange: SLS_clean[*][208] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][208] - (W_coef[0]+W_coef[1]*SLS_clean[p][206]) W_coef={6.0182e-06,3.6115e-05} V_chisq= 3.80603;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 208;V_endCol= 208; W_sigma={2.51e-07,5.78e-05} Coefficient values one standard deviation a =6.0182e-06 2.51e-07 b =3.6115e-05 5.78e-05 Pz6MPcoef_pH5I100_SLS_clean<????;=>ZŴI?Pz6MP"Res_pH5I100_SLS_clean<"????<KSxg`U X!>&?9>pm1]&> (,n>@<4Bt>x>G= Y`BXOp>6Q^mɹ7i>`p~>HL>|ߏ /Epصtr>vPz6MPSigma_pH5I100_SLS_clean<????= b(>7H?A"Pz6MPfit_pH5I175_SLS_clean<ί b{????,rV?z6>=fF>@}N>Curve fit with data subrange: SLS_clean[*][256] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][256] - (W_coef[0]+W_coef[1]*SLS_clean[p][254]) W_coef={5.8118e-06,-1.7362e-05} V_chisq= 0.106758;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 256;V_endCol= 256; W_sigma={3.37e-07,6.49e-05} Coefficient values one standard deviation a =5.8118e-06 3.37e-07 b =-1.7362e-05 6.49e-05 Pz6MPcoef_pH5I175_SLS_clean<?????.*b]`> 4Pz6MP"Res_pH5I175_SLS_clean<"????@KSxgGq$}e X!>&?9>pm1]&>X v>@<4Bt>x>H|l`BXOp>to#[D>^mɹ7i>`p~>HL>|ߏ /Epصtr>oPz6MPSigma_pH5I175_SLS_clean<????AGЧC> H$?9Pz6MPfit_pH6I15_SLS_clean<Ns|????ð>Q?z6B>8;>Curve fit with data subrange: SLS_clean[*][22] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][22] - (W_coef[0]+W_coef[1]*SLS_clean[p][20]) W_coef={6.7373e-06,0.00030106} V_chisq= 78.546;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 22;V_endCol= 22; W_sigma={2.42e-07,5.95e-05} Coefficient values one standard deviation a =6.7373e-06 2.42e-07 b =0.00030106 5.95e-05 Pz6MPcoef_pH6I15_SLS_clean<????C6#B>!3?Pz6MP"Res_pH6I15_SLS_clean<"????DVq>!@VrfwūN E>aw:@m,>Xչ>Xk>Ƿ>_Z󤵾#>5>r{>Jސl$y`p~>HL>|ߏ /Epصtr>xPz6MPSigma_pH6I15_SLS_clean<????E<;>YD.?7Pz6MPfit_pH6I30_SLS_clean<?CNx????1gۄR/\?z6F|>)]_c>Curve fit with data subrange: SLS_clean[*][70] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][70] - (W_coef[0]+W_coef[1]*SLS_clean[p][68]) W_coef={7.3438e-06,0.00012378} V_chisq= 34.4199;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 70;V_endCol= 70; W_sigma={4.2e-07,8.31e-05} Coefficient values one standard deviation a =7.3438e-06 4.2e-07 b =0.00012378 8.31e-05 Pz6MPcoef_pH6I30_SLS_clean<????G V>1w9 ?Pz6MP"Res_pH6I30_SLS_clean<"????HVq>!@Vrfwūd>aw:@m,>hd>{uv>bc>,n2ފ#>5> ڧ>Jސl$y`p~>HL>|ߏ /Epصtr>n}Pz6MPSigma_pH6I30_SLS_clean<????I*>XH??Pz6MPfit_pH6I50_SLS_clean<Ѣ*{????@V|S?z6J42 >2&~k>Curve fit with data subrange: SLS_clean[*][118] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][118] - (W_coef[0]+W_coef[1]*SLS_clean[p][116]) W_coef={6.9959e-06,7.3633e-05} V_chisq= 9.48211;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 118;V_endCol= 118; W_sigma={2.78e-07,6.27e-05} Coefficient values one standard deviation a =6.9959e-06 2.78e-07 b =7.3633e-05 6.27e-05 gPz6MPcoef_pH6I50_SLS_clean<????K }W>ՐgM?oPz6MP"Res_pH6I50_SLS_clean<"????L2ex!@Vrfwū@4L>aw:@m,>0>g8~a>@pќ>xew#>Fu o ڧ>Jސl$y`p~>HL>|ߏ /Epصtr>T}Pz6MPSigma_pH6I50_SLS_clean<????M8> Pp?@þPz6MPfit_pH6I75_SLS_clean<`t+,n????g3iT?z6N7I8>O"CI>Curve fit with data subrange: SLS_clean[*][166] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][166] - (W_coef[0]+W_coef[1]*SLS_clean[p][164]) W_coef={7.4589e-06,6.1286e-05} V_chisq= 0.0562776;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 166;V_endCol= 166; W_sigma={4.32e-07,0.000136} Coefficient values one standard deviation a =7.4589e-06 4.32e-07 b =6.1286e-05 0.000136 IPz6MPcoef_pH6I75_SLS_clean<????O(3H>*?TPz6MP"Res_pH6I75_SLS_clean<"????Pt)F!@VrfwūNdaw:@m,>eMt>g8~a>݉N`xew#>Fu o ڧ>Jސl$y`p~>HL>|ߏ /Epصtr>9xPz6MPSigma_pH6I75_SLS_clean<????Q࿬>#0!?>*P{6MPfit_pH6I100_SLS_clean<И{????1hϪoT?{6Rf2S>ݱ+ >Curve fit with data subrange: SLS_clean[*][214] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][214] - (W_coef[0]+W_coef[1]*SLS_clean[p][212]) W_coef={7.1796e-06,-0.00015069} V_chisq= 5.46128;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 214;V_endCol= 214; W_sigma={2.8e-07,6.23e-05} Coefficient values one standard deviation a =7.1796e-06 2.8e-07 b =-0.00015069 6.23e-05 :P{6MPcoef_pH6I100_SLS_clean<????Sx3>#_,# P {6MP"Res_pH6I100_SLS_clean<"????T#P(Y>!@Vrfwūpc@Y>`yAc򫞾@m,>eMt>u*'%虾>l=><7#>Fu ohenP2>Jސl$y`p~>HL>|ߏ /Epصtr>P{6MPSigma_pH6I100_SLS_clean<????UTZɒ>S?>-P{6MPfit_pH6I175_SLS_clean<nkb{????!T?{6V}'&R>r{ߣ>Curve fit with data subrange: SLS_clean[*][262] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][262] - (W_coef[0]+W_coef[1]*SLS_clean[p][260]) W_coef={7.4409e-06,-0.0001654} V_chisq= 10.4065;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 262;V_endCol= 262; W_sigma={3.11e-07,5.47e-05} Coefficient values one standard deviation a =7.4409e-06 3.11e-07 b =-0.0001654 5.47e-05 P{6MPcoef_pH6I175_SLS_clean<????W >w5>N%P {6MP"Res_pH6I175_SLS_clean<"????X#P(Y>!@Vrfwūpc@Y>pG[>@m,>@>u*'%虾>l=>@2:+#>0 DS$>WJJސl$y`p~>HL>|ߏ /Epصtr>zP${6MPSigma_pH6I175_SLS_clean<????Yׂy_> ?9`P({6޿M(Pfit_pH7I15_SLS_clean<,թGz????ᇉV?,{6Z*Q>C*>Curve fit with data subrange: SLS_clean[*][28] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][28] - (W_coef[0]+W_coef[1]*SLS_clean[p][26]) W_coef={8.0833e-06,1.3009e-05} V_chisq= 19.2514;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 28;V_endCol= 28; W_sigma={3.15e-07,7.68e-05} Coefficient values one standard deviation a =8.0833e-06 3.15e-07 b =1.3009e-05 7.68e-05 P0{6޿M(Pcoef_pH7I15_SLS_clean<????[ns>=+H>P4{6޿M(P"Res_pH7I15_SLS_clean<"????\+`5x>@Z⽎if>W[Ot>@(|@*tיC>xxLuL4\M>Jސl$y`p~>HL>|ߏ /Epصtr>xP8{6޿M(PSigma_pH7I15_SLS_clean<????]58\W!>Yi#?9dP<{6޿M(Pfit_pH7I30_SLS_clean<P{????l1gY?@{6^_bƍ> Y>Curve fit with data subrange: SLS_clean[*][76] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][76] - (W_coef[0]+W_coef[1]*SLS_clean[p][74]) W_coef={7.2398e-06,2.8263e-05} V_chisq= 8.10345;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 76;V_endCol= 76; W_sigma={1.83e-07,5.15e-05} Coefficient values one standard deviation a =7.2398e-06 1.83e-07 b =2.8263e-05 5.15e-05 PD{6޿M(Pcoef_pH7I30_SLS_clean<????_]>^T x>PH{6޿M(P"Res_pH7I30_SLS_clean<"????`+`5x>4 cf>if>W[Ot>o&Nk#"]\>@*tיC>`#楘LuL4\~*>Jސl$y`p~>HL>|ߏ /Epصtr>}PL{6޿M(PSigma_pH7I30_SLS_clean<????a%hs >! ??PP{6߿M(Pfit_pH7I50_SLS_clean<BYs????+Q~=^?T{6bF^>Is>Curve fit with data subrange: SLS_clean[*][124] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][124] - (W_coef[0]+W_coef[1]*SLS_clean[p][122]) W_coef={6.8035e-06,-7.5624e-05} V_chisq= 0.766956;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 124;V_endCol= 124; W_sigma={4.02e-07,9.4e-05} Coefficient values one standard deviation a =6.8035e-06 4.02e-07 b =-7.5624e-05 9.4e-05 PX{6߿M(Pcoef_pH7I50_SLS_clean<????cN=>|~ P\{6߿M(P"Res_pH7I50_SLS_clean<"????d+`5x>4 cf>if>Y>o&Nk ax7ï>#"]@ ^|@*tיC>vnn>LuL4\~*>Jސl$y`p~>HL>|ߏ /Epصtr>}P`{6߿M(PSigma_pH7I50_SLS_clean<????e n>uQw7?A$gPd{6M(Pfit_pH7I75_SLS_clean< \e????BkX?h{6faP >bHKoy>Curve fit with data subrange: SLS_clean[*][172] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][172] - (W_coef[0]+W_coef[1]*SLS_clean[p][170]) W_coef={7.2632e-06,-0.00011483} V_chisq= 0.806432;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 172;V_endCol= 172; W_sigma={6.11e-07,0.000201} Coefficient values one standard deviation a =7.2632e-06 6.11e-07 b =-0.00011483 0.000201 Pl{6M(Pcoef_pH7I75_SLS_clean<????gv́v>vPp{6M(P"Res_pH7I75_SLS_clean<"????h+`5x>4 cf>if>pA=v> 7 aP9r>#"]@ ^|@d?.wיC>vnn>LuL4\~*>Jސl$y`p~>HL>|ߏ /Epصtr>xPt{6M(PSigma_pH7I75_SLS_clean<????iW>Ά̢R*?AzPx{6M(Pfit_pH7I100_SLS_clean<1v,E|???? U?|{6jH> &>Curve fit with data subrange: SLS_clean[*][220] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][220] - (W_coef[0]+W_coef[1]*SLS_clean[p][218]) W_coef={7.0003e-06,-5.2993e-05} V_chisq= 0.553819;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 220;V_endCol= 220; W_sigma={1.21e-07,5.05e-05} Coefficient values one standard deviation a =7.0003e-06 1.21e-07 b =-5.2993e-05 5.05e-05 P{6M(Pcoef_pH7I100_SLS_clean<????k_ \>ҵ }P{6M(P"Res_pH7I100_SLS_clean<"????l+`5x>]ugif>pA=v>[)l> aKd~#"]@ ^|@d?.wיC>vnn>LuL4\~*>Jސl$y`p~>HL>|ߏ /Epصtr>bP{6M(PSigma_pH7I100_SLS_clean<????mr@>{X6t ??P{6M(Pfit_pH7I175_SLS_clean<K p???? RnX?{6n:C5>UtS>Curve fit with data subrange: SLS_clean[*][268] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][268] - (W_coef[0]+W_coef[1]*SLS_clean[p][266]) W_coef={7.6095e-06,-2.5997e-05} V_chisq= 0.418398;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 268;V_endCol= 268; W_sigma={3.9e-07,0.000116} Coefficient values one standard deviation a =7.6095e-06 3.9e-07 b =-2.5997e-05 0.000116 P{6M(Pcoef_pH7I175_SLS_clean<????otANל>jrB_P{6M(P"Res_pH7I175_SLS_clean<"????p+`5x>]ugif>pA=v>@`BL8#"]&*|da@d?.wיC>vnn>LuL4\~*>Jސl$y`p~>HL>|ߏ /Epصtr>D{P{6M(PSigma_pH7I175_SLS_clean<????qg'>.P?<LP{6`MrPfit_pH8I15_SLS_clean<ƀn????ghC"kP?{6rywXc>yO,>>Curve fit with data subrange: SLS_clean[*][34] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][34] - (W_coef[0]+W_coef[1]*SLS_clean[p][32]) W_coef={7.9129e-06,-9.7309e-05} V_chisq= 0.269074;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 34;V_endCol= 34; W_sigma={4.55e-07,0.000148} Coefficient values one standard deviation a =7.9129e-06 4.55e-07 b =-9.7309e-05 0.000148 P{6`MrPcoef_pH8I15_SLS_clean<????s[Uk6>=8HP{6`MrP"Res_pH8I15_SLS_clean<"????t*틾!Hd4>`*e>-S>* >K'v}>5>XspO>̟X90ð>чs > 3>\>HFpw`p~>HL>|ߏ /Epصtr>yP{6`MrPSigma_pH8I15_SLS_clean<????ur;>rnLm#?<7xP{6`MrPfit_pH8I30_SLS_clean<dQx????-&xU?{6vȵHB>0)5>Curve fit with data subrange: SLS_clean[*][82] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][82] - (W_coef[0]+W_coef[1]*SLS_clean[p][80]) W_coef={9.2908e-06,-8.1962e-05} V_chisq= 0.454651;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 82;V_endCol= 82; W_sigma={5.58e-07,9.47e-05} Coefficient values one standard deviation a =9.2908e-06 5.58e-07 b =-8.1962e-05 9.47e-05 P{6`MrPcoef_pH8I30_SLS_clean<????wyo{>0nY|P{6`MrP"Res_pH8I30_SLS_clean<"????x*틾@?Ϋ̀>Hd4>`*e>-S>* >K'v}>5>XspO> pчs@9R> 3>ɢJv>Jސl$y`p~>HL>|ߏ /Epصtr>~P{6`MrPSigma_pH8I30_SLS_clean<????yԋ~>XϖP??^P{6aMrPfit_pH8I50_SLS_clean<0 u????Z[kS?{6z.>:[:>Curve fit with data subrange: SLS_clean[*][130] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][130] - (W_coef[0]+W_coef[1]*SLS_clean[p][128]) W_coef={7.6448e-06,-4.7579e-05} V_chisq= 0.145221;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 130;V_endCol= 130; W_sigma={3.2e-07,7.45e-05} Coefficient values one standard deviation a =7.6448e-06 3.2e-07 b =-4.7579e-05 7.45e-05 }P{6aMrPcoef_pH8I50_SLS_clean<????{g I>BJP{6aMrP"Res_pH8I50_SLS_clean<"????|S%b@?Ϋ̀>Hd4>5c}>-S>"F1'SK'v}>5>pVwM pIgs鹺8f> 3>ɢJv>Jސl$y`p~>HL>|ߏ /Epصtr>h~P{6aMrPSigma_pH8I50_SLS_clean<????}#~q>6s$"k??cqP{6bMrPfit_pH8I75_SLS_clean<쎠{????ޅhT?{6~Ŏ|> qrA>Curve fit with data subrange: SLS_clean[*][178] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][178] - (W_coef[0]+W_coef[1]*SLS_clean[p][176]) W_coef={7.6437e-06,-8.3681e-05} V_chisq= 0.418301;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 178;V_endCol= 178; W_sigma={1.43e-07,4.3e-05} Coefficient values one standard deviation a =7.6437e-06 1.43e-07 b =-8.3681e-05 4.3e-05 _P{6bMrPcoef_pH8I75_SLS_clean<????4&>KܠhP{6bMrP"Res_pH8I75_SLS_clean<"????cC@?Ϋ̀>^h >5c}><`"F1'SK'v}>5>pVwM pIgs$ O^x>ɢJv>Jސl$y`p~>HL>|ߏ /Epصtr>MyP{6bMrPSigma_pH8I75_SLS_clean<????zf7>7J?>P{6dMrPfit_pH8I100_SLS_clean<U Т{????@vP?{6p V>ǢP>Curve fit with data subrange: SLS_clean[*][226] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][226] - (W_coef[0]+W_coef[1]*SLS_clean[p][224]) W_coef={7.5737e-06,-0.00018286} V_chisq= 53.6105;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 226;V_endCol= 226; W_sigma={4.1e-07,8.02e-05} Coefficient values one standard deviation a =7.5737e-06 4.1e-07 b =-0.00018286 8.02e-05 OP{6dMrPcoef_pH8I100_SLS_clean<????FQ 1>5L4'P{6dMrP"Res_pH8I100_SLS_clean<"????cC(i']^h >5c}><`Z/<>K'v}>wj<>pVwM̟X90ð>ls3Ƶ$ O^x>\>Jސl$y`p~>HL>|ߏ /Epصtr>P|6dMrPSigma_pH8I100_SLS_clean<????\>jh% ?@G8I8>Curve fit with data subrange: SLS_clean[*][274] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][274] - (W_coef[0]+W_coef[1]*SLS_clean[p][272]) W_coef={6.3594e-06,-2.8218e-06} V_chisq= 20.1142;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 274;V_endCol= 274; W_sigma={2.23e-07,6.17e-05} Coefficient values one standard deviation a =6.3594e-06 2.23e-07 b =-2.8218e-06 6.17e-05 .P |6fMrPcoef_pH8I175_SLS_clean<????qZ>r.XΫǾP|6fMrP"Res_pH8I175_SLS_clean<"????*틾(i']Hd4>5c}>@^)d* >K'v}>p9+׍XspO>̟X90ð>\_? >^x>\>Jސl$y`p~>HL>|ߏ /Epصtr>{P|6fMrPSigma_pH8I175_SLS_clean<????=L>q+)A3+?=P|6jM˰Pfit_pH9I15_SLS_clean<p????-3U?|6=W]><>Curve fit with data subrange: SLS_clean[*][40] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][40] - (W_coef[0]+W_coef[1]*SLS_clean[p][38]) W_coef={7.8661e-06,-4.8602e-05} V_chisq= 0.0251323;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 40;V_endCol= 40; W_sigma={4.32e-07,0.000121} Coefficient values one standard deviation a =7.8661e-06 4.32e-07 b =-4.8602e-05 0.000121 P |6jM˰Pcoef_pH9I15_SLS_clean<????>f<{ P$|6jM˰P"Res_pH9I15_SLS_clean<"????` }m>L b>Ej >{1\ʌ f`rXŝJ`v-ΆZh>%ﮑg> B>h(D7StD!teT"fIv>`p~>%>|ߏ /Epصtr>{P(|6jM˰PSigma_pH9I15_SLS_clean<????]ig> ?:tP,|6kM˰Pfit_pH9I30_SLS_clean<8уx????cn6V?0|6I/l>|ta>Curve fit with data subrange: SLS_clean[*][88] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][88] - (W_coef[0]+W_coef[1]*SLS_clean[p][86]) W_coef={8.4205e-06,-8.315e-05} V_chisq= 0.372022;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 88;V_endCol= 88; W_sigma={3.28e-07,8.09e-05} Coefficient values one standard deviation a =8.4205e-06 3.28e-07 b =-8.315e-05 8.09e-05 P4|6kM˰Pcoef_pH9I30_SLS_clean<????4?i>0GP8|6kM˰P"Res_pH9I30_SLS_clean<"????` }m>L b>Ej >8Y,>ʌ f`rXŝJ胾Zh>%ﮑg>_܆q%U>tD!teT"fIv>`p~>Bm|ߏ /Epصtr>P<|6kM˰PSigma_pH9I30_SLS_clean<????G>IJR7?>pP@|6lM˰Pfit_pH9I50_SLS_clean<hE[fdt????dJN?D|6&>1#>Curve fit with data subrange: SLS_clean[*][136] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][136] - (W_coef[0]+W_coef[1]*SLS_clean[p][134]) W_coef={7.7671e-06,-7.237e-05} V_chisq= 1.76803;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 136;V_endCol= 136; W_sigma={2.15e-07,8.21e-05} Coefficient values one standard deviation a =7.7671e-06 2.15e-07 b =-7.237e-05 8.21e-05 PH|6lM˰Pcoef_pH9I50_SLS_clean<????`bI>"xPL|6lM˰P"Res_pH9I50_SLS_clean<"???? ^Y|{`}f^.~8Y,>ʌ f@ eB;J 1eA>Zh> _>g>_܆``%tD!teT"fIv>`p~>ޅ7j|ߏ /Epصtr>PP|6lM˰PSigma_pH9I50_SLS_clean<????>!A?ASqPT|6mM˱Pfit_pH9I75_SLS_clean<9i _{????;V?X|6u>'F>Curve fit with data subrange: SLS_clean[*][184] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][184] - (W_coef[0]+W_coef[1]*SLS_clean[p][182]) W_coef={8.6582e-06,-8.6752e-05} V_chisq= 5.73863;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 184;V_endCol= 184; W_sigma={2.76e-07,5.96e-05} Coefficient values one standard deviation a =8.6582e-06 2.76e-07 b =-8.6752e-05 5.96e-05 P\|6mM˱Pcoef_pH9I75_SLS_clean<????W(>YQͽP`|6mM˱P"Res_pH9I75_SLS_clean<"???? ^Y|{`}Ej >@N;>ʌ f`rXŝJNV`>Zh>%ﮑg>@1> v֗tD!teT"fIv>`p~>ޅ7j|ߏ /Epصtr>r{Pd|6mM˱PSigma_pH9I75_SLS_clean<????^(S>.A?@"&Ph|6pM˱Pfit_pH9I100_SLS_clean<lx????n tQ?l|6 >">Curve fit with data subrange: SLS_clean[*][232] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][232] - (W_coef[0]+W_coef[1]*SLS_clean[p][230]) W_coef={6.3455e-06,-1.6024e-05} V_chisq= 1.50527;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 232;V_endCol= 232; W_sigma={2.32e-07,7.59e-05} Coefficient values one standard deviation a =6.3455e-06 2.32e-07 b =-1.6024e-05 7.59e-05 tPp|6pM˱Pcoef_pH9I100_SLS_clean<????$t>ZjCPt|6pM˱P"Res_pH9I100_SLS_clean<"????m>|{`}Ej >i#s\P6BG>`rXŝJE n%ﮑg>Y!j v֗tD!teT"fIv>`p~>HL>|ߏ /Epصtr>(Px|6pM˱PSigma_pH9I100_SLS_clean<????B>,g̺?A!P||6rM˱Pfit_pH9I175_SLS_clean<g????}.OU?|6z>7h>Curve fit with data subrange: SLS_clean[*][280] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][280] - (W_coef[0]+W_coef[1]*SLS_clean[p][278]) W_coef={6.5126e-06,-4.0904e-05} V_chisq= 0.717681;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 280;V_endCol= 280; W_sigma={1.25e-07,3.76e-05} Coefficient values one standard deviation a =6.5126e-06 1.25e-07 b =-4.0904e-05 3.76e-05 SP|6rM˱Pcoef_pH9I175_SLS_clean<????SKP>rMU r$P|6rM˱P"Res_pH9I175_SLS_clean<"????m>L b>Ej >{1\\P6BG>`rXŝJ`v-Άn%ﮑg> B>h( v֗tD!teT"fIv>`p~>HL>|ߏ /Epصtr> ~P|6rM˱PSigma_pH9I175_SLS_clean<????+}Ȁ>5s?7\!P|6MˉOfit_pH10I15_SLS_clean<,=d(sw????o/gHV?|6#*>kS>Curve fit with data subrange: SLS_clean[*][46] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][46] - (W_coef[0]+W_coef[1]*SLS_clean[p][44]) W_coef={6.4258e-06,0.00038795} V_chisq= 16.0585;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 46;V_endCol= 46; W_sigma={1.9e-07,8.29e-05} Coefficient values one standard deviation a =6.4258e-06 1.9e-07 b =0.00038795 8.29e-05 {P|6MˉOcoef_pH10I15_SLS_clean<????>a?Ul9?yP|6MˉO"Res_pH10I15_SLS_clean<"????л YO,>@G/>xSrͣ5cw$G>Hj ϤT >F@ 5>K2l>UlxAT< >qT>D1)՝>HY>8P˷.>"nd>Mg @MF&^P|6MˉOSigma_pH10I15_SLS_clean<????`y>?99P|6MˋOfit_pH10I30_SLS_clean<ԲRe????BAT?|6C .>9j>Curve fit with data subrange: SLS_clean[*][94] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][94] - (W_coef[0]+W_coef[1]*SLS_clean[p][92]) W_coef={7.6021e-06,8.8306e-05} V_chisq= 5.69022;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 94;V_endCol= 94; W_sigma={2.83e-07,8.88e-05} Coefficient values one standard deviation a =7.6021e-06 2.83e-07 b =8.8306e-05 8.88e-05 P|6MˋOcoef_pH10I30_SLS_clean<????(>Rn,$&?cP|6MˋO"Res_pH10I30_SLS_clean<"????lg? YO,>08BxSrͣ\1 K>$G>;2+pZF@ 5>K2l>UlxAT< >qT>D1)՝>HY>8P˷.>"nd>Mg @MF&HP|6MˋOSigma_pH10I30_SLS_clean<????x-3d> ZE?@P|6 MˎOfit_pH10I50_SLS_clean<frwbt????Y欌V?|6tdYN>?d>Curve fit with data subrange: SLS_clean[*][142] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][142] - (W_coef[0]+W_coef[1]*SLS_clean[p][140]) W_coef={7.4956e-06,-2.2661e-05} V_chisq= 1.36027;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 142;V_endCol= 142; W_sigma={1.84e-07,6.69e-05} Coefficient values one standard deviation a =7.4956e-06 1.84e-07 b =-2.2661e-05 6.69e-05 P|6 MˎOcoef_pH10I50_SLS_clean<????ŰPp>gGP|6 MˎO"Res_pH10I50_SLS_clean<"????lg?f*W஧c%ȑ$G>;2PoiĞ  ~>5>چd_HS`>< >qT>D1)՝>HY>8P˷.>"nd>Mg @MF&,P|6 MˎOSigma_pH10I50_SLS_clean<????V>"_U?@uP|6#MˑOfit_pH10I75_SLS_clean<F~????Ӱ֡}1W?|6ښPG>^g>Curve fit with data subrange: SLS_clean[*][190] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][190] - (W_coef[0]+W_coef[1]*SLS_clean[p][188]) W_coef={7.4919e-06,-2.3927e-05} V_chisq= 4.78193;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 190;V_endCol= 190; W_sigma={1.56e-07,4.75e-05} Coefficient values one standard deviation a =7.4919e-06 1.56e-07 b =-2.3927e-05 4.75e-05 |{P|6#MˑOcoef_pH10I75_SLS_clean<????HʬVl>Р%S$P|6#MˑO"Res_pH10I75_SLS_clean<"????lg?&>Zu>஧$G>u腕s>  ~>5>tH>_HS`>< >Q62rD1)՝>HY>8P˷.>"nd>Mg @MF& P|6#MˑOSigma_pH10I75_SLS_clean<????t>LǗo?>P|6%M˓Ofit_pH10I100_SLS_clean<P|z????}AK9T?|6vv$2ț>jnDA>Curve fit with data subrange: SLS_clean[*][238] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][238] - (W_coef[0]+W_coef[1]*SLS_clean[p][236]) W_coef={7.9947e-06,-5.9903e-05} V_chisq= 0.89167;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 238;V_endCol= 238; W_sigma={3.43e-07,6.5e-05} Coefficient values one standard deviation a =7.9947e-06 3.43e-07 b =-5.9903e-05 6.5e-05 1P|6%M˓Ocoef_pH10I100_SLS_clean<????v> 0TgP|6%M˓O"Res_pH10I100_SLS_clean<"????@*a<&>Zu>஧$G><'L|>腕s>  ~>'%Ս>yC>_HS`>@Q62rD1)՝>HY>8P˷.>"nd>Mg @MF&`P|6%M˓OSigma_pH10I100_SLS_clean<????Bm >4q ?@:P|6(M˕Ofit_pH10I175_SLS_clean<'j5t????oAOY?|6H&A>@Ra y>Curve fit with data subrange: SLS_clean[*][286] fit_SLS_clean= W_coef[0]+W_coef[1]*x Res_SLS_clean= SLS_clean[p][286] - (W_coef[0]+W_coef[1]*SLS_clean[p][284]) W_coef={8.4602e-06,-7.5026e-05} V_chisq= 1.40661;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 33;V_startCol= 286;V_endCol= 286; W_sigma={3.56e-07,8.56e-05} Coefficient values one standard deviation a =8.4602e-06 3.56e-07 b =-7.5026e-05 8.56e-05 ~P|6(M˕Ocoef_pH10I175_SLS_clean<????>Zu>@G/>VtEQ>$G>.\l>腕s>  ~>5>yC>UlxAT@Q62rD1)՝>HY>8P˷.>"nd>Mg @MF&[P}6(M˕OSigma_pH10I175_SLS_clean<????3ޗ>XQs?w}6kappa_nm?RR)>?2i}6pH?RR@@@@@@AA AOb}6KD_I15?RR}CO`B B鈝Aw\C^Y+ŘAam}6KD_I30?RRB A5AwA0ȝ  vLQ@}6KD_I50?RR~!0BIAF@*: E-` }6KD_I75?RRAX.lA2W?`^I*K^ .$}6KD_I100?RR^SAEAꗄi0__ D(}6KD_I175?RR@0Jp=ZXaMtx,}6sdKD_I15?RR-f@??+>k>1М>>2@u0}6D0_I15?RR'|@=@H@@.ِ@=@2@@4}6sdD0_I15?RR7<*;;;;r;_A<< 8}6sdKD_I30?RRv?ۓ> ?z?d>0>I?0o?j<}6D0_I30?RRO@:Ԉ@4P@Đ@@.č@>@5@A@}6sdD0_I30?RRc< ;Ƹ;ʌ;;;]6>T%@>H}6D0_I50?RR@@`@@@@o@@L}6sdD0_I50?RR;AF??P>&?>,T}6D0_I75?RR{ @@B@_h@^o@-@@@{X}6sdD0_I75?RR;P?N#?xɡ>6v>}?+?>V`}6D0_I100?RRZ@w @@@@a@@@Nd}6sdD0_I100?RRZ;<;I ;;~;9; ; ;h}6sdKD_I175?RR$?M?P>r>>l/??`3?Nl}6D0_I175?RRY@@35@.@@߀@Î@@ap}6sdD0_I175?RR$?|}6D0_pH3?RR'|@O@@{ @Z@Y@}6sdD0_pH3?RR7<c<;;Z;<7}6KD_pH4?RRO`B AIAX.lAEA0J}6sdKD_pH4?RR?ۓ>&?L(N#?P>ag}6D0_pH5?RRH@4P@`@B@@35@c}6sdD0_pH5?RR;Ƹ;w;W;;`;OG}6KD_pH6?RR鈝AwA*:`^Z}6sdKD_pH6?RR+>z???xɡ>r>}6D0_pH6?RR@Đ@@_h@@.@}6sdD0_pH6?RR;ʌ;4d>%>?6v>><}6D0_pH7?RR.ِ@@@^o@@@,}6sdD0_pH7?RR;;;i<;~;i;ޭ}6KD_pH8?RR^  E*iay}6sdKD_pH8?RR1М>0>6>P>}?l/?{}6D0_pH8?RR=@.č@@-@a@߀@}6sdD0_pH8?RRr;;;<9;%<T}6KD_pH9?RRYv-K^0_Mt}6sdKD_pH9?RR>I?T%@&?+??`}6D0_pH9?RR2@>@o@@@Î@}6sdD0_pH9?RR_A<]>>`3?s }6D0_pH10?RR@5@@@@@X}6sdD0_pH10?RRv(! Rr~6KS_I175?RRc@N-U2?ԱZ/' d~6KS_pH3?RRߞDCvBBryAc@~6sdKS_pH3?RRB;A]fAAC^AA]P ~6M_pH3?RR.6HfH)H."H HHJ$~6sdM_pH3?RRtFX3E@FEWFy-FF(~6KS_pH4?RR:BQBrXBtAf'`AN-,~6sdKS_pH4?RRAAЎ+A28IAOA+A70~6M_pH4?RRYY,H3&H+H$ HF+ HH[4~6sdM_pH4?RRЏF27 FY^E FDFbQFĄ8~6KS_pH5?RRBWpBA]A]@U2?n<~6sdKS_pH5?RRwXA|<=Aw8AAA2A@~6M_pH5?RRĉ#H%HEHP*HD"H(H D~6sdM_pH5?RR= FzE)UEEE4F?H~6KS_pH6?RRԽ2B׆A%g(AvAԱfJL~6sdKS_pH6?RR'A#5A:ABA1e A@4yP~6M_pH6?RRHZHp H"HHO>HT~6sdM_pH6?RRE2EOjEcEEEX~6KS_pH7?RR1?y@1D|#>Z\~6sdKS_pH7?RRjA @F]AsA@(sAj`~6M_pH7?RRGHHtH HUHd~6sdM_pH7?RRE2AZEF4FrE}QEXxh~6KS_pH8?RRlD8& Y(O)/v(/l~6sdKS_pH8?RR#A%X#AA@*@ *A.Ap~6M_pH8?RRG8G{GGHHvt~6sdM_pH8?RR7E EڪE'EbEQE]x~6KS_pH9?RR:G,P !'ӭ|~6sdKS_pH9?RRvAA.)A@:G?AM@~6M_pH9?RRKG GuGGHGHl~6sdM_pH9?RRE"E _E!fEE D8E}~6KS_pH10?RR~qB9A|AveL )~6sdKS_pH10?RRCgPAs:AA@MBAr"Aq~6M_pH10?RRHuHIH}YHMG[G~6sdM_pH10?RREOELE-EtEKE/~6avgFractionSLS_I15?RR/::-EF;S;KU;vw;;NC;j<~6sdFractionSLS_I30?RR~6m7z687/v6u7 79!I:)~6KCR_I30?RR666}F7X}6]6ˮ7'77((~6sdKCR_I30?RRT4֐4y4d4.4;C44\*5hg5c~6avgFractionDLS_I30?RR0FE:6G:(u^:Fu:/:P:(\:۸::ú:;/;f!;(\-;>U;6r[;;/;/;=<~6sdFractionDLS_I30?RRۋ6676pH6x|6-b77~66z6X7x|9777/v686x|7: 8~6avgD_I30?RR@7Б@G@b@\@33@t@Œ@b@@~@_@@:@{@ww@)\@(@DD@z~6sdD_I30?RR=/;m<<< #<d=/=<8= #</=< Ez</=<~6avgFractionSLS_I75?RR ٨::`L;[;<~6sdFractionSLS_I75?RR667Q88 48&6KCR_I75?RRl666$6'6C6sdKCR_I75?RR{4S4|4K4984Ŧ6avgFractionDLS_I75?RRH8h:ڤ::^]:$;v+;/;`L;u;ڤ;[;< 6sdFractionDLS_I75?RR y*7#667Σ6YN7v7Q8v+7#78 48s6avgD_I75?RRcɏ@@Q@Q@tڐ@6@&@:m@@G@K~@@6sdD_I75?RR,.=/; #< #<>M:::PI;P1;L<6sdFractionSLS_I100?RRE6FS6K`7Z6x968 6KCR_I100?RR66M6@6>66T*$6sdKCR_I100?RR j4Y4ή44ˉ4vw4(6R˨RavgFractionDLS_I100<????B:g:̲:z);2;;̲;W,6sdFractionDLS_I100?RR>27_`75}6q6Z66M06avgD_I100?RRcɏ@@cɏ@ww@)\@ww@%@%46sdD_I100?RR/;/=<<< #<r= Ez<g86R˨RavgFractionSLS_I175<????F+:C;r;<<6sdFractionSLS_I175?RR>67+z7a8@6KCR_I175?RR66b6ᓾ6sD6sdKCR_I175?RR4$z4Ǩ4 4SH6R˨RavgFractionDLS_I175<????JJ:<::<4;y8;C;@;r;Ծ;<L6sdFractionDLS_I175?RR;7}&47z6}&7k67ط6+z7\ݷ8a83P6avgD_I175?RR@@@A@p@@ @_@t@@T6sdD_I175?RR/; Ez< Ez< Ez< #< Ez</;/; Ez< #<`5@< $X6(N(N`'SLS_input0<# ????\6Np ՝T?2/Z?X[?mU^?s igc?j+c?Z(i?H8p?=֌ rq?W歺u?Rk0{??Y|?p}E?, PSˆ?-N ?S8#>QG`|> IG>NŻCT>~X5H>-'ʸ ?>T>NN>- ?5 F>?v>!(G~)?lP̳&?# D?e N?9bS? ɩS?̟U?-JQ\?{v]?Qu]b?KXh?&h?Wvn?^gt?1t?v9<{?E#Dɣ?@n_?_=t>S0s>C >˾+D:>EfMt>'<?p.*>ё|>k?*BHf>I\r>!h >R0"? niԜ ?):/4k>?6λ4>`&>PPO>o7@|>Tv>A> >Gڷ>>*>/PK>uŪ?ΐ=?.1R ?*j따=?x?9w-{>gƜ>]6p><7o2>[ Qޠ>j>%+7'>W2] >fď> g>]J> D>ՔJ>ty>F|c>Y@{Q?L R?ĀE9X? nl[?nXH(\?˦\?kfc?d?d e?X|[Tg?|Qo3q?q?yN q?_.ws?<|?;r1}?i~?}<ݭ,?kvyj?#-#?>%f_>ڷa>#^j6>R><1A>Fn>vǻW>y9?2#У>t\2>m>,LS>puH.k>elu=>b'?^>=@?F):?%|?I?^?oH>Ne>>-@>KJ>pr>zo~`&>yoJ?06>J?h'5>s >7Ac>/XF>/>.CXm> i>d/±>#fz3?Is? ?K}Z> T!>3<@>K:>8>$‚H>8>o;^>;(M>2ʸ>Xv> ľ>^v>wh?>O*{/\>">EH>WN>>|l2e>x}WU> |>nۇq>;EH>ו)>P]><כ>< >ಡ>J_> ?>o̤ᜠ>;ٽܛ>@C>< >>UJ>\~8>Bl> Fﮪ>{Ak2>3lT?/{A[?K8\?a]?Voc?Vd?߆h?p?4׊r?ۅ:t?i|? J}?d6:?Z珆?A} ?T+->Xk>Ps@p)>{y$h>NŻCT>Y8$>G޸>oL2>?VS>k>j^.>} l>?zFR?u!N?h*dS?tv~ U?aU?w3Җ\?Te^?|͓a?gh?`'gj?y'2:n?x|Tt?U+au?b]z?Vix?'CH,?1Ōq>_b>P .>+>˾+D:>-JK>SM6>6O>ٛHv?>L,.J>LS>pwF5>LQz?¨WJ?y_>ƢR>!p>[c>"/>o>n>s-D><{h>C˴>>B"2><>ȈP D> >;>GHZO>nSN{3>Q7@> > C>80>ta>jXVF>0NV>hO/>1n֯>pA>6z䥦>r;I>?G>lj,T?+\X?/$\?`/7_?}D'=jOa?֦f?۳h?y\1o?;8؛s?;2Tt?Yz?'??Lσ?mRm?@ T+->Plt$ >A>T>W>2Wa>e^_>puH.k>Z?EjWZ>Y_Y >R*| ?1:o1>r8#.?_:?Wr1??1KtM?ð>Q?|6U?N]V?54EY?n*֙`?t<b?f?L_l?ٙ!LSn?) s?x?R.1{?b|?s߮4?Ōq>7xߪ>-*>dM,.J>Y,>3@>/XF>2u>gs0 >(">鹐鵆?tw5>h; 1?Հ>z!0E`6?Znk> >|6>EՒ>>6s>:p>!!E>g>k"|µ>G:4>#5K>z>ڡdJ>5;T>\z[>eo5̈́>xςƟ>uޣ> 0M>->@e>TZSƢ>휔g۝>՚>ZA6W>KmT-_>T>j&>bS>BT?&Y?)Ǧw^? !`?ͧ?c?+h?eEi?'7mBq?"Lu?.Q5u?H|?v/Ɂ? Bl;?C(^em?bl? Ѐ8>8ͷ^>#>UH>g"qz?=>dJ>;;V?v>%>|H?>>O ,?X ?=Ly|:?8҅N?2}mR?ᇉV? &~cX?h \?bBT}C>G,gi6>?1H>& ?NZb>/C>Y{eR>>C>ٖ> ܥ$?Rl?9U3?;!>jou>w SZ>OwV0:?Rk>ڀ~vI?w#>ԾsS>)Ӻh@>գ'M>!>*/d>6j_z>J՛> Ė8>{ޛ>5M?>С>.i?88>paaOf>*> >/lb}>B/5?l)">! _nI?(+k&;>QȌ`S?lh}V?%ڸ]?z^?Mx`? δe?}"Oi?Ȗo?~EQs?F2Bu?zz?PLπ?ډ?`8P͂?[oMp?~X5H>)Ly>tN>ʼnK>S>QG`|>̔>-p2?>{;ό>opQk ? ʹ+j> H>1B ?0~p=?%!L?ghC"kP?vrhU?p]KU??X?#_?ob?0sf?K4l?ap p?}YQs?Mhx?%~{?Pps{?hz?EfMt>dʄ?> 9gd>.ҧ>S0s>[L?{>z>*%ys>Qn>4z?ы3>"n>v}??F8}5?QJUn>V%a>&DO0? , 4>I/S> p >&MAs>qQc> ^C]?+$.>.S>x^TT?&vQm?,>\p>6X0Ӯ>\dX>>ܤ->\/>QcW>ᨾQ>s>xi>Ȑ!(8?DA6>0>cN?"F?Q3>!s[>ֺM? RQ?yxeU?N ^Y?˝| ]?D1Oa?g a?KA?c?0Md?)kh??~I=n?Wop?5fuq?Ry=t?hy?&6{?8aA ~?{7 z?EcL?2sކ?:Ѝ*X>Ԏ>_>Y1\>_)n>no?RG`|> \Wv>IiM>%f_>buH?NŻCT>!,k?q>&F>} s>=_dǼ?f?LX > >R4)6?kE?m,%#J?3=O?XȷR?-3U?MFY?*n%-Y?\?s'z^?4@,b?e#f?EA[Zh?6Ŕi?axxn?hr?!~|6t?Pu?Nuy?5s0-|?5~z?AvE>U$*>sn>UrX@>T&>S0s>è~>\'Mu&>?oH>!}"o>˾+D:>+8P> qN> f°.>`>sE> .?UC><>#s0?zsEX>t v>W¨>ih>HF>./>3;>ŹeA>Ag>%f4>p.d>:b>>/+$>MP >6>1h9>3&>w;m#p?/נ>V:"2.>zz͙>:}>~x>嚜>g>{">H>F˕L>w>3>f>>+7k>L7>p%̕>TEd1>*YL >C Wq?4d>-{!>[Z@X?zA^?ޭ,Yfa?ua?9fe?&Li?mANeYm?9r?͂=Yu?/Q(x?"pg? m9⪂?}u?aũ,?Z9?tN>~JU\?wU/>qP>$8>ga>>La>TZX:>EE?4?s>cp>k??ǡDF?rQ?o/gHV?ZF,ZgY?Z?%_?0hb?^IՌle?+o?Ĭݗq?ƣVIv?=:,A{?[VO{?/t}?O^?8gd>S-X>ѡ˧>ҡ˧>;д>$4@$>Oe>'@Ci>5Ne>@>Y:p ??z>?yNc>q >?-A@?&>&>XN s>-f~?> 1>RJ>m>g>6nFEz>DA*8J>v+_yNY0`k.>İ۶>+R>?B>8&>鐔>udQ>W#}8~>3#>ngUm> ݕE ?|d>w-4>30?R,z0?7>>9CqǛV?صݒ\?]?j\z`?ec?#qe?34U*1>ԭC> `>` ~k>\U?B&F>r̤>Ck?ďf3>ݙ{>u0?m>kR*?gU@7>ZRP?w0T?`4U?8|bX?A\"]?5)DO_?Nd?l4fZh?›#k?s:=p?at?aPYsy?Iuz?γ|?GJV!?)`I>܇3>0&j>!>Z­aZ>Sɜ>e°.>/v>?.M>>sB_ ?{ مQ>r= 7#?t>">o >M/&_>O>RLhX>pK >)F?Y->?>Ni>w>y*H>. Ɔ5>t>zj>y8Po>ʍ>)`>(K>ձ0>w-ښ>"h'>CU7Ԥ>2+`>"d=>Zgۧ>e$l>jX>/pA>=/>X>~vT?&GU?nd` \?E-^?EL^?!J^?pd?UI&6 #f?cg?ps݁'j?}Aq?xHiLCr?Ds?(QGu?U|?V%}?s 3?98>?YNzRӄ?s? \Wv>[Hl>7lk>#>ڷa>2#У>A'>>G>-LS>%D[;>Ҟ\.1>j=?^ H>Ѝ^(>6m>&F>jpf?ShOO ?Gёѽ'?}TO'?fM?\ßO? U?٠=zU?U?m}GC|V?[)^?5(`?䛃"=a?fc?`{1i?\"Nk?]b6m?/f^>̈́A;>y>Ne>06>:^ J>Gn'gNz>A8Ac>(b>|>瘝I>n>ht>&H㹏>f°.>l4???@T!?WJ!?Z>[!|d>=>E6Ea>ݶ>خ>ʇ*>F6>-bd>(>Tj->KID>ՙ>nIvYS>3;Aw@>6>!1%<]>S;-Z>=C>D>C>4>2B5>;Ǽ>J{ >lDX>>nfX3{>(w n>~6B> Z>%'Ÿ>^ \w>WS>񲀞>#,Z>\Rӥ-{>-ʟ>+oM>Mƅ>Y?oB]?1?74e_?'6@V`?_m#e? Ge?k?[Hq?MNAr?w?%Ί>?z޺?Ķ?aA?=<^?B^>@>S>#a>z[>x1> Hl>ߕj>oa>Pqs*>&F>֒K?Vg?BFVA?Ђ AQ?3.̨NR? U?iքzW? OX?8_?نZX_?',d?)Pi?v|4ӧj?u2p?* v?y?'ЅR{?: &i?X A?͡i>{C>> >> xT>f^>I L>dNe>9;^> f°.>X>C?ØN O9?&/0I?57Х>|>D2>_@>!c_>D5>xKg`>={uH>]>qT,>bHK">M^>mm>4M>W>:;>[>X >ԶlY>O7r> #ϐ>͏>ͷy,0>>Yf¥>amQgH>ѮR|>-[>lK>h1>ꫫX? [?%`?(a?~iNc?nT8h?sfl?ц5p?SH9t?Fc$,w?H?Qo3?@?f*?:ّy?` ~k>>]9>>s7>G]>b/>(34> Ҟ\.1>#&>WI>[#v >>a!һ!?U~kr?%T$?&A R?0BS?e3aX?ȉ Y?1gۄR/\?!Gla?Xd?qy5g? # m?&wp?L0Jx?g6x?9hO{?cw{? MZ?Z­aZ>얭#>ʾ>X3N>#ߝVM>E6XE >.ĭH>?`>|>)Z k>\/>)z+(> -n#?ڑ?Y?7J?oIS>*]a>_8.% >_>PoN?>>YB}b>ZG>rTN>J`' >a\>3>6=$:;>x >>ot>XC&/P>甥 >F$0×>e;>vM>- s>yx>H?!Q>p A>@deˠ> /]>yH)X>slAà>4_c>^#g>f.pyY?;3Ky\?ra?Z5,3b?fid?>rK>H>ŪXk>+'?k>S8#>kZe7>}> [2>rS>.W? ?jf\C>@1?FRR?3-جT?l1gY?bdZ?qs^?$b?he?ke?§,Oi?kGo?ٺq?IEnz?hl&z?/i{?3~|?Ψ?I^ J>%>pJ,.J>_b>Ws Y ?L,.J>_=t>ۑ>i/f>N=h'5>K>)>;n? ,/`>Mm3>5qOO)?`?8~}>&Ӱ>Ȭ>4"75?ZHr> (Ql>iS>$eZ>^>JT2>ʲt= >Vь>R9qh-E*>>)pWV>.Mؔ>>* >Ku;>J)O>^Rz>23>hmt>3Fy>5;ƛ>ϻKsU?ׂK u>_N G>S=?g1\>u6Y?h]?{V`?a?M]Ee?Ҏzu{6h?wb֋l?Q޿`q?p$t?fw?X{? ݪ?iς?r)?JYʄ?A~j>e&>eS>lu=>7U+`?f3P >h-w>'+?>H9ixA>E6>5W.?ioH3?]Fx>?y%X)?ŅꃸR?-&xU?R_%X?ܩgӣ;Z?ҡp_?ށp]a?nd?j?jim?X.mq?>^wx?ܡ#5z?;׿v{?6Q2}?ԳxZ~?d]>\ϵ>>)/>$r&ߐ>?WPu>ASQ>ŷ:< ?:\>p>eM*<>۶?ժ,?9 {.=?2gO"?/K>+{>/=Iz>xۅ>6Zj'>Z$e1mZ>j{F>!ښj Sxn>iÉ>P>XLJx>Dpr ?tSdu> #>I?A}>Yj>oJ?43->\IѹG?I!>6).G? K^>E5U!>;OnR?/ިU?ɐcY?P,;]?%){8n^?Ř,b?Id?e?ͫ:h?Pi?X5;Nq?+_q?`Xt?3 t?L}?2\?\_?ʞs ?~΃?AWH?p_>Y1\>@1Q> U*1>C!>{K?RG`|>XĖ>_>>@?d>Tqs*>9(j>G8#>>jWZ>ė,7? r*?pnbҫ?E&?tqT>/?)'$J?^1O?]{R?&U?cn6V?V)4Z?^R1^?#C^?V8b?,V{b?>$Di?O]i?e`>n?n?fU8-6u?;u֌y?bTy?XS1Az?é|? ̈~?sn>,">܇3>O:D^i>n40>T0s>c>L,.J>d/±>?>;^>~3>S=t>M,.J>fs0 >&~&71?([j>wѣ?3Hܥ?lbǎ'?J[.>b8sx>&{>ӉW> ]h>:{a>)^9Q>UVE>ֻ>hfďA?==>9š\6>-v>l >)p$}#n>>U>9w*,?ɽFm>QI?ȴ}R?>s ]>vEBߢ>e#㉝>Txܔţ>5D>)B&hy>y8>(!J^:>֮3m>yX ?=×>tZp&>]Cp`k>T茢|>(#>Uz>W~v;5?}N >{ȉr?bEdx><ܴY?\?شRb?yu1d?gd?r2a!`j?&Wn?%Ϫq?rC@u?%<y?!]?zɂ? ߃?6nf?`?ư>_A9>y#У>J1?l6m>;G>^>q@$> >A'>>xa? jN3>ŗ>rNR?Xg}mH2?aFR?BAT?[?n E{]?w^`^?w Ac?[&f?; Mi?zo?s8 IKr?~8z?x"WPm{?c4}?bx}??_~>MF>Y16> 1)T?&H㹏>FI^> i>ҩ>oZ>:^ J>Mcd?]gU >zohˮ>Bdg h?%l*? b^H[>f >LU>% |M>@>ޔ>~>{>\1>Ԃ>s}^!ibnp>.>?o>,VL̡>wTș>H١>$[>S]T4>OzZ>h;Ҡ>'"P>9'|>k狠>.>yZ?н C?wS\>Q.S>>abT?D[?.c}[?RH2w]?ܤ}d?#d?#Oh?5Wp?4t q?o[tt?vq{?O}|? #>_?yD?|0C?v>8GqW>wU/>.>x$>>_>4?@Ox>TUH>ƠA2?l<Tt?D6>j6?o!?!KN?{S?yC >ѡ˧>{,uEYV>nI β>^;\>L,.J>8'%Y>E>1H>&z1|>Qh{>cM*<>|B?~eF?gtjW>:k3>^ )g]>ٰZ>0̠3>,>f>X >}e>ݬ>Pr>YVdk>źe>"g>0#9>->mk>gS(>->$66>տ{Y>gU>n>3] >P>ޣaҚ>.Ԟ>·qT>3>f2>J>paS?t_T?1#\?,/<\?Q~W]?r]?Bd?>#e?c?g?jWj? \q?U!q?Es?$t?PW\|?<v?}?4?,D?W@n? j2^?h㈵>*VcQ>QG`|>>uU>Zi>-LS>JԬ$>)ݚ|>`Ǭ?u*>q0 ?,5u>X8#>4>Gc ?jUާY>aI??& x[?;i)+ ?X,QIL?OmZN?L4T?NT?5 kU??ǁ+cU?MX]?ۙfW^?{M>`?iYc?Irh?zi?8;|l?Poܟ>S0s>٢x>N!>>7Ac>5>wZ>ùrv]?As>5?s>k=t>D4U>&o _t?_l5>k ?ra~?JF?ȑ%> Jv>Q>6ُ>\ܺi>>N}ݎ%> c>Z>hu>'⦤>!>w䠱2VUh1>FC=>srA%>K-z>C r>z&>+J>\4z>)/m>Mi>-zÖ>L(>- 70Ǡ>?hB>"갻>>Rw>[95>哭>&>.ۆx">G[h>;KrI>i`?Zoӟ>7L|>Lll>U[Ċ-W?Xj;S\?hg\?^S_?p$d?۟:Jd? zk?Ip?dq?4E5u?E:%;|?ĐL|?[(?$|T?<A?>:s>;G>Tqs*>Qz*>Ѥ|>3D>RG`|>?K= U>Ddpz>I(?S熈ȣ>d?l,W*?wx<?+<W|P?!"kfT?=56T?je=V?ji]?Y]?a1r2d?`h?ˆh?JDyn?t<Лt? Ht?Hʕy?% M?DAl?)+%ys>JN>XFI^>;^>p>ՈT>rb<> T0s>8>R>,vM>,- >pIiK>0\(#?d;?R酳>=&< >8G>7 1>>}>:=-> v>&?c>D9֯Q>_i#+>Z;>d0}>FGhn>.e?->'G>? >/>7wK>r}>2}>eZo>=>[,>'= >?>k>ɵ۟P>R"qœ>9Z>|>v͢ W?*-S [?O[?9_?9<b?UCc?ùj??( p?;خ q?u?Z=%{?/3l{?m2d?8I !?\fꈆ?.>ݷW>L=zc>5uH.k>I J?_NN>m(? w> >T:?vt?) >jy>?o g?'s%?g|gLP?@V|S? ЩMT?}H(W?gsɒ[?r ]?4 c?lslg?L.h?+ n?,Jt?/it?z?CDܥC ?+Ns?R0E>Dw=>w1C>9/XF>t>\ё|>'M?S>O)]?E/㉀?8^C>t(>E??`?h_s>ϑS>w>Iآ=>0>u>9w.>*(P3>`kc>gQ1>/CEV>eIˢ!>er>uă>)>A0X>v}>&J>$Q2ӛ> (]>ӥ>-">3R>b.n̛>3Uz>tUKҜ>v5>Gn)>U_& V?3yϏ<\?N \?!J^?5Ldd? ce? "5bj?.ʕq?&aq?O0vu?Xa}?ll%~?o>n?m_*?,+MJA?4>88>LUާY>W".>f# ?%>Gg~X?5&: ?v>=I>=>7v ?Gq?UF?`|?lYRP?E&#ٜT?UT?m}GC|V?+Q~=^?b^?#wCc?&i?26ђi?WUo?+ɓ6ru?09]v?}ENz?&ƽ?Q$P?ZLi>^{s>Bl5>sY >]O?9G7>8\>plП>h >MG.>NZb>7z'l01?LpN>zPB.?Js? ?GCU>K0i>06\>,~>t >y;^>!`ʋ">NbV2>ݟ,$3?n.>*2?MUp>騰>>ҍV>bx>M)>HI>V>Au>ۋc&>1}>> ܕ`?q|@ >]!~q8>h>@b~`>->b*{W>oA=V?avZ?OD[?_?@$Sc?,;c?5j?*"_p?(up?Ccíu?pݧ{?R%Tg|?mu5?XO?K?!?å[x?BF6>v>=I>AtSrX ?2 l>Vh?%f_>!)? 9ixA?0E6>;Tq8y+ ?B;sj>MN{/?]bU@7> = 6S>!h >MG.>搀?nwF5>J,T ?RoH>lCf'?Dp>dM*<>LsqsAK? ure>swqJD ?Rt>A_d:>lׯ>Xܟ߉S>]+>D>@2o>%->we:\>#+>t<>LW?H/Y>8k>gͦ~>D}ZbRBM*F>wA4>lg@F>;Mj5>,)>st~>9l>P}>+6O>]!%>?yWO?rqYJ>CGf>q #a>-$?q$R?K(cT?yZ? Vx\?4|\?F\?2/c?!-dd?h+f?/Ch?iۧp?~ &q?2z }r?qns?T{?n|?>~\?.ꏀ?^󕚐?(7d?p \Wv>3D?wU/>2W>r6*f?v>>E[?v1KX0>lu=>iz@vu>?sBZ>-LS>,$? ??0E?d)>>KL!?th?yf:`!?[ywL"K?dJN?CSS?-KT?"T?"T?A96%\?]?`c./`?B̈a?Ҭ_h?ı2t i?<gj?Fd^l?"2t? u>t?K1p=bv?fG.x?p??)mX?Dè~>b<?ѡ˧>&w=>T%?>Dh >exW>"&>/>&]m]>{v*>u>A8Ac>nw>L>>NB(>[?@0?-7/?7u!k>~8^XV>z >,ҵ>xI>k3Z>Ƕ0Zpg>yGp>}O>g/u>d&!~A0U 6>r?>֩ )pNg#j?u޺>\jk>>TX)s̍>I?V>;AU}>x7%k>N!†>q?FmVr>~_?u3{8>*]>ԻQ>bJ>&>_C6>dH&>#j2?24>m1b8 >eG>|{<>Z}uUV?fr(V ]?(E^?(ȯ_?͗e?JIf?j?քq?;Mr?Аu?P#~?d?bk'?kHcC??_>Y1\>4~X5H>GGn>y l>2RG`|>>.]>U;I?;ό>Pf?B|>X8#>bfb?"`o1?`Ej?!p#?SXgP?]AΊU?Y欌V?.!W?7n^?FD`?+柘tc?X7i?iz{tk?Qp?kv? w?|Oz?V?uu?sn>EfMt>G_>[owF5>b2PLS>Z]);>Qn>?x>k=t>i ?Y"u)?>?ͮ?߰?>>Ql7>>8 |r>Pu#>k0o\>֛I@>uV>MQ>WQzf>u3U>h?- h>.+>>KQz>K>94>ޤxV!}>׍ ?>tE>Fz>,1$v >x[k+>N_?3}m=>*=>"$;?I>c#W?-ұp[?ZӼ]?湫D`?ˀƞc?`Hd?Btl?CQp?&(Wp?&+v?5 {?B>٬|?ْUn?#j ?͂/? ɖ>^>/M*?B|>?^>Ѐ8>9'I>ܵZ<'>o> ɖ>ޑv ?5I??9'I?(;?2\TB?8 JvQ?JT?H5:U?J }X?_?\?>>]?H:vd?NI(hh?:Th?p?#Ot?x'u?.`z?R__? W?I9> i>="?x>.O>rBE>*v\>x2zvm>#(j=l>/I9>ގ?? ?Hv\ ?N?>]+?`8>/*^>!3><'>j)Jm>ЅP>-%M>E>v/z>g'j`>>[C\>9 F2R>VH>=5>+,>yfܖ>=I>\,?>H\>U#@>I/>eY>/Elt͖>`>_c&:> >msآ>0?> e>"v>g|_\V?\bW?}=u\?8fٓ\?I`?w0ba?K`J*)d?zbv)d?,M8i? p—l?7mCp?&$H q?-:u? zw?n0p{?3$o}?T޴?]I`x?#-#?abq?>l6m>wS[8>Ѐ8>mc>a{;>`ьM>x>^>-LS>xj>7lk> [2>1g)` ,?S# ?d?< >sxȠ?J|^ ?2/(?"R%P?N_ZQ?9T?$vTU?vUwW?OgY?V>Mo]?f\]?Yqb?@B=ld? 9έh?ǰh?"#n? |)q?+ k\t?E&}u?06z?znz?'tW?^$?_~>H㹏>YӴ>rBE>|8e'>o">[A>lS>i>A8Ac>M0>A;>N=h'5>q s>˫uC>?>7h#$>C}?Օ7n?·!?Ÿ>0>q>EER&>'6>a05>d,>U>?>icϜ>{N`E>f.>n L}>98_>*t">՝>ccC> 䉶>9F>ZK>\ŚD>Gs>dw>s )R>u˛l>G~;>]G>FXD>ſB;b>ؾ>'#>i>4g>ۜ~>k`>R|>쁗>;4>šA,>OpĢ>8Z?{KŊ[?g\?Ura?J?pc?Dd?_>Y1\m?%KZp?¾Dq?^2w?$MBz? h|?Ƿw ?Q?t?#&>U{:y>+y>v>S3>/>S熈ȣ>3o>S?_>Y1\>W4?]@T5?2?JɊK?%>'?Vn`n S? %^T?Ѡ>`!U?h̫ Z?0?`\?鄲^?sne? ,Ng?Y&i?n unq?T6Ys?W+t?%{?.b ?k"D]ń?MZ k>SlOik>pᄢ>D>>٢x>,- >s:>p8 ?sn>G?kž<?M ?C@yF?B*J!?lYk_<>^Gck.>ZpM>/>h6>>v b>)lB>n->4yD>v)d>:>~ q>dQ>"틏O>r ].c>Iu?>NB>'`J>wW> Z>HY>Ll>#\<_>2c >h4>_&>*ՠ>C Y?^`[?,,}\?x&Qa?Ҿc?p$d?\Lzl?/p?q?{uhkw?X9(|?f(ϼ|??QH'?g?DJ>ZLW*>(>>@ T+->[L>G޸>:}|;>ډ5 v?oZ?F?}F?a ?>fY=j??QڸFLR?g3iT?8T?XwZ?\?ji]?(rMJ e?gwh?0xi?*ڥq?qt?xt?)Q){?< ,?![?Zo_>P?>^ J>Ōq>&w4S>SM6>` >:>?(P?;lO?gcu}??+%ys> ]Q?J3LA?f++Z>.yϏ>dX?>d)$>[h_>sc/>UbuN0>qsCU>bu{>sE9>F]>O>85Q6>n(> m>Cx _>vړ>:>HxVݙ>WD> ~o>aFN>D.)>r)>ֿ>1DshK>ͣ2>D>8tN>H%OlX?d~]?@lS]?q`?mh|La?O^Q7=e? !l?˻Wb r?`*r?i]W=.w?A~?8:{5-~?| ? >î?Ƒm݇?k>>ӓRK?'x]O?v>.s>U*1>$̐?v>NŻCT>A2'>r^? P23\?6N?^^*?;6L/Q?=ߢU?=OU?BkX?EAY?`QU_?d?us\Yj?Uj?p?S"u?`e gv?9 ZnVz?IJQ?El?L,.J> |>[>)+F?D>`>܇3>sS?D>˾+D:>#vm>iN[>G/w?EfW1]?4HJ#?W5|O%>< >K!^>]; >>`>EOBt)-w>?S>L >7>W*(=`R>yHLEnO#9>P[>aQ??u2>YH>(}4Ė>B,I>|>b|Q2?z[>8X>heù>RKeŗ>/\S>> ?ScM>d>.VC[>hX?^'7w[?7*Zs\?67a?Phc?Ded?X!\d?;iAl?_A8Qq?O:w?9}=_|?pE!B}?4W0?j?&Bz?k>ڤ1G>Q* >k{>G]><$,>KW?0*?XWÀ?rY2?a ~k>eBk3 ?&YO@?*f) ?B!?e :G R?ޅhT?2T?z!"Y?{ 2]? r7]?x鷺]?ڣ\d?[~Hi?իp?t?:c\u?轢qcz?S2X]?7.i?L,.J>G;g>^C>>E6XE >Y>|9`>-ȮłQ?^w>3?ل8% ?Z­aZ>'81e?O?-vh?L"$?X&>A>b(>S> SQ%N>]]~>e3G >q!>%>_?&>i> |įL>3>a>^Lyf1`?>+9>>Pv#/>탪>)?Cڂg>Vc@>ۧ>Z)ޙ>՞;R>*Y?BZ}>R +>a>d ˀ9>p4?zWQ?[Rݦ|:>qf#?ZX:>Y;>)MB/>2 l>>/?+-?Hp<_?Ӱ>)#? ->֛cE?Nf>$j<)?\Y?K ?TQI?AlR?GIՌlU?;V?#lAV?JČxY?ܛy]?x璢|^?ыb?BCd?h?W`i? ,n?!.r?yёt?@`u?3y?@L…<{?|r?C?>iBJ>l*|?L@>u>!>nwF5>Li>Xv&>q>= r>J ;R>҆EK?I\>0,^?c` Z>At\"?lȝJ?R%h?ó >C]k>6@u-)}UI>=:aN>s/U>ؚ>`i><3\> >Vw>pNzm>V=~>+|(>`CCA2s>RV?Q8>ۻ2>Wǖ9ŒSw>Gf+b>/ )|>zdt֩>(Q >qv>7s>6orw>$S[>/ao>V@oo>;IGoj?TK>?H3NG>}h>Qe>y`>Yו×>d2v?^H0~Z?}\^?I_?*GNa?K>le?Nf?xl?2{Gr?}"r?w?Q&HB?y?`8P͂? ? {?_>Y1\>dIS>" >p \Wv>D>=!?`ͻ >X><??lI͝?B ? *8?Z?K]5?"VS?PU?Ӱ֡}1W?DY?S`g_?k/`?ZDe?Dzj?"lj2k?iLq?3>w?4]x?Pps{?:w(?qST?sn>5>׼G>Dè~>K,.J>/*G?jI'M>Lq2>ڠ^ ?/>2V?Z?|??{P6?9 ik1>3)w>]{5>c>skV>6WG>Fb>a1g>~ >~J.>8\>Un>ded=>U9K>ЍZnK> ^>D! > [wU}>؀m> #>R[}>K5j>I>^?>pB:>[Is>#бM4?]=>{P=U?2~W3[?^+[?*ԭ^_?jhc?\URd?E\j?&5p?Sq?/ިu?ҏS{?+'Q|?Py?s.Ue߅?&Bz?pL2>ǻW>=>c-LS>p \Wv>4~X5H>wU/>-K7?K>@1Q>*S+냨>>">:Z?c:?0bp+O?S?&׍8T?hV?-s\?hh]?A(>c?aXjAh?P'h?^1o?:"Q^t??)t?tz?Vl0?7.i?O>zo~`&>Zb>)8Ac>Dè~>EfMt>ѡ˧>{h: ?.ҧ>,">dDP">(j=l>lM>Y~?չ" ?a%>D> >_O> m>c`Yׇ>EeH>7[>[ >+ER>f>όs>K]nv}>ǟH>Fߕ>v0>=S=>OӢ> W>Ȋۡ>)=$vw>-;%>_6\>s|P>L,۝>Ý<>b6Nʞ>UW;˞>q:>$F> B?nV?zV?:gImY?u`?PI `?!Vab?4qd?Aj?Oʤ6k?Y |En?Oo3q?wEJv?o2z[v?y?i+|?)ϼv߁?ne΂?a?؞Y?YY>"J">[Hl>ڤ1G>/{> ʹ+j>t?>_a>}>csצ>3iLa>2RG`|>#x?=/? `t"? %Ȕ>0|@ ? tȾ#?gMp:?ZWP?h˗P?)ZwkR?b|eW?эjW?*``[?\f\c ^?3+c׀c?5+]c?|])0lf?Bݓ[i?]zaEp?zq#Rp? POr?U*u?~q,z?| =9u{??}??f>(>/f^>G;g>>Bы3>l>@QeҾ>i/f>Wz>9>k=t>5Ne>m-c>91 ?]"?E[>}PJb ?ⷪ$?N۬>a'>sSw[>>?܍>>n *j>yFV>t1>C =>ʳQo>>D>ƒ&E>Hbdܧ>UQ>̱a{>Hlr>Ɩ^>iNV>Kw 1>G.Y>e,>*ՀI>Rڤl>Њ" > @>n$>i>'2>5>`-to(>8>2l>(8>M=>i -8>ئl }>,.rJ>$>i#g*aG? _W?{]?L`?vzd?W\e?:7' l?TaFFq?HVq?^v?n(u|?k#]J}? -1?Z珆?Z`t?g>ڷa>%f_>v>&v>Zp?a ?;G>p,2h*?N;G>elu=>? F?=d)f?j6?sA?k8@t~Q?\ŧU?WFX?Qn]?vR]^?ĖcRwd?8i?*zOi?,x p?r *t?I au?7q8*~?Vix?zy?bG>Ne>ЪoH>!h >h >l >{U?LFI^>@K >FI^>/>[6Ba>@?nt ?|B?l>%k>r&#>%M;>?Dy>#력>u1T>m2G>F5}>>@eB'>De<>&>-*P>h}]>~'>rLiSR>nA>/WM> >C RL>4Vv>bi>$kU>B]91>U A&>ZS>JGN>p*n>V?ܪ[?}B L\? _?)^dc?fvd?+qj?~k, p?28*7q?bu?4*p |?!i|? gƵ?u??6k?d)>>@4u>E6>jWZ>Ќ>UcQ>_5?U\W9>X"?&#&>A?S>(XMK?L=zc?_$?>gB}P?1hϪoT?GNUҨT? W?(ח\?'g]?妐c?G9ig?;u"i?/o?/J3zt?wbt?Tn<~?+s>eM*<>gs0 >kf>]Poܟ>>0mzIO>Q#t>pZ k>kZԇ>iL>)>;;JjD?t1C?M?3Z->ڻ T>kP1>(/wL>7>VR<>%F >e.3>)>[b\ >2{,i>I v>/>-}>'>>^>ס{C>ΣuJ>xU>^>>nMDb>'G#->F|, >XlL>|o_>+f>?vt>N >B>Q\>rW?"#^V]?-s]?FBj5a?>]ݱ&e?e?_o?Rq?unr?gsu?`U}?@=~?7e?nT8?u!Ld͇?ڷa>O>h㈵>H>kP>}>Wf?4K7>$cMF>Ѐ8>i>tN>ttu?=d)f? '?%-POwQ?jU? U?BY?6^?K]яp_?7pZHg?XhΗji?giQj?o?ou?=u?yp{?.ۀ?``?Ne>Y+%ys>7P>pJ,.J>)`I>/f>塚>{h:>)~ʣ>-tBE>/>8gd> l2դ>nt ?*1 ?x@>g\>5'Co>g> 5>Y): )>bPu>$1>,8>BT8>W(^>܃J>7%>6k>lJsrGj>s:қ>N1{>̿M>!>Oi{>k>|h:#>#E{>-">{p/m>&El{>MK1>) ϣ>u҇R?1hV? &lV?#EdX[?*_?E ҟ`?հc?$,4j?ap?^,u?}qJ[|?N|?pTm~?:y 5?T=?f? >1 C?S>>ӍZ%J?>@Ф>͎q(:>p,2h*?[2>]j6>g{>)uMw?e2c?[2_N!?i㈵>,ÄBP?@vP?;(rET?٤V?btEX?g£K]?_Xe c?m2OSph?j o?hUlHt?t?Gv?E~yz?]T??')j=l>;;?<=q>(j=l>C?/p>LѤi9>K >F>h'5>>3>Eq?pS>WD?8P>~/R>01%>U5='?YZDp>|bO>>ŒHiT>lO>NJ>n>1Z >'eSYAi>¹S>9S?S|>ut E>Љb>">5W1>wU`?c>ǽ>@X>Y$>&i͙>J9 G>4W>q>=,xR}>4>1hv>ps>cDW?tX?xb[?IbI\?\޽`?St$`? ,Zc?  Rd?ZMHl?qjl?<_E p?Wq?+@ȟw?sw? {?^-wf|?-E?1&?L@Ѐ8>7>5Zz>| \Wv>]j6>ݻ\?a;j>k{>>#У>wI@> Lr>m>JG>:o1>'Pu(?ͯ@ ?P4B?ފs@p)>d?֕G?c'hQ?n tQ?R/[S?e(U?E5l|X?mRX?ZA\??8e^?s&¥d?hd? lg?+ZQi?${X2@q?[q?qȃ;s?=f=Cu?j`Gz?pH_}?d>?d;ƀ?>XsBE>>p>Dè~>>i h@>Ny>>06>b`E|>Ó>E"">(KxM>Ntw5> ?Xz?8;?< .>0v_t?A >Y܎>IUO>܏1> Z^4>r@>V0f>u%M-̵> 3>/9C>J&@&RU >$ J>[^S$>Yꑿj{6>x>՞Dž> eS0 ŕ>و!ە>( ؝>`"z>$xm>o2Iޔ> *>/c6>mB>jD>#LIh}>;?05Y>a:>\jd>?Q,~?x\>4 Y>P-}> i`Y?2wV?*)j$\?x!^?;f_?l\c?{݁'e?NZY~ k? ESp?_ Pjr? ?8:v? #|?O~?ŋ!?OcoÅ?+@5?S>PR> U*1>6VcQ>9π>R>-LS>q V $>>s>Vv>Vg ?g>ǚ ?T%?6 X\$?kl"P?}AK9T?[ZU?+ZW?VQ#]?\3%|_?Cc?>>@g?0|ej?.n':p?ktu?Wv?c#xz?[!K??<=q>4M>܇3>Poܟ>;C>@>7Ac>>7?z>T<>C?|DM>k?(?1w?"uIE>bW2>b5/>2$Su>&a–>>>y#>َpE`?x>W2>9x>>aŵ%>*z5W,>ãa缜>9?ݜ%}>IXֿϛ>9}}>՝`>W>ΘnA?:>hњ>ݻf>^ݰL\> c>8ӣs:?Y?w&Z?gf}[?a?IG*b?>d?2Emm?31]o?DZ!q?h,{x?SÑz?`t|?Z F?I2喆?,+MJA?v>̌>N`^>y4>[Hl> `>Iy>@l>I*R>O6m>S>a$^>> K?+|J%?6GT5?]ZPR?kH!ikS?4fbT?UCABY?yAn[?"Ԏ]?C{e?'(n(=g?1tUi?-Izq?wIes?-Nt?u;%|?@]}?Q$P?C>O0)v>{,ٶ>4U>Af^>!>]+o>~>@V>H㹏>*?>r[>H@>ڊG?qɩ.?1 ۙ>p>WjkE ?e>T > G@P>c0>f{\>@)>>L7mR>j*#i(>0Ty|}>(82A>> ˮR?1r\T>&(e_>-1>Q) >z;>R? %>o\~4>J2 2>>T1>$Ș>*XvZ> ;ە> Ɲ>2g@Y?3O\?:Fp60\?5H]?L b?x1!b?otnWd?<.9d?΢w*n?p\M 4o? ; q?ݥ#q?ly?50#5z?{{#2{?B~#|?0?Hh˹?46y'?m>v>1>5>>p>k9I>jWZ>Lx>fÞ!>չB->l?XXq?v>ܳH2'?Rs@p)??UMu>9EV'R?xܪT?]#U?kmuU?L<[? W[?2N]?S"^? j f?) &Gf?|i?qSdi?;6r?O(ګ!s?Y>)t? !t?`nĬz}?GUuB~?1vK?@]}?_~> ?Q"">D>wT>@G>Q0E>q@yNc>I$!>hs0 >BM>j.X>+4>$Կ ?9q>@h >6YU ?P . ?J3LA?.j_>@FD)>^$9`>hs.&>Sqk`>pd>` E>$o>LdW>Ơ>.D>>ӏ/>8~{>"p&k>kK >sW>qA>1Qi>͢>HYx>f'td>j?>˼&> >i>}>4s&>$/ >=]>ySyY2>Z>9҈>?p>ƣã>%^1؜>Fو>p@*,>@@Ԍ>Όٗ>7P뀓>'?a>Q[?hg\?^?sA{Rc?!c?o +e?DE6>&c>%1>kP>b/>y4>9Ee>X5}B>g{>l~>pL2?A-&?R?;o]|$?T?=56T?,rV?e@N5\??Bb& ]?6m^?SiY1;g?J_bqh?2(j?r?K<t?fiu?;+i~?R__?f6-?-+o>eM*<>H|8e'>wT>)`I>.ĭH>4U>,\>vR->3>i!jEo>O?b:S0 ?`#6 ?`K?`>>LNO:>mSZ>rUK5>Gn<>2V>tf>F‚>U>wz0>yR;X>ZM(>zD>@|>uE>>L><ԑ>Qp>ަN>J~0<>p>5Ax>!D/>Pb>u㭋>7>~ꋚ>.$fQ;>S[Z>7Z>ږU Y?V\?Ƚ\?ia?-hMZd?-hMZd? Z+l?kDp?۠[;q?_w?HV |?-ԇ}?{b*߃?e`\?6k?h> U*1>=>K}>UR>ڤJ>@l>O>AVcQ>i-? Ϻ?;ό>4!6?.L=zc>L=zc?Bo"HR?dw`T?!T? \Y?S-͢]?S-͢]?`Se?kg?e(i?|{q? .t?zZ?u?lkVC}?B|<?ep?5>܇3>+>/f>Ƴ@>/C>~>#B>Poܟ>J>^Ȝ?Qn>@D?0C>A1C?\)T>.>`2Y>cr{b>?;y\>DuX#>+> [Nb>>I9&P>p>te||>0.˯>~G>l)*>1 >ak$*>5RFLY>ݶޢ>"$>1{Ō>yw>ȟ>FRx>?⎭>c>̙>KN;>>:b> aM>IZW?WEU&^?CE^?LtPȻ`?Յ2ge? e?JIwjk?ق?r?@r?\qqTnv?k~?Wzm6Vb~?$A!?Q?rtC?#At">Ӧ#&>J>L \Wv>;G>~X5H>_NN>Φ v>| \Wv>eDe9><3u>RP1?NhB ?*E?(R!?JNfQ?XJuU?TZdCV? RnX?G>{_?3um_?m{d?~Muj?rJKj? tBp?[Fu?@/.v?P 7z?f?YJ?B@>Y k>/C> è~>XFI^>EfMt>\ё|> 5>Dè~> 3#_>zs>eLn ?8h?5iaܹ ?l>~I ?5>!>b[*: VR2> 7O>*凴>vc &>g>[>>4>K_:S9W>U<2>I/pG]>gl>GߚoyZ>f;F>wo>00 ?n&S>;m>[~>ݥ>#$qE>ԩܚ>rE_ >E>E$KY>zng>MXs> o(G>ܪ>vӂW?D?{[?n6C]]?H.*`? )౲c?Q"d?{L4k?ﺑp?񧳀p?9]v?=\r)}?x7)F}?1`p?s.Ue߅?GL"?Ѐ8>G>/}>p \Wv> M>1>K>*I8S[u ?%f_>wU/>C&j?XB ?ڝ%?UMu??Ok?)Q?gT?3aoU?voBX?Zu\?d]?;B0c?.0v\h? h?S_ jSp?tH Ju?怒A_u?TSy?Vl0?9d'?rBE>(KxM>YUdq>Dè~>$e툙C>wT>.ҧ>hwO?ЪoH>ѡ˧> >R?G{?=f1?.j_?DH?3R>y '>|>ls^.>OǶM>aX#!>Ft͊>Pw>?p>9>+8{X>[]Ȑ>@)>m'>y!(\>U1>J >p{>k1@>ck4~Y>PO׿y>J7>D6>w9>#ǔV>T>?@T}l><">i[>@ \?ˉ40]?[a?ѕT b?Fc?| !d?i3i?,M8i?5iIp?3Tq? t?"Gu?u<{?Tf ~?m4Mr? dP;c?l, s?Z珆?9(a_??6?2>-LS>=7k >1>·a>.s>dJ>sv>_">1>n\2>QbU@7> ?ᢽo ?(4Y>q3D>:!1? R?uh㈵>mXk>dNxT?}.OU?Z? -wZ?t쇀]?J苪L^?}b?Yqb?Lj'h?A3(i??n? o?n![/t?.u?:wyy?51z?:P?Vix??>q7?;+%ys>7Ac>:>8ޒ>Ne>`>/C>h >TbB>>V?h'5>Rt><}?ݏϚG>c<> Qd*?=7>@`#6 ?27P>Z_b>VN+>D;>C >pO޲>_W+9>'ڌ?0%q|D>ڽ 4>t0>px6vs)>p>Bv>IB ڲn;>B:>B>R7>"@^U>fX>-ؼښ+>W^d}>>i[>R:>~S>%E>)7{ݕ>e>^W>)>k5B>)I9>XU >MF>\>(pD>X|%?ʲՖ>/!&rW?G\?Tm^^?}EVa?!@c?+~7e?,,}l?L9Rp?z Mr?*JU[w?x W-}?f! ?ث?O݅?75ڗYq?1GL>^>·a>k;sj>S8#>k9I>v$>NY>j0 ?cU@7>Uީ>2SV?Ii>f ?> ?㸥ClQ?wKjD U?a+V?oAOY?_YiG\?+^?8d?y5g?(,j?C|* q?Ɖu?v?z.5{??sH? F> i>Ne> ure>G=t>U$!> nw>EGyb >Khc?,t>F*Xgz>(fH? #> %/;?'/?o,>;w4>n0p>!>W,>Of^>t]>h<Ў> pV>z|=>}a>:GH>'e> 7%U>(Th?_ >Wo$>`چ>h,g>.E>m5>¼7]Z>" > 8k> `>_ v>aX>>)KRW>RG>{a; @?_avgConcSLS_pH3_I15_Igor__sdConcSLS_pH3_I15_Igor__avgFractionSLS_pH3_I15_Igor__sdFractionSLS_pH3_I15_Igor__avgKCRSLS_pH3_I15_Igor__sdKCRSLS_pH3_I15_Igor__avgConcSLS_pH4_I15_Igor__sdConcSLS_pH4_I15_Igor__avgFractionSLS_pH4_I15_Igor__sdFractionSLS_pH4_I15_Igor__avgKCRSLS_pH4_I15_Igor__sdKCRSLS_pH4_I15_Igor__avgConcSLS_pH5_I15_Igor__sdConcSLS_pH5_I15_Igor__avgFractionSLS_pH5_I15_Igor__sdFractionSLS_pH5_I15_Igor__avgKCRSLS_pH5_I15_Igor__sdKCRSLS_pH5_I15_Igor__avgConcSLS_pH6_I15_Igor__sdConcSLS_pH6_I15_Igor__avgFractionSLS_pH6_I15_Igor__sdFractionSLS_pH6_I15_Igor__avgKCRSLS_pH6_I15_Igor__sdKCRSLS_pH6_I15_Igor__avgConcSLS_pH7_I15_Igor__sdConcSLS_pH7_I15_Igor__avgFractionSLS_pH7_I15_Igor__sdFractionSLS_pH7_I15_Igor__avgKCRSLS_pH7_I15_Igor__sdKCRSLS_pH7_I15_Igor__avgConcSLS_pH8_I15_Igor__sdConcSLS_pH8_I15_Igor__avgFractionSLS_pH8_I15_Igor__sdFractionSLS_pH8_I15_Igor__avgKCRSLS_pH8_I15_Igor__sdKCRSLS_pH8_I15_Igor__avgConcSLS_pH9_I15_Igor__sdConcSLS_pH9_I15_Igor__avgFractionSLS_pH9_I15_Igor__sdFractionSLS_pH9_I15_Igor__avgKCRSLS_pH9_I15_Igor__sdKCRSLS_pH9_I15_Igor__avgConcSLS_pH10_I15_Igor__sdConcSLS_pH10_I15_Igor__avgFractionSLS_pH10_I15_Igor__sdFractionSLS_pH10_I15_Igor__avgKCRSLS_pH10_I15_Igor__sdKCRSLS_pH10_I15_Igor__avgConcSLS_pH3_I30_Igor__sdConcSLS_pH3_I30_Igor__avgFractionSLS_pH3_I30_Igor__sdFractionSLS_pH3_I30_Igor__avgKCRSLS_pH3_I30_Igor__sdKCRSLS_pH3_I30_Igor__avgConcSLS_pH4_I30_Igor__sdConcSLS_pH4_I30_Igor__avgFractionSLS_pH4_I30_Igor__sdFractionSLS_pH4_I30_Igor__avgKCRSLS_pH4_I30_Igor__sdKCRSLS_pH4_I30_Igor__avgConcSLS_pH5_I30_Igor__sdConcSLS_pH5_I30_Igor__avgFractionSLS_pH5_I30_Igor__sdFractionSLS_pH5_I30_Igor__avgKCRSLS_pH5_I30_Igor__sdKCRSLS_pH5_I30_Igor__avgConcSLS_pH6_I30_Igor__sdConcSLS_pH6_I30_Igor__avgFractionSLS_pH6_I30_Igor__sdFractionSLS_pH6_I30_Igor__avgKCRSLS_pH6_I30_Igor__sdKCRSLS_pH6_I30_Igor__avgConcSLS_pH7_I30_Igor__sdConcSLS_pH7_I30_Igor__avgFractionSLS_pH7_I30_Igor__sdFractionSLS_pH7_I30_Igor__avgKCRSLS_pH7_I30_Igor__sdKCRSLS_pH7_I30_Igor__avgConcSLS_pH8_I30_Igor__sdConcSLS_pH8_I30_Igor__avgFractionSLS_pH8_I30_Igor__sdFractionSLS_pH8_I30_Igor__avgKCRSLS_pH8_I30_Igor__sdKCRSLS_pH8_I30_Igor__avgConcSLS_pH9_I30_Igor__sdConcSLS_pH9_I30_Igor__avgFractionSLS_pH9_I30_Igor__sdFractionSLS_pH9_I30_Igor__avgKCRSLS_pH9_I30_Igor__sdKCRSLS_pH9_I30_Igor__avgConcSLS_pH10_I30_Igor__sdConcSLS_pH10_I30_Igor__avgFractionSLS_pH10_I30_Igor__sdFractionSLS_pH10_I30_Igor__avgKCRSLS_pH10_I30_Igor__sdKCRSLS_pH10_I30_Igor__avgConcSLS_pH3_I50_Igor__sdConcSLS_pH3_I50_Igor__avgFractionSLS_pH3_I50_Igor__sdFractionSLS_pH3_I50_Igor__avgKCRSLS_pH3_I50_Igor__sdKCRSLS_pH3_I50_Igor__avgConcSLS_pH4_I50_Igor__sdConcSLS_pH4_I50_Igor__avgFractionSLS_pH4_I50_Igor__sdFractionSLS_pH4_I50_Igor__avgKCRSLS_pH4_I50_Igor__sdKCRSLS_pH4_I50_Igor__avgConcSLS_pH5_I50_Igor__sdConcSLS_pH5_I50_Igor__avgFractionSLS_pH5_I50_Igor__sdFractionSLS_pH5_I50_Igor__avgKCRSLS_pH5_I50_Igor__sdKCRSLS_pH5_I50_Igor__avgConcSLS_pH6_I50_Igor__sdConcSLS_pH6_I50_Igor__avgFractionSLS_pH6_I50_Igor__sdFractionSLS_pH6_I50_Igor__avgKCRSLS_pH6_I50_Igor__sdKCRSLS_pH6_I50_Igor__avgConcSLS_pH7_I50_Igor__sdConcSLS_pH7_I50_Igor__avgFractionSLS_pH7_I50_Igor__sdFractionSLS_pH7_I50_Igor__avgKCRSLS_pH7_I50_Igor__sdKCRSLS_pH7_I50_Igor__avgConcSLS_pH8_I50_Igor__sdConcSLS_pH8_I50_Igor__avgFractionSLS_pH8_I50_Igor__sdFractionSLS_pH8_I50_Igor__avgKCRSLS_pH8_I50_Igor__sdKCRSLS_pH8_I50_Igor__avgConcSLS_pH9_I50_Igor__sdConcSLS_pH9_I50_Igor__avgFractionSLS_pH9_I50_Igor__sdFractionSLS_pH9_I50_Igor__avgKCRSLS_pH9_I50_Igor__sdKCRSLS_pH9_I50_Igor__avgConcSLS_pH10_I50_Igor__sdConcSLS_pH10_I50_Igor__avgFractionSLS_pH10_I50_Igor__sdFractionSLS_pH10_I50_Igor__avgKCRSLS_pH10_I50_Igor__sdKCRSLS_pH10_I50_Igor__avgConcSLS_pH3_I75_Igor__sdConcSLS_pH3_I75_Igor__avgFractionSLS_pH3_I75_Igor__sdFractionSLS_pH3_I75_Igor__avgKCRSLS_pH3_I75_Igor__sdKCRSLS_pH3_I75_Igor__avgConcSLS_pH4_I75_Igor__sdConcSLS_pH4_I75_Igor__avgFractionSLS_pH4_I75_Igor__sdFractionSLS_pH4_I75_Igor__avgKCRSLS_pH4_I75_Igor__sdKCRSLS_pH4_I75_Igor__avgConcSLS_pH5_I75_Igor__sdConcSLS_pH5_I75_Igor__avgFractionSLS_pH5_I75_Igor__sdFractionSLS_pH5_I75_Igor__avgKCRSLS_pH5_I75_Igor__sdKCRSLS_pH5_I75_Igor__avgConcSLS_pH6_I75_Igor__sdConcSLS_pH6_I75_Igor__avgFractionSLS_pH6_I75_Igor__sdFractionSLS_pH6_I75_Igor__avgKCRSLS_pH6_I75_Igor__sdKCRSLS_pH6_I75_Igor__avgConcSLS_pH7_I75_Igor__sdConcSLS_pH7_I75_Igor__avgFractionSLS_pH7_I75_Igor__sdFractionSLS_pH7_I75_Igor__avgKCRSLS_pH7_I75_Igor__sdKCRSLS_pH7_I75_Igor__avgConcSLS_pH8_I75_Igor__sdConcSLS_pH8_I75_Igor__avgFractionSLS_pH8_I75_Igor__sdFractionSLS_pH8_I75_Igor__avgKCRSLS_pH8_I75_Igor__sdKCRSLS_pH8_I75_Igor__avgConcSLS_pH9_I75_Igor__sdConcSLS_pH9_I75_Igor__avgFractionSLS_pH9_I75_Igor__sdFractionSLS_pH9_I75_Igor__avgKCRSLS_pH9_I75_Igor__sdKCRSLS_pH9_I75_Igor__avgConcSLS_pH10_I75_Igor__sdConcSLS_pH10_I75_Igor__avgFractionSLS_pH10_I75_Igor__sdFractionSLS_pH10_I75_Igor__avgKCRSLS_pH10_I75_Igor__sdKCRSLS_pH10_I75_Igor__avgConcSLS_pH3_I100_Igor__sdConcSLS_pH3_I100_Igor__avgFractionSLS_pH3_I100_Igor__sdFractionSLS_pH3_I100_Igor__avgKCRSLS_pH3_I100_Igor__sdKCRSLS_pH3_I100_Igor__avgConcSLS_pH4_I100_Igor__sdConcSLS_pH4_I100_Igor__avgFractionSLS_pH4_I100_Igor__sdFractionSLS_pH4_I100_Igor__avgKCRSLS_pH4_I100_Igor__sdKCRSLS_pH4_I100_Igor__avgConcSLS_pH5_I100_Igor__sdConcSLS_pH5_I100_Igor__avgFractionSLS_pH5_I100_Igor__sdFractionSLS_pH5_I100_Igor__avgKCRSLS_pH5_I100_Igor__sdKCRSLS_pH5_I100_Igor__avgConcSLS_pH6_I100_Igor__sdConcSLS_pH6_I100_Igor__avgFractionSLS_pH6_I100_Igor__sdFractionSLS_pH6_I100_Igor__avgKCRSLS_pH6_I100_Igor__sdKCRSLS_pH6_I100_Igor__avgConcSLS_pH7_I100_Igor__sdConcSLS_pH7_I100_Igor__avgFractionSLS_pH7_I100_Igor__sdFractionSLS_pH7_I100_Igor__avgKCRSLS_pH7_I100_Igor__sdKCRSLS_pH7_I100_Igor__avgConcSLS_pH8_I100_Igor__sdConcSLS_pH8_I100_Igor__avgFractionSLS_pH8_I100_Igor__sdFractionSLS_pH8_I100_Igor__avgKCRSLS_pH8_I100_Igor__sdKCRSLS_pH8_I100_Igor__avgConcSLS_pH9_I100_Igor__sdConcSLS_pH9_I100_Igor__avgFractionSLS_pH9_I100_Igor__sdFractionSLS_pH9_I100_Igor__avgKCRSLS_pH9_I100_Igor__sdKCRSLS_pH9_I100_Igor__avgConcSLS_pH10_I100_Igor__sdConcSLS_pH10_I100_Igor__avgFractionSLS_pH10_I100_Igor__sdFractionSLS_pH10_I100_Igor__avgKCRSLS_pH10_I100_Igor__sdKCRSLS_pH10_I100_Igor__avgConcSLS_pH3_I175_Igor__sdConcSLS_pH3_I175_Igor__avgFractionSLS_pH3_I175_Igor__sdFractionSLS_pH3_I175_Igor__avgKCRSLS_pH3_I175_Igor__sdKCRSLS_pH3_I175_Igor__avgConcSLS_pH4_I175_Igor__sdConcSLS_pH4_I175_Igor__avgFractionSLS_pH4_I175_Igor__sdFractionSLS_pH4_I175_Igor__avgKCRSLS_pH4_I175_Igor__sdKCRSLS_pH4_I175_Igor__avgConcSLS_pH5_I175_Igor__sdConcSLS_pH5_I175_Igor__avgFractionSLS_pH5_I175_Igor__sdFractionSLS_pH5_I175_Igor__avgKCRSLS_pH5_I175_Igor__sdKCRSLS_pH5_I175_Igor__avgConcSLS_pH6_I175_Igor__sdConcSLS_pH6_I175_Igor__avgFractionSLS_pH6_I175_Igor__sdFractionSLS_pH6_I175_Igor__avgKCRSLS_pH6_I175_Igor__sdKCRSLS_pH6_I175_Igor__avgConcSLS_pH7_I175_Igor__sdConcSLS_pH7_I175_Igor__avgFractionSLS_pH7_I175_Igor__sdFractionSLS_pH7_I175_Igor__avgKCRSLS_pH7_I175_Igor__sdKCRSLS_pH7_I175_Igor__avgConcSLS_pH8_I175_Igor__sdConcSLS_pH8_I175_Igor__avgFractionSLS_pH8_I175_Igor__sdFractionSLS_pH8_I175_Igor__avgKCRSLS_pH8_I175_Igor__sdKCRSLS_pH8_I175_Igor__avgConcSLS_pH9_I175_Igor__sdConcSLS_pH9_I175_Igor__avgFractionSLS_pH9_I175_Igor__sdFractionSLS_pH9_I175_Igor__avgKCRSLS_pH9_I175_Igor__sdKCRSLS_pH9_I175_Igor__avgConcSLS_pH10_I175_Igor__sdConcSLS_pH10_I175_Igor__avgFractionSLS_pH10_I175_Igor__sdFractionSLS_pH10_I175_Igor__avgKCRSLS_pH10_I175_Igor__sdKCRSLS_pH10_I175_Igor_'`6sdKS_I30?RR;AA|<=A#5A @%X#AAs:ALXd6M_I30?RRfH3&H%HZHH8G GuHLh6sdM_I30?RRX3E27 FzE2E2AZE E"EOEn]l6sdKS_I50?RR]fAЎ+Aw8A:AF]AA.)AAp6M_I50?RR)H+HEHp HH{GuGIH@Bt6sdM_I50?RR@FY^E)UEOjEFڪE _ELE>N&sdKS_I75?RRA28IAABAsA@*@@@F@O&M_I75?RR."H$ HP*H"HtHGG}YH(pO&sdM_I75?RRE FEcE4F'E!fE-E}j sdKS_I100?RRC^AOAA1e A@ *A:G?AMBA= M_I100?RR HF+ HD"HH HHHMG sdM_I100?RRWFDFEErEbEEtE6 sdKS_I175?RRA+A2A@(sA.AM@r"AW M_I175?RRHH(HO>HUHHGH[G sdM_I175?RRy-FbQF4FE}QEQE D8EKE`Y@< $ GPGP`'SLS_input1<# ???? ^p ՝T?2/Z?X[?mU^?s igc?j+c?Z(i?H8p?=֌ rq?W歺u?Rk0{??Y|?p}E?, PSˆ?-N ?S8#>QG`|> IG>NŻCT>~X5H>-'ʸ ?>T>NN>- ?5 F>?v>!(G~)?lP̳&?# D?e N?9bS? ɩS?̟U?-JQ\?{v]?Qu]b?KXh?&h?Wvn?^gt?1t?v9<{?E#Dɣ?@n_?_=t>S0s>C >˾+D:>EfMt>'<?p.*>ё|>k?*BHf>I\r>!h >R0"? niԜ ?):/4k>?6λ4>`&>PPO>o7@|>Tv>A> >Gڷ>>*>/PK>uŪ?ΐ=?.1R ?*j따=?x?9w-{>gƜ>]6p><7o2>[ Qޠ>j>%+7'>W2] >fď> g>]J> D>ՔJ>ty>F|c>Y@{Q?L R?ĀE9X? nl[?nXH(\?˦\?kfc?d?d e?X|[Tg?|Qo3q?q?yN q?_.ws?<|?;r1}?i~?}<ݭ,?kvyj?#-#?>%f_>ڷa>#^j6>R><1A>Fn>vǻW>y9?2#У>t\2>m>,LS>puH.k>elu=>b'?^>=@?F):?%|?I?^?oH>Ne>>-@>KJ>pr>zo~`&>yoJ?06>J?h'5>s >7Ac>/XF>/>.CXm> i>d/±>#fz3?Is? ?K}Z> T!>3<@>K:>8>$‚H>8>o;^>;(M>2ʸ>Xv> ľ>^v>wh?>O*{/\>">EH>WN>>|l2e>x}WU> |>nۇq>;EH>ו)>P]><כ>< >ಡ>J_> ?>o̤ᜠ>;ٽܛ>@C>< >>UJ>\~8>Bl> Fﮪ>{Ak2>3lT?/{A[?K8\?a]?Voc?Vd?߆h?p?4׊r?ۅ:t?i|? J}?d6:?Z珆?A} ?T+->Xk>Ps@p)>{y$h>NŻCT>Y8$>G޸>oL2>?VS>k>j^.>} l>?zFR?u!N?h*dS?tv~ U?aU?w3Җ\?Te^?|͓a?gh?`'gj?y'2:n?x|Tt?U+au?b]z?Vix?'CH,?1Ōq>_b>P .>+>˾+D:>-JK>SM6>6O>ٛHv?>L,.J>LS>pwF5>LQz?¨WJ?y_>ƢR>!p>[c>"/>o>n>s-D><{h>C˴>>B"2><>ȈP D> >;>GHZO>nSN{3>Q7@> > C>80>ta>jXVF>0NV>hO/>1n֯>pA>6z䥦>r;I>?G>lj,T?+\X?/$\?`/7_?}D'=jOa?֦f?۳h?y\1o?;8؛s?;2Tt?Yz?'??Lσ?mRm?@ T+->Plt$ >A>T>W>2Wa>e^_>puH.k>Z?EjWZ>Y_Y >R*| ?1:o1>r8#.?_:?Wr1??1KtM?ð>Q?|6U?N]V?54EY?n*֙`?t<b?f?L_l?ٙ!LSn?) s?x?R.1{?b|?s߮4?Ōq>7xߪ>-*>dM,.J>Y,>3@>/XF>2u>gs0 >(">鹐鵆?tw5>h; 1?Հ>z!0E`6?Znk> >|6>EՒ>>6s>:p>!!E>g>k"|µ>G:4>#5K>z>ڡdJ>5;T>\z[>eo5̈́>xςƟ>uޣ> 0M>->@e>TZSƢ>휔g۝>՚>ZA6W>KmT-_>T>j&>bS>BT?&Y?)Ǧw^? !`?ͧ?c?+h?eEi?'7mBq?"Lu?.Q5u?H|?v/Ɂ? Bl;?C(^em?bl? Ѐ8>8ͷ^>#>UH>g"qz?=>dJ>;;V?v>%>|H?>>O ,?X ?=Ly|:?8҅N?2}mR?ᇉV? &~cX?h \?bBT}C>G,gi6>?1H>& ?NZb>/C>Y{eR>>C>ٖ> ܥ$?Rl?9U3?;!>jou>w SZ>OwV0:?Rk>ڀ~vI?w#>ԾsS>)Ӻh@>գ'M>!>*/d>6j_z>J՛> Ė8>{ޛ>5M?>С>.i?88>paaOf>*> >/lb}>B/5?l)">! _nI?(+k&;>QȌ`S?lh}V?%ڸ]?z^?Mx`? δe?}"Oi?Ȗo?~EQs?F2Bu?zz?PLπ?ډ?`8P͂?[oMp?~X5H>)Ly>tN>ʼnK>S>QG`|>̔>-p2?>{;ό>opQk ? ʹ+j> H>1B ?0~p=?%!L?ghC"kP?vrhU?p]KU??X?#_?ob?0sf?K4l?ap p?}YQs?Mhx?%~{?Pps{?hz?EfMt>dʄ?> 9gd>.ҧ>S0s>[L?{>z>*%ys>Qn>4z?ы3>"n>v}??F8}5?QJUn>V%a>&DO0? , 4>I/S> p >&MAs>qQc> ^C]?+$.>.S>x^TT?&vQm?,>\p>6X0Ӯ>\dX>>ܤ->\/>QcW>ᨾQ>s>xi>Ȑ!(8?DA6>0>cN?"F?Q3>!s[>ֺM? RQ?yxeU?N ^Y?˝| ]?D1Oa?g a?KA?c?0Md?)kh??~I=n?Wop?5fuq?Ry=t?hy?&6{?8aA ~?{7 z?EcL?2sކ?:Ѝ*X>Ԏ>_>Y1\>_)n>no?RG`|> \Wv>IiM>%f_>buH?NŻCT>!,k?q>&F>} s>=_dǼ?f?LX > >R4)6?kE?m,%#J?3=O?XȷR?-3U?MFY?*n%-Y?\?s'z^?4@,b?e#f?EA[Zh?6Ŕi?axxn?hr?!~|6t?Pu?Nuy?5s0-|?5~z?AvE>U$*>sn>UrX@>T&>S0s>è~>\'Mu&>?oH>!}"o>˾+D:>+8P> qN> f°.>`>sE> .?UC><>#s0?zsEX>t v>W¨>ih>HF>./>3;>ŹeA>Ag>%f4>p.d>:b>>/+$>MP >6>1h9>3&>w;m#p?/נ>V:"2.>zz͙>:}>~x>嚜>g>{">H>F˕L>w>3>f>>+7k>L7>p%̕>TEd1>*YL >C Wq?4d>-{!>[Z@X?zA^?ޭ,Yfa?ua?9fe?&Li?mANeYm?9r?͂=Yu?/Q(x?"pg? m9⪂?}u?aũ,?Z9?tN>~JU\?wU/>qP>$8>ga>>La>TZX:>EE?4?s>cp>k??ǡDF?rQ?o/gHV?ZF,ZgY?Z?%_?0hb?^IՌle?+o?Ĭݗq?ƣVIv?=:,A{?[VO{?/t}?O^?8gd>S-X>ѡ˧>ҡ˧>;д>$4@$>Oe>'@Ci>5Ne>@>Y:p ??z>?yNc>q >?-A@?&>&>XN s>-f~?> 1>RJ>m>g>6nFEz>DA*8J>v+_yNY0`k.>İ۶>+R>?B>8&>鐔>udQ>W#}8~>3#>ngUm> ݕE ?|d>w-4>30?R,z0?7>>9CqǛV?صݒ\?]?j\z`?ec?#qe?34U*1>ԭC> `>` ~k>\U?B&F>r̤>Ck?ďf3>ݙ{>u0?m>kR*?gU@7>ZRP?w0T?`4U?8|bX?A\"]?5)DO_?Nd?l4fZh?›#k?s:=p?at?aPYsy?Iuz?γ|?GJV!?)`I>܇3>0&j>!>Z­aZ>Sɜ>e°.>/v>?.M>>sB_ ?{ مQ>r= 7#?t>">o >M/&_>O>RLhX>pK >)F?Y->?>Ni>w>y*H>. Ɔ5>t>zj>y8Po>ʍ>)`>(K>ձ0>w-ښ>"h'>CU7Ԥ>2+`>"d=>Zgۧ>e$l>jX>/pA>=/>X>~vT?&GU?nd` \?E-^?EL^?!J^?pd?UI&6 #f?cg?ps݁'j?}Aq?xHiLCr?Ds?(QGu?U|?V%}?s 3?98>?YNzRӄ?s? \Wv>[Hl>7lk>#>ڷa>2#У>A'>>G>-LS>%D[;>Ҟ\.1>j=?^ H>Ѝ^(>6m>&F>jpf?ShOO ?Gёѽ'?}TO'?fM?\ßO? U?٠=zU?U?m}GC|V?[)^?5(`?䛃"=a?fc?`{1i?\"Nk?]b6m?/f^>̈́A;>y>Ne>06>:^ J>Gn'gNz>A8Ac>(b>|>瘝I>n>ht>&H㹏>f°.>l4???@T!?WJ!?Z>[!|d>=>E6Ea>ݶ>خ>ʇ*>F6>-bd>(>Tj->KID>ՙ>nIvYS>3;Aw@>6>!1%<]>S;-Z>=C>D>C>4>2B5>;Ǽ>J{ >lDX>>nfX3{>(w n>~6B> Z>%'Ÿ>^ \w>WS>񲀞>#,Z>\Rӥ-{>-ʟ>+oM>Mƅ>Y?oB]?1?74e_?'6@V`?_m#e? Ge?k?[Hq?MNAr?w?%Ί>?z޺?Ķ?aA?=<^?B^>@>S>#a>z[>x1> Hl>ߕj>oa>Pqs*>&F>֒K?Vg?BFVA?Ђ AQ?3.̨NR? U?iքzW? OX?8_?نZX_?',d?)Pi?v|4ӧj?u2p?* v?y?'ЅR{?: &i?X A?͡i>{C>> >> xT>f^>I L>dNe>9;^> f°.>X>C?ØN O9?&/0I?57Х>|>D2>_@>!c_>D5>xKg`>={uH>]>qT,>bHK">M^>mm>4M>W>:;>[>X >ԶlY>O7r> #ϐ>͏>ͷy,0>>Yf¥>amQgH>ѮR|>-[>lK>h1>ꫫX? [?%`?(a?~iNc?nT8h?sfl?ц5p?SH9t?Fc$,w?H?Qo3?@?f*?:ّy?` ~k>>]9>>s7>G]>b/>(34> Ҟ\.1>#&>WI>[#v >>a!һ!?U~kr?%T$?&A R?0BS?e3aX?ȉ Y?1gۄR/\?!Gla?Xd?qy5g? # m?&wp?L0Jx?g6x?9hO{?cw{? MZ?Z­aZ>얭#>ʾ>X3N>#ߝVM>E6XE >.ĭH>?`>|>)Z k>\/>)z+(> -n#?ڑ?Y?7J?oIS>*]a>_8.% >_>PoN?>>YB}b>ZG>rTN>J`' >a\>3>6=$:;>x >>ot>XC&/P>甥 >F$0×>e;>vM>- s>yx>H?!Q>p A>@deˠ> /]>yH)X>slAà>4_c>^#g>f.pyY?;3Ky\?ra?Z5,3b?fid?>rK>H>ŪXk>+'?k>S8#>kZe7>}> [2>rS>.W? ?jf\C>@1?FRR?3-جT?l1gY?bdZ?qs^?$b?he?ke?§,Oi?kGo?ٺq?IEnz?hl&z?/i{?3~|?Ψ?I^ J>%>pJ,.J>_b>Ws Y ?L,.J>_=t>ۑ>i/f>N=h'5>K>)>;n? ,/`>Mm3>5qOO)?`?8~}>&Ӱ>Ȭ>4"75?ZHr> (Ql>iS>$eZ>^>JT2>ʲt= >Vь>R9qh-E*>>)pWV>.Mؔ>>* >Ku;>J)O>^Rz>23>hmt>3Fy>5;ƛ>ϻKsU?ׂK u>_N G>S=?g1\>u6Y?h]?{V`?a?M]Ee?Ҏzu{6h?wb֋l?Q޿`q?p$t?fw?X{? ݪ?iς?r)?JYʄ?A~j>e&>eS>lu=>7U+`?f3P >h-w>'+?>H9ixA>E6>5W.?ioH3?]Fx>?y%X)?ŅꃸR?-&xU?R_%X?ܩgӣ;Z?ҡp_?ށp]a?nd?j?jim?X.mq?>^wx?ܡ#5z?;׿v{?6Q2}?ԳxZ~?d]>\ϵ>>)/>$r&ߐ>?WPu>ASQ>ŷ:< ?:\>p>eM*<>۶?ժ,?9 {.=?2gO"?/K>+{>/=Iz>xۅ>6Zj'>Z$e1mZ>j{F>!ښj Sxn>iÉ>P>XLJx>Dpr ?tSdu> #>I?A}>Yj>oJ?43->\IѹG?I!>6).G? K^>E5U!>;OnR?/ިU?ɐcY?P,;]?%){8n^?Ř,b?Id?e?ͫ:h?Pi?X5;Nq?+_q?`Xt?3 t?L}?2\?\_?ʞs ?~΃?AWH?p_>Y1\>@1Q> U*1>C!>{K?RG`|>XĖ>_>>@?d>Tqs*>9(j>G8#>>jWZ>ė,7? r*?pnbҫ?E&?tqT>/?)'$J?^1O?]{R?&U?cn6V?V)4Z?^R1^?#C^?V8b?,V{b?>$Di?O]i?e`>n?n?fU8-6u?;u֌y?bTy?XS1Az?é|? ̈~?sn>,">܇3>O:D^i>n40>T0s>c>L,.J>d/±>?>;^>~3>S=t>M,.J>fs0 >&~&71?([j>wѣ?3Hܥ?lbǎ'?J[.>b8sx>&{>ӉW> ]h>:{a>)^9Q>UVE>ֻ>hfďA?==>9š\6>-v>l >)p$}#n>>U>9w*,?ɽFm>QI?ȴ}R?>s ]>vEBߢ>e#㉝>Txܔţ>5D>)B&hy>y8>(!J^:>֮3m>yX ?=×>tZp&>]Cp`k>T茢|>(#>Uz>W~v;5?}N >{ȉr?bEdx><ܴY?\?شRb?yu1d?gd?r2a!`j?&Wn?%Ϫq?rC@u?%<y?!]?zɂ? ߃?6nf?`?ư>_A9>y#У>J1?l6m>;G>^>q@$> >A'>>xa? jN3>ŗ>rNR?Xg}mH2?aFR?BAT?[?n E{]?w^`^?w Ac?[&f?; Mi?zo?s8 IKr?~8z?x"WPm{?c4}?bx}??_~>MF>Y16> 1)T?&H㹏>FI^> i>ҩ>oZ>:^ J>Mcd?]gU >zohˮ>Bdg h?%l*? b^H[>f >LU>% |M>@>ޔ>~>{>\1>Ԃ>s}^!ibnp>.>?o>,VL̡>wTș>H١>$[>S]T4>OzZ>h;Ҡ>'"P>9'|>k狠>.>yZ?н C?wS\>Q.S>>abT?D[?.c}[?RH2w]?ܤ}d?#d?#Oh?5Wp?4t q?o[tt?vq{?O}|? #>_?yD?|0C?v>8GqW>wU/>.>x$>>_>4?@Ox>TUH>ƠA2?l<Tt?D6>j6?o!?!KN?{S?yC >ѡ˧>{,uEYV>nI β>^;\>L,.J>8'%Y>E>1H>&z1|>Qh{>cM*<>|B?~eF?gtjW>:k3>^ )g]>ٰZ>0̠3>,>f>X >}e>ݬ>Pr>YVdk>źe>"g>0#9>->mk>gS(>->$66>տ{Y>gU>n>3] >P>ޣaҚ>.Ԟ>·qT>3>f2>J>paS?t_T?1#\?,/<\?Q~W]?r]?Bd?>#e?c?g?jWj? \q?U!q?Es?$t?PW\|?<v?}?4?,D?W@n? j2^?h㈵>*VcQ>QG`|>>uU>Zi>-LS>JԬ$>)ݚ|>`Ǭ?u*>q0 ?,5u>X8#>4>Gc ?jUާY>aI??& x[?;i)+ ?X,QIL?OmZN?L4T?NT?5 kU??ǁ+cU?MX]?ۙfW^?{M>`?iYc?Irh?zi?8;|l?Poܟ>S0s>٢x>N!>>7Ac>5>wZ>ùrv]?As>5?s>k=t>D4U>&o _t?_l5>k ?ra~?JF?ȑ%> Jv>Q>6ُ>\ܺi>>N}ݎ%> c>Z>hu>'⦤>!>w䠱2VUh1>FC=>srA%>K-z>C r>z&>+J>\4z>)/m>Mi>-zÖ>L(>- 70Ǡ>?hB>"갻>>Rw>[95>哭>&>.ۆx">G[h>;KrI>i`?Zoӟ>7L|>Lll>U[Ċ-W?Xj;S\?hg\?^S_?p$d?۟:Jd? zk?Ip?dq?4E5u?E:%;|?ĐL|?[(?$|T?<A?>:s>;G>Tqs*>Qz*>Ѥ|>3D>RG`|>?K= U>Ddpz>I(?S熈ȣ>d?l,W*?wx<?+<W|P?!"kfT?=56T?je=V?ji]?Y]?a1r2d?`h?ˆh?JDyn?t<Лt? Ht?Hʕy?% M?DAl?)+%ys>JN>XFI^>;^>p>ՈT>rb<> T0s>8>R>,vM>,- >pIiK>0\(#?d;?R酳>=&< >8G>7 1>>}>:=-> v>&?c>D9֯Q>_i#+>Z;>d0}>FGhn>.e?->'G>? >/>7wK>r}>2}>eZo>=>[,>'= >?>k>ɵ۟P>R"qœ>9Z>|>v͢ W?*-S [?O[?9_?9<b?UCc?ùj??( p?;خ q?u?Z=%{?/3l{?m2d?8I !?\fꈆ?.>ݷW>L=zc>5uH.k>I J?_NN>m(? w> >T:?vt?) >jy>?o g?'s%?g|gLP?@V|S? ЩMT?}H(W?gsɒ[?r ]?4 c?lslg?L.h?+ n?,Jt?/it?z?CDܥC ?+Ns?R0E>Dw=>w1C>9/XF>t>\ё|>'M?S>O)]?E/㉀?8^C>t(>E??`?h_s>ϑS>w>Iآ=>0>u>9w.>*(P3>`kc>gQ1>/CEV>eIˢ!>er>uă>)>A0X>v}>&J>$Q2ӛ> (]>ӥ>-">3R>b.n̛>3Uz>tUKҜ>v5>Gn)>U_& V?3yϏ<\?N \?!J^?5Ldd? ce? "5bj?.ʕq?&aq?O0vu?Xa}?ll%~?o>n?m_*?,+MJA?4>88>LUާY>W".>f# ?%>Gg~X?5&: ?v>=I>=>7v ?Gq?UF?`|?lYRP?E&#ٜT?UT?m}GC|V?+Q~=^?b^?#wCc?&i?26ђi?WUo?+ɓ6ru?09]v?}ENz?&ƽ?Q$P?ZLi>^{s>Bl5>sY >]O?9G7>8\>plП>h >MG.>NZb>7z'l01?LpN>zPB.?Js? ?GCU>K0i>06\>,~>t >y;^>!`ʋ">NbV2>ݟ,$3?n.>*2?MUp>騰>>ҍV>bx>M)>HI>V>Au>ۋc&>1}>> ܕ`?q|@ >]!~q8>h>@b~`>->b*{W>oA=V?avZ?OD[?_?@$Sc?,;c?5j?*"_p?(up?Ccíu?pݧ{?R%Tg|?mu5?XO?K?!?å[x?BF6>v>=I>AtSrX ?2 l>Vh?%f_>!)? 9ixA?0E6>;Tq8y+ ?B;sj>MN{/?]bU@7> = 6S>!h >MG.>搀?nwF5>J,T ?RoH>lCf'?Dp>dM*<>LsqsAK? ure>swqJD ?Rt>A_d:>lׯ>Xܟ߉S>]+>D>@2o>%->we:\>#+>t<>LW?H/Y>8k>gͦ~>D}ZbRBM*F>wA4>lg@F>;Mj5>,)>st~>9l>P}>+6O>]!%>?yWO?rqYJ>CGf>q #a>-$?q$R?K(cT?yZ? Vx\?4|\?F\?2/c?!-dd?h+f?/Ch?iۧp?~ &q?2z }r?qns?T{?n|?>~\?.ꏀ?^󕚐?(7d?p \Wv>3D?wU/>2W>r6*f?v>>E[?v1KX0>lu=>iz@vu>?sBZ>-LS>,$? ??0E?d)>>KL!?th?yf:`!?[ywL"K?dJN?CSS?-KT?"T?"T?A96%\?]?`c./`?B̈a?Ҭ_h?ı2t i?<gj?Fd^l?"2t? u>t?K1p=bv?fG.x?p??)mX?Dè~>b<?ѡ˧>&w=>T%?>Dh >exW>"&>/>&]m]>{v*>u>A8Ac>nw>L>>NB(>[?@0?-7/?7u!k>~8^XV>z >,ҵ>xI>k3Z>Ƕ0Zpg>yGp>}O>g/u>d&!~A0U 6>r?>֩ )pNg#j?u޺>\jk>>TX)s̍>I?V>;AU}>x7%k>N!†>q?FmVr>~_?u3{8>*]>ԻQ>bJ>&>_C6>dH&>#j2?24>m1b8 >eG>|{<>Z}uUV?fr(V ]?(E^?(ȯ_?͗e?JIf?j?քq?;Mr?Аu?P#~?d?bk'?kHcC??_>Y1\>4~X5H>GGn>y l>2RG`|>>.]>U;I?;ό>Pf?B|>X8#>bfb?"`o1?`Ej?!p#?SXgP?]AΊU?Y欌V?.!W?7n^?FD`?+柘tc?X7i?iz{tk?Qp?kv? w?|Oz?V?uu?sn>EfMt>G_>[owF5>b2PLS>Z]);>Qn>?x>k=t>i ?Y"u)?>?ͮ?߰?>>Ql7>>8 |r>Pu#>k0o\>֛I@>uV>MQ>WQzf>u3U>h?- h>.+>>KQz>K>94>ޤxV!}>׍ ?>tE>Fz>,1$v >x[k+>N_?3}m=>*=>"$;?I>c#W?-ұp[?ZӼ]?湫D`?ˀƞc?`Hd?Btl?CQp?&(Wp?&+v?5 {?B>٬|?ْUn?#j ?͂/? ɖ>^>/M*?B|>?^>Ѐ8>9'I>ܵZ<'>o> ɖ>ޑv ?5I??9'I?(;?2\TB?8 JvQ?JT?H5:U?J }X?_?\?>>]?H:vd?NI(hh?:Th?p?#Ot?x'u?.`z?R__? W?I9> i>="?x>.O>rBE>*v\>x2zvm>#(j=l>/I9>ގ?? ?Hv\ ?N?>]+?`8>/*^>!3><'>j)Jm>ЅP>-%M>E>v/z>g'j`>>[C\>9 F2R>VH>=5>+,>yfܖ>=I>\,?>H\>U#@>I/>eY>/Elt͖>`>_c&:> >msآ>0?> e>"v>g|_\V?\bW?}=u\?8fٓ\?I`?w0ba?K`J*)d?zbv)d?,M8i? p—l?7mCp?&$H q?-:u? zw?n0p{?3$o}?T޴?]I`x?#-#?abq?>l6m>wS[8>Ѐ8>mc>a{;>`ьM>x>^>-LS>xj>7lk> [2>1g)` ,?S# ?d?< >sxȠ?J|^ ?2/(?"R%P?N_ZQ?9T?$vTU?vUwW?OgY?V>Mo]?f\]?Yqb?@B=ld? 9έh?ǰh?"#n? |)q?+ k\t?E&}u?06z?znz?'tW?^$?_~>H㹏>YӴ>rBE>|8e'>o">[A>lS>i>A8Ac>M0>A;>N=h'5>q s>˫uC>?>7h#$>C}?Օ7n?·!?Ÿ>0>q>EER&>'6>a05>d,>U>?>icϜ>{N`E>f.>n L}>98_>*t">՝>ccC> 䉶>9F>ZK>\ŚD>Gs>dw>s )R>u˛l>G~;>]G>FXD>ſB;b>ؾ>'#>i>4g>ۜ~>k`>R|>쁗>;4>šA,>OpĢ>8Z?{KŊ[?g\?Ura?J?pc?Dd?_>Y1\m?%KZp?¾Dq?^2w?$MBz? h|?Ƿw ?Q?t?#&>U{:y>+y>v>S3>/>S熈ȣ>3o>S?_>Y1\>W4?]@T5?2?JɊK?%>'?Vn`n S? %^T?Ѡ>`!U?h̫ Z?0?`\?鄲^?sne? ,Ng?Y&i?n unq?T6Ys?W+t?%{?.b ?k"D]ń?MZ k>SlOik>pᄢ>D>>٢x>,- >s:>p8 ?sn>G?kž<?M ?C@yF?B*J!?lYk_<>^Gck.>ZpM>/>h6>>v b>)lB>n->4yD>v)d>:>~ q>dQ>"틏O>r ].c>Iu?>NB>'`J>wW> Z>HY>Ll>#\<_>2c >h4>_&>*ՠ>C Y?^`[?,,}\?x&Qa?Ҿc?p$d?\Lzl?/p?q?{uhkw?X9(|?f(ϼ|??QH'?g?DJ>ZLW*>(>>@ T+->[L>G޸>:}|;>ډ5 v?oZ?F?}F?a ?>fY=j??QڸFLR?g3iT?8T?XwZ?\?ji]?(rMJ e?gwh?0xi?*ڥq?qt?xt?)Q){?< ,?![?Zo_>P?>^ J>Ōq>&w4S>SM6>` >:>?(P?;lO?gcu}??+%ys> ]Q?J3LA?f++Z>.yϏ>dX?>d)$>[h_>sc/>UbuN0>qsCU>bu{>sE9>F]>O>85Q6>n(> m>Cx _>vړ>:>HxVݙ>WD> ~o>aFN>D.)>r)>ֿ>1DshK>ͣ2>D>8tN>H%OlX?d~]?@lS]?q`?mh|La?O^Q7=e? !l?˻Wb r?`*r?i]W=.w?A~?8:{5-~?| ? >î?Ƒm݇?k>>ӓRK?'x]O?v>.s>U*1>$̐?v>NŻCT>A2'>r^? P23\?6N?^^*?;6L/Q?=ߢU?=OU?BkX?EAY?`QU_?d?us\Yj?Uj?p?S"u?`e gv?9 ZnVz?IJQ?El?L,.J> |>[>)+F?D>`>܇3>sS?D>˾+D:>#vm>iN[>G/w?EfW1]?4HJ#?W5|O%>< >K!^>]; >>`>EOBt)-w>?S>L >7>W*(=`R>yHLEnO#9>P[>aQ??u2>YH>(}4Ė>B,I>|>b|Q2?z[>8X>heù>RKeŗ>/\S>> ?ScM>d>.VC[>hX?^'7w[?7*Zs\?67a?Phc?Ded?X!\d?;iAl?_A8Qq?O:w?9}=_|?pE!B}?4W0?j?&Bz?k>ڤ1G>Q* >k{>G]><$,>KW?0*?XWÀ?rY2?a ~k>eBk3 ?&YO@?*f) ?B!?e :G R?ޅhT?2T?z!"Y?{ 2]? r7]?x鷺]?ڣ\d?[~Hi?իp?t?:c\u?轢qcz?S2X]?7.i?L,.J>G;g>^C>>E6XE >Y>|9`>-ȮłQ?^w>3?ل8% ?Z­aZ>'81e?O?-vh?L"$?X&>A>b(>S> SQ%N>]]~>e3G >q!>%>_?&>i> |įL>3>a>^Lyf1`?>+9>>Pv#/>탪>)?Cڂg>Vc@>ۧ>Z)ޙ>՞;R>*Y?BZ}>R +>a>d ˀ9>p4?zWQ?[Rݦ|:>qf#?ZX:>Y;>)MB/>2 l>>/?+-?Hp<_?Ӱ>)#? ->֛cE?Nf>$j<)?\Y?K ?TQI?AlR?GIՌlU?;V?#lAV?JČxY?ܛy]?x璢|^?ыb?BCd?h?W`i? ,n?!.r?yёt?@`u?3y?@L…<{?|r?C?>iBJ>l*|?L@>u>!>nwF5>Li>Xv&>q>= r>J ;R>҆EK?I\>0,^?c` Z>At\"?lȝJ?R%h?ó >C]k>6@u-)}UI>=:aN>s/U>ؚ>`i><3\> >Vw>pNzm>V=~>+|(>`CCA2s>RV?Q8>ۻ2>Wǖ9ŒSw>Gf+b>/ )|>zdt֩>(Q >qv>7s>6orw>$S[>/ao>V@oo>;IGoj?TK>?H3NG>}h>Qe>y`>Yו×>d2v?^H0~Z?}\^?I_?*GNa?K>le?Nf?xl?2{Gr?}"r?w?Q&HB?y?`8P͂? ? {?_>Y1\>dIS>" >p \Wv>D>=!?`ͻ >X><??lI͝?B ? *8?Z?K]5?"VS?PU?Ӱ֡}1W?DY?S`g_?k/`?ZDe?Dzj?"lj2k?iLq?3>w?4]x?Pps{?:w(?qST?sn>5>׼G>Dè~>K,.J>/*G?jI'M>Lq2>ڠ^ ?/>2V?Z?|??{P6?9 ik1>3)w>]{5>c>skV>6WG>Fb>a1g>~ >~J.>8\>Un>ded=>U9K>ЍZnK> ^>D! > [wU}>؀m> #>R[}>K5j>I>^?>pB:>[Is>#бM4?]=>{P=U?2~W3[?^+[?*ԭ^_?jhc?\URd?E\j?&5p?Sq?/ިu?ҏS{?+'Q|?Py?s.Ue߅?&Bz?pL2>ǻW>=>c-LS>p \Wv>4~X5H>wU/>-K7?K>@1Q>*S+냨>>">:Z?c:?0bp+O?S?&׍8T?hV?-s\?hh]?A(>c?aXjAh?P'h?^1o?:"Q^t??)t?tz?Vl0?7.i?O>zo~`&>Zb>)8Ac>Dè~>EfMt>ѡ˧>{h: ?.ҧ>,">dDP">(j=l>lM>Y~?չ" ?a%>D> >_O> m>c`Yׇ>EeH>7[>[ >+ER>f>όs>K]nv}>ǟH>Fߕ>v0>=S=>OӢ> W>Ȋۡ>)=$vw>-;%>_6\>s|P>L,۝>Ý<>b6Nʞ>UW;˞>q:>$F> B?nV?zV?:gImY?u`?PI `?!Vab?4qd?Aj?Oʤ6k?Y |En?Oo3q?wEJv?o2z[v?y?i+|?)ϼv߁?ne΂?a?؞Y?YY>"J">[Hl>ڤ1G>/{> ʹ+j>t?>_a>}>csצ>3iLa>2RG`|>#x?=/? `t"? %Ȕ>0|@ ? tȾ#?gMp:?ZWP?h˗P?)ZwkR?b|eW?эjW?*``[?\f\c ^?3+c׀c?5+]c?|])0lf?Bݓ[i?]zaEp?zq#Rp? POr?U*u?~q,z?| =9u{??}??f>(>/f^>G;g>>Bы3>l>@QeҾ>i/f>Wz>9>k=t>5Ne>m-c>91 ?]"?E[>}PJb ?ⷪ$?N۬>a'>sSw[>>?܍>>n *j>yFV>t1>C =>ʳQo>>D>ƒ&E>Hbdܧ>UQ>̱a{>Hlr>Ɩ^>iNV>Kw 1>G.Y>e,>*ՀI>Rڤl>Њ" > @>n$>i>'2>5>`-to(>8>2l>(8>M=>i -8>ئl }>,.rJ>$>i#g*aG? _W?{]?L`?vzd?W\e?:7' l?TaFFq?HVq?^v?n(u|?k#]J}? -1?Z珆?Z`t?g>ڷa>%f_>v>&v>Zp?a ?;G>p,2h*?N;G>elu=>? F?=d)f?j6?sA?k8@t~Q?\ŧU?WFX?Qn]?vR]^?ĖcRwd?8i?*zOi?,x p?r *t?I au?7q8*~?Vix?zy?bG>Ne>ЪoH>!h >h >l >{U?LFI^>@K >FI^>/>[6Ba>@?nt ?|B?l>%k>r&#>%M;>?Dy>#력>u1T>m2G>F5}>>@eB'>De<>&>-*P>h}]>~'>rLiSR>nA>/WM> >C RL>4Vv>bi>$kU>B]91>U A&>ZS>JGN>p*n>V?ܪ[?}B L\? _?)^dc?fvd?+qj?~k, p?28*7q?bu?4*p |?!i|? gƵ?u??6k?d)>>@4u>E6>jWZ>Ќ>UcQ>_5?U\W9>X"?&#&>A?S>(XMK?L=zc?_$?>gB}P?1hϪoT?GNUҨT? W?(ח\?'g]?妐c?G9ig?;u"i?/o?/J3zt?wbt?Tn<~?+s>eM*<>gs0 >kf>]Poܟ>>0mzIO>Q#t>pZ k>kZԇ>iL>)>;;JjD?t1C?M?3Z->ڻ T>kP1>(/wL>7>VR<>%F >e.3>)>[b\ >2{,i>I v>/>-}>'>>^>ס{C>ΣuJ>xU>^>>nMDb>'G#->F|, >XlL>|o_>+f>?vt>N >B>Q\>rW?"#^V]?-s]?FBj5a?>]ݱ&e?e?_o?Rq?unr?gsu?`U}?@=~?7e?nT8?u!Ld͇?ڷa>O>h㈵>H>kP>}>Wf?4K7>$cMF>Ѐ8>i>tN>ttu?=d)f? '?%-POwQ?jU? U?BY?6^?K]яp_?7pZHg?XhΗji?giQj?o?ou?=u?yp{?.ۀ?``?Ne>Y+%ys>7P>pJ,.J>)`I>/f>塚>{h:>)~ʣ>-tBE>/>8gd> l2դ>nt ?*1 ?x@>g\>5'Co>g> 5>Y): )>bPu>$1>,8>BT8>W(^>܃J>7%>6k>lJsrGj>s:қ>N1{>̿M>!>Oi{>k>|h:#>#E{>-">{p/m>&El{>MK1>) ϣ>u҇R?1hV? &lV?#EdX[?*_?E ҟ`?հc?$,4j?ap?^,u?}qJ[|?N|?pTm~?:y 5?T=?f? >1 C?S>>ӍZ%J?>@Ф>͎q(:>p,2h*?[2>]j6>g{>)uMw?e2c?[2_N!?i㈵>,ÄBP?@vP?;(rET?٤V?btEX?g£K]?_Xe c?m2OSph?j o?hUlHt?t?Gv?E~yz?]T??')j=l>;;?<=q>(j=l>C?/p>LѤi9>K >F>h'5>>3>Eq?pS>WD?8P>~/R>01%>U5='?YZDp>|bO>>ŒHiT>lO>NJ>n>1Z >'eSYAi>¹S>9S?S|>ut E>Љb>">5W1>wU`?c>ǽ>@X>Y$>&i͙>J9 G>4W>q>=,xR}>4>1hv>ps>cDW?tX?xb[?IbI\?\޽`?St$`? ,Zc?  Rd?ZMHl?qjl?<_E p?Wq?+@ȟw?sw? {?^-wf|?-E?1&?L@Ѐ8>7>5Zz>| \Wv>]j6>ݻ\?a;j>k{>>#У>wI@> Lr>m>JG>:o1>'Pu(?ͯ@ ?P4B?ފs@p)>d?֕G?c'hQ?n tQ?R/[S?e(U?E5l|X?mRX?ZA\??8e^?s&¥d?hd? lg?+ZQi?${X2@q?[q?qȃ;s?=f=Cu?j`Gz?pH_}?d>?d;ƀ?>XsBE>>p>Dè~>>i h@>Ny>>06>b`E|>Ó>E"">(KxM>Ntw5> ?Xz?8;?< .>0v_t?A >Y܎>IUO>܏1> Z^4>r@>V0f>u%M-̵> 3>/9C>J&@&RU >$ J>[^S$>Yꑿj{6>x>՞Dž> eS0 ŕ>و!ە>( ؝>`"z>$xm>o2Iޔ> *>/c6>mB>jD>#LIh}>;?05Y>a:>\jd>?Q,~?x\>4 Y>P-}> i`Y?2wV?*)j$\?x!^?;f_?l\c?{݁'e?NZY~ k? ESp?_ Pjr? ?8:v? #|?O~?ŋ!?OcoÅ?+@5?S>PR> U*1>6VcQ>9π>R>-LS>q V $>>s>Vv>Vg ?g>ǚ ?T%?6 X\$?kl"P?}AK9T?[ZU?+ZW?VQ#]?\3%|_?Cc?>>@g?0|ej?.n':p?ktu?Wv?c#xz?[!K??<=q>4M>܇3>Poܟ>;C>@>7Ac>>7?z>T<>C?|DM>k?(?1w?"uIE>bW2>b5/>2$Su>&a–>>>y#>َpE`?x>W2>9x>>aŵ%>*z5W,>ãa缜>9?ݜ%}>IXֿϛ>9}}>՝`>W>ΘnA?:>hњ>ݻf>^ݰL\> c>8ӣs:?Y?w&Z?gf}[?a?IG*b?>d?2Emm?31]o?DZ!q?h,{x?SÑz?`t|?Z F?I2喆?,+MJA?v>̌>N`^>y4>[Hl> `>Iy>@l>I*R>O6m>S>a$^>> K?+|J%?6GT5?]ZPR?kH!ikS?4fbT?UCABY?yAn[?"Ԏ]?C{e?'(n(=g?1tUi?-Izq?wIes?-Nt?u;%|?@]}?Q$P?C>O0)v>{,ٶ>4U>Af^>!>]+o>~>@V>H㹏>*?>r[>H@>ڊG?qɩ.?1 ۙ>p>WjkE ?e>T > G@P>c0>f{\>@)>>L7mR>j*#i(>0Ty|}>(82A>> ˮR?1r\T>&(e_>-1>Q) >z;>R? %>o\~4>J2 2>>T1>$Ș>*XvZ> ;ە> Ɲ>2g@Y?3O\?:Fp60\?5H]?L b?x1!b?otnWd?<.9d?΢w*n?p\M 4o? ; q?ݥ#q?ly?50#5z?{{#2{?B~#|?0?Hh˹?46y'?m>v>1>5>>p>k9I>jWZ>Lx>fÞ!>չB->l?XXq?v>ܳH2'?Rs@p)??UMu>9EV'R?xܪT?]#U?kmuU?L<[? W[?2N]?S"^? j f?) &Gf?|i?qSdi?;6r?O(ګ!s?Y>)t? !t?`nĬz}?GUuB~?1vK?@]}?_~> ?Q"">D>wT>@G>Q0E>q@yNc>I$!>hs0 >BM>j.X>+4>$Կ ?9q>@h >6YU ?P . ?J3LA?.j_>@FD)>^$9`>hs.&>Sqk`>pd>` E>$o>LdW>Ơ>.D>>ӏ/>8~{>"p&k>kK >sW>qA>1Qi>͢>HYx>f'td>j?>˼&> >i>}>4s&>$/ >=]>ySyY2>Z>9҈>?p>ƣã>%^1؜>Fو>p@*,>@@Ԍ>Όٗ>7P뀓>'?a>Q[?hg\?^?sA{Rc?!c?o +e?DE6>&c>%1>kP>b/>y4>9Ee>X5}B>g{>l~>pL2?A-&?R?;o]|$?T?=56T?,rV?e@N5\??Bb& ]?6m^?SiY1;g?J_bqh?2(j?r?K<t?fiu?;+i~?R__?f6-?-+o>eM*<>H|8e'>wT>)`I>.ĭH>4U>,\>vR->3>i!jEo>O?b:S0 ?`#6 ?`K?`>>LNO:>mSZ>rUK5>Gn<>2V>tf>F‚>U>wz0>yR;X>ZM(>zD>@|>uE>>L><ԑ>Qp>ަN>J~0<>p>5Ax>!D/>Pb>u㭋>7>~ꋚ>.$fQ;>S[Z>7Z>ږU Y?V\?Ƚ\?ia?-hMZd?-hMZd? Z+l?kDp?۠[;q?_w?HV |?-ԇ}?{b*߃?e`\?6k?h> U*1>=>K}>UR>ڤJ>@l>O>AVcQ>i-? Ϻ?;ό>4!6?.L=zc>L=zc?Bo"HR?dw`T?!T? \Y?S-͢]?S-͢]?`Se?kg?e(i?|{q? .t?zZ?u?lkVC}?B|<?ep?5>܇3>+>/f>Ƴ@>/C>~>#B>Poܟ>J>^Ȝ?Qn>@D?0C>A1C?\)T>.>`2Y>cr{b>?;y\>DuX#>+> [Nb>>I9&P>p>te||>0.˯>~G>l)*>1 >ak$*>5RFLY>ݶޢ>"$>1{Ō>yw>ȟ>FRx>?⎭>c>̙>KN;>>:b> aM>IZW?WEU&^?CE^?LtPȻ`?Յ2ge? e?JIwjk?ق?r?@r?\qqTnv?k~?Wzm6Vb~?$A!?Q?rtC?#At">Ӧ#&>J>L \Wv>;G>~X5H>_NN>Φ v>| \Wv>eDe9><3u>RP1?NhB ?*E?(R!?JNfQ?XJuU?TZdCV? RnX?G>{_?3um_?m{d?~Muj?rJKj? tBp?[Fu?@/.v?P 7z?f?YJ?B@>Y k>/C> è~>XFI^>EfMt>\ё|> 5>Dè~> 3#_>zs>eLn ?8h?5iaܹ ?l>~I ?5>!>b[*: VR2> 7O>*凴>vc &>g>[>>4>K_:S9W>U<2>I/pG]>gl>GߚoyZ>f;F>wo>00 ?n&S>;m>[~>ݥ>#$qE>ԩܚ>rE_ >E>E$KY>zng>MXs> o(G>ܪ>vӂW?D?{[?n6C]]?H.*`? )౲c?Q"d?{L4k?ﺑp?񧳀p?9]v?=\r)}?x7)F}?1`p?s.Ue߅?GL"?Ѐ8>G>/}>p \Wv> M>1>K>*I8S[u ?%f_>wU/>C&j?XB ?ڝ%?UMu??Ok?)Q?gT?3aoU?voBX?Zu\?d]?;B0c?.0v\h? h?S_ jSp?tH Ju?怒A_u?TSy?Vl0?9d'?rBE>(KxM>YUdq>Dè~>$e툙C>wT>.ҧ>hwO?ЪoH>ѡ˧> >R?G{?=f1?.j_?DH?3R>y '>|>ls^.>OǶM>aX#!>Ft͊>Pw>?p>9>+8{X>[]Ȑ>@)>m'>y!(\>U1>J >p{>k1@>ck4~Y>PO׿y>J7>D6>w9>#ǔV>T>?@T}l><">i[>@ \?ˉ40]?[a?ѕT b?Fc?| !d?i3i?,M8i?5iIp?3Tq? t?"Gu?u<{?Tf ~?m4Mr? dP;c?l, s?Z珆?9(a_??6?2>-LS>=7k >1>·a>.s>dJ>sv>_">1>n\2>QbU@7> ?ᢽo ?(4Y>q3D>:!1? R?uh㈵>mXk>dNxT?}.OU?Z? -wZ?t쇀]?J苪L^?}b?Yqb?Lj'h?A3(i??n? o?n![/t?.u?:wyy?51z?:P?Vix??>q7?;+%ys>7Ac>:>8ޒ>Ne>`>/C>h >TbB>>V?h'5>Rt><}?ݏϚG>c<> Qd*?=7>@`#6 ?27P>Z_b>VN+>D;>C >pO޲>_W+9>'ڌ?0%q|D>ڽ 4>t0>px6vs)>p>Bv>IB ڲn;>B:>B>R7>"@^U>fX>-ؼښ+>W^d}>>i[>R:>~S>%E>)7{ݕ>e>^W>)>k5B>)I9>XU >MF>\>(pD>X|%?ʲՖ>/!&rW?G\?Tm^^?}EVa?!@c?+~7e?,,}l?L9Rp?z Mr?*JU[w?x W-}?f! ?ث?O݅?75ڗYq?1GL>^>·a>k;sj>S8#>k9I>v$>NY>j0 ?cU@7>Uީ>2SV?Ii>f ?> ?㸥ClQ?wKjD U?a+V?oAOY?_YiG\?+^?8d?y5g?(,j?C|* q?Ɖu?v?z.5{??sH? F> i>Ne> ure>G=t>U$!> nw>EGyb >Khc?,t>F*Xgz>(fH? #> %/;?'/?o,>;w4>n0p>!>W,>Of^>t]>h<Ў> pV>z|=>}a>:GH>'e> 7%U>(Th?_ >Wo$>`چ>h,g>.E>m5>¼7]Z>" > 8k> `>_ v>aX>>)KRW>RG>{a; @?_avgConcSLS_pH3_I15_Igor__sdConcSLS_pH3_I15_Igor__avgFractionSLS_pH3_I15_Igor__sdFractionSLS_pH3_I15_Igor__avgKCRSLS_pH3_I15_Igor__sdKCRSLS_pH3_I15_Igor__avgConcSLS_pH4_I15_Igor__sdConcSLS_pH4_I15_Igor__avgFractionSLS_pH4_I15_Igor__sdFractionSLS_pH4_I15_Igor__avgKCRSLS_pH4_I15_Igor__sdKCRSLS_pH4_I15_Igor__avgConcSLS_pH5_I15_Igor__sdConcSLS_pH5_I15_Igor__avgFractionSLS_pH5_I15_Igor__sdFractionSLS_pH5_I15_Igor__avgKCRSLS_pH5_I15_Igor__sdKCRSLS_pH5_I15_Igor__avgConcSLS_pH6_I15_Igor__sdConcSLS_pH6_I15_Igor__avgFractionSLS_pH6_I15_Igor__sdFractionSLS_pH6_I15_Igor__avgKCRSLS_pH6_I15_Igor__sdKCRSLS_pH6_I15_Igor__avgConcSLS_pH7_I15_Igor__sdConcSLS_pH7_I15_Igor__avgFractionSLS_pH7_I15_Igor__sdFractionSLS_pH7_I15_Igor__avgKCRSLS_pH7_I15_Igor__sdKCRSLS_pH7_I15_Igor__avgConcSLS_pH8_I15_Igor__sdConcSLS_pH8_I15_Igor__avgFractionSLS_pH8_I15_Igor__sdFractionSLS_pH8_I15_Igor__avgKCRSLS_pH8_I15_Igor__sdKCRSLS_pH8_I15_Igor__avgConcSLS_pH9_I15_Igor__sdConcSLS_pH9_I15_Igor__avgFractionSLS_pH9_I15_Igor__sdFractionSLS_pH9_I15_Igor__avgKCRSLS_pH9_I15_Igor__sdKCRSLS_pH9_I15_Igor__avgConcSLS_pH10_I15_Igor__sdConcSLS_pH10_I15_Igor__avgFractionSLS_pH10_I15_Igor__sdFractionSLS_pH10_I15_Igor__avgKCRSLS_pH10_I15_Igor__sdKCRSLS_pH10_I15_Igor__avgConcSLS_pH3_I30_Igor__sdConcSLS_pH3_I30_Igor__avgFractionSLS_pH3_I30_Igor__sdFractionSLS_pH3_I30_Igor__avgKCRSLS_pH3_I30_Igor__sdKCRSLS_pH3_I30_Igor__avgConcSLS_pH4_I30_Igor__sdConcSLS_pH4_I30_Igor__avgFractionSLS_pH4_I30_Igor__sdFractionSLS_pH4_I30_Igor__avgKCRSLS_pH4_I30_Igor__sdKCRSLS_pH4_I30_Igor__avgConcSLS_pH5_I30_Igor__sdConcSLS_pH5_I30_Igor__avgFractionSLS_pH5_I30_Igor__sdFractionSLS_pH5_I30_Igor__avgKCRSLS_pH5_I30_Igor__sdKCRSLS_pH5_I30_Igor__avgConcSLS_pH6_I30_Igor__sdConcSLS_pH6_I30_Igor__avgFractionSLS_pH6_I30_Igor__sdFractionSLS_pH6_I30_Igor__avgKCRSLS_pH6_I30_Igor__sdKCRSLS_pH6_I30_Igor__avgConcSLS_pH7_I30_Igor__sdConcSLS_pH7_I30_Igor__avgFractionSLS_pH7_I30_Igor__sdFractionSLS_pH7_I30_Igor__avgKCRSLS_pH7_I30_Igor__sdKCRSLS_pH7_I30_Igor__avgConcSLS_pH8_I30_Igor__sdConcSLS_pH8_I30_Igor__avgFractionSLS_pH8_I30_Igor__sdFractionSLS_pH8_I30_Igor__avgKCRSLS_pH8_I30_Igor__sdKCRSLS_pH8_I30_Igor__avgConcSLS_pH9_I30_Igor__sdConcSLS_pH9_I30_Igor__avgFractionSLS_pH9_I30_Igor__sdFractionSLS_pH9_I30_Igor__avgKCRSLS_pH9_I30_Igor__sdKCRSLS_pH9_I30_Igor__avgConcSLS_pH10_I30_Igor__sdConcSLS_pH10_I30_Igor__avgFractionSLS_pH10_I30_Igor__sdFractionSLS_pH10_I30_Igor__avgKCRSLS_pH10_I30_Igor__sdKCRSLS_pH10_I30_Igor__avgConcSLS_pH3_I50_Igor__sdConcSLS_pH3_I50_Igor__avgFractionSLS_pH3_I50_Igor__sdFractionSLS_pH3_I50_Igor__avgKCRSLS_pH3_I50_Igor__sdKCRSLS_pH3_I50_Igor__avgConcSLS_pH4_I50_Igor__sdConcSLS_pH4_I50_Igor__avgFractionSLS_pH4_I50_Igor__sdFractionSLS_pH4_I50_Igor__avgKCRSLS_pH4_I50_Igor__sdKCRSLS_pH4_I50_Igor__avgConcSLS_pH5_I50_Igor__sdConcSLS_pH5_I50_Igor__avgFractionSLS_pH5_I50_Igor__sdFractionSLS_pH5_I50_Igor__avgKCRSLS_pH5_I50_Igor__sdKCRSLS_pH5_I50_Igor__avgConcSLS_pH6_I50_Igor__sdConcSLS_pH6_I50_Igor__avgFractionSLS_pH6_I50_Igor__sdFractionSLS_pH6_I50_Igor__avgKCRSLS_pH6_I50_Igor__sdKCRSLS_pH6_I50_Igor__avgConcSLS_pH7_I50_Igor__sdConcSLS_pH7_I50_Igor__avgFractionSLS_pH7_I50_Igor__sdFractionSLS_pH7_I50_Igor__avgKCRSLS_pH7_I50_Igor__sdKCRSLS_pH7_I50_Igor__avgConcSLS_pH8_I50_Igor__sdConcSLS_pH8_I50_Igor__avgFractionSLS_pH8_I50_Igor__sdFractionSLS_pH8_I50_Igor__avgKCRSLS_pH8_I50_Igor__sdKCRSLS_pH8_I50_Igor__avgConcSLS_pH9_I50_Igor__sdConcSLS_pH9_I50_Igor__avgFractionSLS_pH9_I50_Igor__sdFractionSLS_pH9_I50_Igor__avgKCRSLS_pH9_I50_Igor__sdKCRSLS_pH9_I50_Igor__avgConcSLS_pH10_I50_Igor__sdConcSLS_pH10_I50_Igor__avgFractionSLS_pH10_I50_Igor__sdFractionSLS_pH10_I50_Igor__avgKCRSLS_pH10_I50_Igor__sdKCRSLS_pH10_I50_Igor__avgConcSLS_pH3_I75_Igor__sdConcSLS_pH3_I75_Igor__avgFractionSLS_pH3_I75_Igor__sdFractionSLS_pH3_I75_Igor__avgKCRSLS_pH3_I75_Igor__sdKCRSLS_pH3_I75_Igor__avgConcSLS_pH4_I75_Igor__sdConcSLS_pH4_I75_Igor__avgFractionSLS_pH4_I75_Igor__sdFractionSLS_pH4_I75_Igor__avgKCRSLS_pH4_I75_Igor__sdKCRSLS_pH4_I75_Igor__avgConcSLS_pH5_I75_Igor__sdConcSLS_pH5_I75_Igor__avgFractionSLS_pH5_I75_Igor__sdFractionSLS_pH5_I75_Igor__avgKCRSLS_pH5_I75_Igor__sdKCRSLS_pH5_I75_Igor__avgConcSLS_pH6_I75_Igor__sdConcSLS_pH6_I75_Igor__avgFractionSLS_pH6_I75_Igor__sdFractionSLS_pH6_I75_Igor__avgKCRSLS_pH6_I75_Igor__sdKCRSLS_pH6_I75_Igor__avgConcSLS_pH7_I75_Igor__sdConcSLS_pH7_I75_Igor__avgFractionSLS_pH7_I75_Igor__sdFractionSLS_pH7_I75_Igor__avgKCRSLS_pH7_I75_Igor__sdKCRSLS_pH7_I75_Igor__avgConcSLS_pH8_I75_Igor__sdConcSLS_pH8_I75_Igor__avgFractionSLS_pH8_I75_Igor__sdFractionSLS_pH8_I75_Igor__avgKCRSLS_pH8_I75_Igor__sdKCRSLS_pH8_I75_Igor__avgConcSLS_pH9_I75_Igor__sdConcSLS_pH9_I75_Igor__avgFractionSLS_pH9_I75_Igor__sdFractionSLS_pH9_I75_Igor__avgKCRSLS_pH9_I75_Igor__sdKCRSLS_pH9_I75_Igor__avgConcSLS_pH10_I75_Igor__sdConcSLS_pH10_I75_Igor__avgFractionSLS_pH10_I75_Igor__sdFractionSLS_pH10_I75_Igor__avgKCRSLS_pH10_I75_Igor__sdKCRSLS_pH10_I75_Igor__avgConcSLS_pH3_I100_Igor__sdConcSLS_pH3_I100_Igor__avgFractionSLS_pH3_I100_Igor__sdFractionSLS_pH3_I100_Igor__avgKCRSLS_pH3_I100_Igor__sdKCRSLS_pH3_I100_Igor__avgConcSLS_pH4_I100_Igor__sdConcSLS_pH4_I100_Igor__avgFractionSLS_pH4_I100_Igor__sdFractionSLS_pH4_I100_Igor__avgKCRSLS_pH4_I100_Igor__sdKCRSLS_pH4_I100_Igor__avgConcSLS_pH5_I100_Igor__sdConcSLS_pH5_I100_Igor__avgFractionSLS_pH5_I100_Igor__sdFractionSLS_pH5_I100_Igor__avgKCRSLS_pH5_I100_Igor__sdKCRSLS_pH5_I100_Igor__avgConcSLS_pH6_I100_Igor__sdConcSLS_pH6_I100_Igor__avgFractionSLS_pH6_I100_Igor__sdFractionSLS_pH6_I100_Igor__avgKCRSLS_pH6_I100_Igor__sdKCRSLS_pH6_I100_Igor__avgConcSLS_pH7_I100_Igor__sdConcSLS_pH7_I100_Igor__avgFractionSLS_pH7_I100_Igor__sdFractionSLS_pH7_I100_Igor__avgKCRSLS_pH7_I100_Igor__sdKCRSLS_pH7_I100_Igor__avgConcSLS_pH8_I100_Igor__sdConcSLS_pH8_I100_Igor__avgFractionSLS_pH8_I100_Igor__sdFractionSLS_pH8_I100_Igor__avgKCRSLS_pH8_I100_Igor__sdKCRSLS_pH8_I100_Igor__avgConcSLS_pH9_I100_Igor__sdConcSLS_pH9_I100_Igor__avgFractionSLS_pH9_I100_Igor__sdFractionSLS_pH9_I100_Igor__avgKCRSLS_pH9_I100_Igor__sdKCRSLS_pH9_I100_Igor__avgConcSLS_pH10_I100_Igor__sdConcSLS_pH10_I100_Igor__avgFractionSLS_pH10_I100_Igor__sdFractionSLS_pH10_I100_Igor__avgKCRSLS_pH10_I100_Igor__sdKCRSLS_pH10_I100_Igor__avgConcSLS_pH3_I175_Igor__sdConcSLS_pH3_I175_Igor__avgFractionSLS_pH3_I175_Igor__sdFractionSLS_pH3_I175_Igor__avgKCRSLS_pH3_I175_Igor__sdKCRSLS_pH3_I175_Igor__avgConcSLS_pH4_I175_Igor__sdConcSLS_pH4_I175_Igor__avgFractionSLS_pH4_I175_Igor__sdFractionSLS_pH4_I175_Igor__avgKCRSLS_pH4_I175_Igor__sdKCRSLS_pH4_I175_Igor__avgConcSLS_pH5_I175_Igor__sdConcSLS_pH5_I175_Igor__avgFractionSLS_pH5_I175_Igor__sdFractionSLS_pH5_I175_Igor__avgKCRSLS_pH5_I175_Igor__sdKCRSLS_pH5_I175_Igor__avgConcSLS_pH6_I175_Igor__sdConcSLS_pH6_I175_Igor__avgFractionSLS_pH6_I175_Igor__sdFractionSLS_pH6_I175_Igor__avgKCRSLS_pH6_I175_Igor__sdKCRSLS_pH6_I175_Igor__avgConcSLS_pH7_I175_Igor__sdConcSLS_pH7_I175_Igor__avgFractionSLS_pH7_I175_Igor__sdFractionSLS_pH7_I175_Igor__avgKCRSLS_pH7_I175_Igor__sdKCRSLS_pH7_I175_Igor__avgConcSLS_pH8_I175_Igor__sdConcSLS_pH8_I175_Igor__avgFractionSLS_pH8_I175_Igor__sdFractionSLS_pH8_I175_Igor__avgKCRSLS_pH8_I175_Igor__sdKCRSLS_pH8_I175_Igor__avgConcSLS_pH9_I175_Igor__sdConcSLS_pH9_I175_Igor__avgFractionSLS_pH9_I175_Igor__sdFractionSLS_pH9_I175_Igor__avgKCRSLS_pH9_I175_Igor__sdKCRSLS_pH9_I175_Igor__avgConcSLS_pH10_I175_Igor__sdConcSLS_pH10_I175_Igor__avgFractionSLS_pH10_I175_Igor__sdFractionSLS_pH10_I175_Igor__avgKCRSLS_pH10_I175_Igor__sdKCRSLS_pH10_I175_Igor_=Z fit_avgD_I175@DaQ@fit_avgD_I100= W_coef[0]+W_coef[1]*x W_coef={4.4963,-4.6577} V_chisq= 0.367192;V_npnts= 7;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.996185;V_Rab= -0.71413; V_Pr= -0.913743;V_r2= 1.14203; W_sigma={0.00598,2.87} Coefficient values one standard deviation a =4.4963 0.00598 b =-4.6577 2.87 8 fit_avgD_I75_dö>fit_KCR_I15= W_coef[0]+W_coef[1]*x W_coef={5.9706e-06,0.00048449} V_chisq= 1.52559;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.8221;V_Rab= -0.81877; V_Pr= 0.775727;V_r2= 0.627018; W_sigma={3.16e-07,7.67e-05} Coefficient values one standard deviation a =5.9706e-06 3.16e-07 b =0.00048449 7.67e-05 QUx fit_KCR_I30~jt?PPKLV>@Rz?>fit_KCR_I30= W_coef[0]+W_coef[1]*x W_coef={5.8891e-06,0.00035356} V_chisq= 9.57372;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.214044;V_Rab= -0.856472; V_Pr= 0.882617;V_r2= 0.929793; W_sigma={2.77e-07,6.64e-05} Coefficient values one standard deviation a =5.8891e-06 2.77e-07 b =0.00035356 6.64e-05 N fit_KCR_I50~jt?PP>nXs>fit_KCR_I50= W_coef[0]+W_coef[1]*x W_coef={6.631e-06,0.00014089} V_chisq= 0.218255;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.97459;V_Rab= -0.83793; V_Pr= 0.973073;V_r2= 0.954544; W_sigma={3.35e-07,7.61e-05} Coefficient values one standard deviation a =6.631e-06 3.35e-07 b =0.00014089 7.61e-05 R, fit_KCR_I75~jt?÷P÷P38 >`C'>fit_KCR_I75= W_coef[0]+W_coef[1]*x W_coef={5.7275e-06,5.2392e-05} V_chisq= 0.214899;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.975149;V_Rab= -0.848872; V_Pr= 0.896443;V_r2= 0.805007; W_sigma={2.54e-07,5.56e-05} Coefficient values one standard deviation a =5.7275e-06 2.54e-07 b =5.2392e-05 5.56e-05 R fit_KCR_I100~jt?ӷPӷPZ=>I>fit_KCR_I100= W_coef[0]+W_coef[1]*x W_coef={6.0182e-06,3.6114e-05} V_chisq= 3.80605;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.43289;V_Rab= -0.836671; V_Pr= 0.283807;V_r2= 0.0966182; W_sigma={2.51e-07,5.78e-05} Coefficient values one standard deviation a =6.0182e-06 2.51e-07 b =3.6114e-05 5.78e-05 U fit_KCR_I175~jt?PP]`>x>fit_KCR_I175= W_coef[0]+W_coef[1]*x W_coef={5.8118e-06,-1.7362e-05} V_chisq= 0.106758;V_npnts= 4;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 29;V_q= 0.948021;V_Rab= -0.874817; V_Pr= -0.63125;V_r2= 0.410276; W_sigma={3.37e-07,6.49e-05} Coefficient values one standard deviation a =5.8118e-06 3.37e-07 b =-1.7362e-05 6.49e-05 j meanA?RR14 meanM?RR$_ HLF;m fit_ChargeSLS_pH8~&v?ffffff?RRc' #΀߁3#|X#=|#Tߝ#+ֽ#;# (#|W #jw.#RG#&_#bv#`#aف+#fv #s#$rC#B#}b#0ab #,غ#zo)s*#[8#$F#Mz,S#֭;_#:2k#SPw#z>t#u>-#bR#(b3r#AU#C#z+#@#%O #r #DG #4=#jhr#"9i#"%##_ #b/ #r#j#b/#rD##jݺ(#D-#|2#"[7#||(;#%b@#XD# JH#L#}P#K.T#DpX#?\#_#㷹b#Mf#Ӈi#1sl#*o#,Tr#@&Օu#-fx#3k#{#E0}#t g#,#Xře#Ṅ#X##37k#od#>Vϐ#>~#\K#*$#}o#Žߚ##ཛྷ#&#&qX#|F{#ǣ#]p#3#H~̣#b}n/#O#+#R(#v+#} g#@##[#$1ƞ# ëڷ##('2>#Y/f#ㇼ#y#ҟ#mȿ##z!##.#v,#i5#g##,i#+G#2 #q##`W#|Z#j#c\#|#_LW#v #:r2#j1o#Q#?#rj#6 #8#*I#P#L,{#펶#6#.:0#X#G##5U#CRZ#c8Y#%#sVT##w|F#+'#_1###^jy#:#^Y##(l*#()#[ #ƇV#X#|#Z!Xt#5#l]+#1#ä#433#mg#+H#T.# k)#O6#( #l#7#ޔb#NN###^&#q.l##.# v}7#ކGy##4#P8#`w#`+#fit_KS_pH8= FittingStatic_constCharge(Coeff_ChargeSLS_pH3,x) Res_KS_pH8= KS_pH8[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH3,kappa_nm[p]) Coeff_ChargeSLS_pH3={0.51537,12.265} V_chisq= 2.93361;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={892,4.43} Coefficient values one standard deviation ZP =0.51537 892 AH =12.265 4.43 P RRCoeff_ChargeSLS_pH8<????n i}?+igՇ(@D Res_ChargeSLS_pH8?RRD`Å.?_@ DSRS,h#@;m> fit_ChargeSLS_pH7~&v?ffffff?R$R"/"@ѷTgF!@z @g2@I@u@x6#@jU@n) M@?@3@@rx2WM@^g@8 o @dK @D5ş@,' A@,_@^O?OoZw?2ΧAz?_$?2?p{}?@6!2)?T?T?@m`?2-@V8iɿ4׿pEP@῀,qHf:[o? I^×]]< u34_8ӓ$҃/)p?~ʴU}1@. _yk( b*q $nxTR*S}W <@ 2 P:L &~S/ DǝI+ P6 0:. _圥 \[( U #_&?yݶA(>FDuzFKã^x5/.VZH&ǕD%VPC˱xmBQ0?Ҁ3ܾ VxPwjoȸnu:M7pP%1g_Mu/i!͈/w@ێNp/Csp)1[PXH]. ^s!X)1I4=Zk*;f̧f7G@!xY2b>0~C5TN3SdjCퟌ0sĖ5*Kp@{>k߆mxeՉRwy'1X@8vl{%V- K5oE#_s">)MO1l8N?GJFm6ЏM`UTZ=k0a8g2(RQn+ tz &t'/O<~.*>{Haw>C}lWmH+: sEx\zyab4rbZɸH}X}]t+.e7Z%\.6',`DQyEchwk'(I tG7fit_KS_pH7= FittingStatic_constCharge(Coeff_ChargeSLS_pH7,x) Res_KS_pH7= KS_pH7[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH7,kappa_nm[p]) Coeff_ChargeSLS_pH7={23.289,9.0855} V_chisq= 1.28536;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={12.8,5.24} Coefficient values one standard deviation ZP =23.289 12.8 AH =9.0855 5.24 P$ RRCoeff_ChargeSLS_pH7<????qJ7@N+"@ ( Res_ChargeSLS_pH7?RRPž!9@hjf*88%$D:klZ@P, nRRCoeff_ChargeSLS_pH6<????sL@.2@9k 0 fit_ChargeSLS_pH6~&v?ffffff?nRRY=!aS@JtR@\+W̔Q@CH+P@KzO@;tFlN@AdIL@YK@yYJ@y|I@OE G@sE>LoF@ "E@tVD@XC@n:B@E~A@L\A@ OD@@5 I>@ʁmw=@FN,<@2)":@ ڸQ9@$o 8@(6@6E5@X3&4@o3@~ߊc2@Tb1@Dsj0@H[؁.@p?n?*-@l0Vn+@:<)@l#/&(@W &@TȢQ%@6#@5`[>"@$ @dt^+@@n:@.n2@(P@P@@QU@Q,B<1@s"K<@+Q}7 @|R@(,Ռ@œ?` ? q;?@I?l0q]?7{̿m]k@EByaa |B-_b&2pG>@jTe0t@O ւ 0Xoȗ8ĀxfλXHڒo%/>5H2уeȋrct>wI{R7үTkug 7$}r62^Tv>7_>y/ w[ Y饿0!G!mж5!"j"OU."\|"ؚD#̉#jo#R$;P$c$dMl$buq %SE%԰ %.r%fVu%?V&&lގ+[&&5T&=ڒ&T/@{%'bU'='N'Y=hE'4`7\b@_+-@682@)'!b3e< fit_ChargeSLS_pH5~&v?ffffff?jR Sjz*a@PrO)a@ v%x`@h_@f-`^@>q0]@ES\@]uѣZ@BY@6X@+/@X@N .W@Q;VV@6 4U@p'T@U"aT@գPS@"XR@# G|Q@\^a*_Q@P@G6P@߼RTO@ wHN@dGM@OL@aK@%++, }J@;\9"I@ƈH@6H@r5=G@' F@f^E@*E@HVrD@,C@1C@ģǙB@AarB@xV[yA@!t@@D&l@@)?@E_(>@=@; l =@}ZHd*<@rQ;@@UZ:@[9@^g8@:08@Ev7@!v6@Ԇf6@Il5@614@ҕ|)4@}l3@i$ʕ2@8w"h2@&m1@EfQ1@c>0@L@J0@ڂxGQ/@oQ.@Y-@K,@0M#+@KfK+@ r9*@ LOli)@͞(@2]|'@GL'@x;B^&@٦%@|4L$@ؕEH$@d#@Da"@6bkZ"@!ʽ!@ %!@!o @4ܹ@H+M@ b@}@ qb@)}@o씞@B@8D@&3r@k @T} @E@sIo@x&̝@͖@wz@C=D@e @$ @D?$ @g; @L1\] @,R@}[@~k@ !)@&S**@ ϻ@up᪈@2?@y?{@?E֭??E?yc?ubΊ?XqА? (?t?`qs6?) ?fj|?L?P??ovM닦¿@Ͽ]7ֿ {{ܿQ@yU@tL d5 Q1 +\0 n3P Yˋ@? 0,LM}$ipn;*KWz}Eto B*hm:.HO>,|@, LWeLp]02$/+8R0IW:q̗_  R}paf(^|SYߋi7Law Mp Ҽ xM9 2S _ |Z en a ֎eOo &!n gUE bw l2 8n L6Usib$e3ʣ1h3C%҂]K;2p~fit_KS_pH5= FittingStatic_constCharge(Coeff_ChargeSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH5,kappa_nm[p]) Coeff_ChargeSLS_pH5={71.873,10} V_chisq= 6.88919;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={5.31,5.19} Coefficient values one standard deviation ZP =71.873 5.31 AH =10 5.19 D Res_ChargeSLS_pH5?jRRaF? 1 q08@쐒N!@X@p@`cT7?,HGL jRRT_Constraints_Charge<????xH K1 > 10PP jRlRCoeff_ChargeSLS_pH5<????yDQ@$@0btT fit_ChargeSLS_pH4~&v?ffffff?R)R=gi@qtFh@z ~g@R 32f@DUe@d@1#c@Əlb@fb,Jb@|y a@w`@ \]`@Vُ_@zir^@/7Qa]@\\@wmc[@tZ@8sY@㨑X@oN(W@,W@{аXV@8;oU@T&{T@7BT@oGCS@NOUS@'_phR@BLQ@ R[IQ@y1P@"M?P@ˣF O@hX굑N@tM@5%5L@^'K@'(<K@ PJ@ޅΌI@H@#ۆH@?>hG@-;fF@A %F@BxE@A}tD@YGD@쫶C@v,8-*C@+B@:IZ'B@@8KA@ЛJ5S"A@@@z5@@f4?@scf>@=@͡=@2]2?<@|;@nAA:@8]:@t]S9@ָ`-8@7@bbvW7@ڶ6@N=z6@hjA5@~kZ4@P_4@&3@&K3@3*2@E2@2A/1@t L1@0@4|Ao`0@b^/@m̅.@#t''.@$cT-@?'-,@?W@+@py`**@19*@X֑~)@h_N(@"b(@sHkh'@݉Q~&@3$~&@SXMv%@ $@Vc<$@猭#@:s#@a׀"@QC [!@-zh!@)X @K] @мn@&,@BZ3@h҄@F@Cz@"v&@B6@^P\@S]@;U@"@f¬@GZ@B!@fZ-)@zz#@|snn@ ~@]bF @Tf@$v @<$I- @p @幮 @$C~^x@]G@ n2@l]Y@H}@0jB@TC?@\zZ@j?8$?Pݱ^? ?2?AZ"%?`v'=?c_?k&^?zzx?F3?ж=5r? gI?.z?`?If?=?@iY?4.?m?m :w+I̿x2Կ ٿ@?7m߿pjss"u$忰蛷PKYeKU쿐 33{/UH 3>fEnx-/51m`h%u x-7ȠJxGY㧄odXij}'u|mK6L `t.FiD|+ D"V D3||jĠ\Ŭ3b868cpd& *nep$%70p:fit_KS_pH4= FittingStatic_constCharge(Coeff_ChargeSLS_pH4,x) Res_KS_pH4= KS_pH4[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH4,kappa_nm[p]) Coeff_ChargeSLS_pH4={84.475,10} V_chisq= 10.532;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={6.35,7.7} Coefficient values one standard deviation ZP =84.475 6.35 AH =10 7.7 V\ Res_ChargeSLS_pH4?R-RR <>RB@~Ķ>0@J*@^r|W#@pLw\P` R!RCoeff_ChargeSLS_pH4<????|6v|aU@$@-_0xd fit_ChargeSLS_pH3~&v?ffffff?RRLQE@#py@ٸ@l]@{ΚS@`n<@ l@=֡~@˼]؟}@=|@l\){@^.-z@[|ny@=iIHy@v3#,x@J/p^w@QY۬v@=[u@9_. )u@L(I|t@ s@cC{7s@Wkr@ـo r@Gq@;p@eOxp@K2(o@ o@A!n@Dm@'bjnl@5aԚk@RJj@;#j@Kbi@tHh@H@zh@9_g@f@8b%f@¢se@KJe@;td@*c@вkc@b@Lsb@D}a@ca@!Aa@_E`@,oH`@|_@g_@ްyF^@ptIĎ]@ yB\@/\@݆[@"aZ@٬ EZ@<IY@/dY@X@h-MW@BmW@V@HٺeV@kcXWU@T Ҹ_lU@+mT@>]?T@rRT@4jezS@"4S@@ER@I=DfR@<bVR@ZeQ@֧0{CQ@vP@dP@tb6P@qO@SrO@C1yN@M@eN @M@C:L@UͱL@#΅K@TyLJ@ٕopJ@6 I@&gI@0Su+H@no(jH@G@6xG@=G@zsCF@ь"F@A,E@6JE@UD@ {D@9дD@]7C@Qh2VC@55B@МB@# CB@tn$A@eCA@o@A@C8@@''zZ@@S!N@@X@@5h?@4:>@NeA>@=@7<&=@I<@85<@`r;@L;@ :@{s:@X(mP9@wl5@>lH5@*c4@:h4@&$.B #4@XR3@9h3@/m 3@L=2@fۺ[2@xo>j2@؅?1@ăB]1@>oZ 1@wzۺ0@DGk0@-0@*/@|lDZ /@jpx.@Ӓ-@hxX-@ r%,@rA,@`#+@DQ4+@.7'rͰ*@,08m/*@|%)@L?Mh2)@A/j(@,V0v>(@&'@B,Q'@V,&@4ol&@ ]z%@!pE%@M!%@PF\$@8s*\M$@غT{D#@0pO#@Հ#@4L "@F W"@z5!@&7{K!@l>!ϪTpMh5qRHa9⽶_]˸F M;Ig81$VĢJV_ ڿI4$tb3 uT%lznɜŐϥWΥZOed;^Qs5mdc3Ig3FD%Yۢu6Hb(\ACQ ' =kO5b!t>Ao.:7WeA*?DaSN>0(P܆&tN;RF%V,Ui7s-ht4p*;2f9w^3v/t׀[~5D+W7efZ= l Qv>'F&q-D$ Qm8/4B[Xf4J {4*,gz*TPjFv*Кߪ|Dd|PRo$TDdl- 4EwQ^Y'\@EvC/4I2~'cP|r=5N=`x Њ+v7Ti 7$j4?ID]ackqE5,b*+|g dFKGdBC*[<$4 LDH$S=r b Wq=$wlf§cus_uKȆ\TON]H4-ˬ?&;v11 {<''qMG1Q[a\+Wfp\z2.böxS_(Gإ,&*Pu}Fϛ#M2ZdI>iG-uQZ? i'%/^]=x!UZv(FX/㆏6<\ZCdyIR0-P@qVuB\nCbq#hn>#4^tz+^B٬Tgi{.]ɟXPܤ_@aܩ`ɮ6nfit_KS_pH9= FittingStatic_constCharge(Coeff_ChargeSLS_pH9,x) Res_KS_pH9= KS_pH9[p] - FittingStatic_constCharge(Coeff_ChargeSLS_pH9,kappa_nm[p]) Coeff_ChargeSLS_pH9={1.6312,10.075} V_chisq= 0.450903;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={233,3.89} Coefficient values one standard deviation ZP =1.6312 233 AH =10.075 3.89 8 Res_ChargeSLS_pH9?`RwRV[ ?F濂Iu {ꢕ=R_wX5@Xs=??)P R˧RCoeff_ChargeSLS_pH10<????,yM@b=8J.@As fit_ChargeSLS_pH10~&v?ffffff?RR=EKU@T`U@s#T@fZO3S@,6)Xx\R@LlELQ@);"P@U*7^P@lPN@{M@U;L@ K@s I@UM(H@MYVG@ݛ`F@ǽqE@@D@VwOD@ʓY;C@YCnB@+6הA@]@@q; :@@" x?@dWW=@Lꓐ<@9X;@1:@tx9@s8@y6@45@JnI5@n4@ƚ8/83@_\2@ʪ1@\Ts0@G%/@1p.@\B-@^,+@oD*@aƬ(@0|ϵ'@lhe~&@5GQ%@@i?-$@8#@f"@mW @,@\`@@0@8}:D@Ĩ~@HxR@vq@`?z@4@`@ș @yҊ @X r@?y{\@_@PD-"@:eA? x`?=Qѿ@!u w०i gXHnr($m]u߼O{e+Du( CyY6 hh ,Rt VE`Lb~?!;o Rr׾\/YЃrkv<0)Z5I*`4ֻ3n>t z'!(cS^f]* e^0 =?^:0r^aSYO\>,o#g 0 v:;tђ(XDL5U}'K'yq;sk &\f2 )(.X (-H>}  P H :~K cT2 !խ_,!yM!9%m%Te% &\ְ%H%^P$\%0c %z%9%qz%edc2%ܜU%ڪh%Oy#D% Jv%Z~W%%o%V&& S &^& 3&&.z&X:$&:va(&-&P 92&9"6&Ʊ)X;&=g?&PD&H&bfM&xQ&쌉}U&8.sZ&jݰK^&`ub&$c)f&1/j&n&r&]Bv&Oz&Z+~&Ov&hƆ&ׄ&U:yz&'H&2Է&X2͙&KXY&Q3&$ۤ&(PZ{&&B J SXSfit_PotentialSLS_pH7<~&v????ffffff? )@$J@n r@@d@ix :@|@pgҨ@0Lq@0lD@ g!@T@0!P@0<> @ f @) @[@,鬇I@ӵ3@ @(֌L+@`g?`,k?۠?L4?`חf$?ׯY? C?`pH?@Cɕ?Ș? ??4-m"0̿rVֿ )e߿@(p&"ep G#1ԶC89TqCs$4JO a@[ =YD ̵Tg^{`h<$Pot\T-G1ixfx)C|/u3ٷ0ZbdĖJ ! 8 ~L (u2a ͜ vR PW T |3 Y #߅iNX{ DC9:< ux$T&K@V|"'lGQ\94s"]Dw(e=Q:.bg5kgPP+fd>Tk04OGӴ؅7?7XjkE㖯#oFIlC>1u azg!_7Ě8]`dăd6袇+@$=Z4:pwL]Yhz#*Dad,ҺRӘG&(FsMf2!\M6X#`k$, %m0$3φ!6: NWxWb-tfxjLW칑'*UZ(35*DprTǰz9ud$bt4Drwθp1Mۿ uڤfit_KS_pH7= FittingStatic_constPotential(Coeff_PotentialDLS_pH7,x) Res_KS_pH7= KS_pH7[p] - FittingStatic_constPotential(Coeff_PotentialDLS_pH7,kappa_nm[p]) Coeff_PotentialDLS_pH7={1.4286,13.242} V_chisq= 1.11653;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.716,8.45} Coefficient values one standard deviation PsiP =1.4286 0.716 AH =13.242 8.45 lP S'SCoeff_PotentialSLS_pH7<????\d-s?\^{*@HYp SgSRes_PotentialSLS_pH7<????kstD)3z@ B [e%nMyniwQ@)P SˆSCoeff_PotentialSLS_pH6<????1q @(9C@> -~ Ss Sfit_PotentialSLS_pH6<~&v????ffffff? 0"-tP@)O@e:NN@$M@Un^FL@uK@ J@{I@II@[7 ?JH@k~G@vVtqF@ tE@(6AE@kzjD@aC@:C@!AB@acA@g3`A@CҌ~@@m;@@]?@:L>@b6C=@v,A<@…@G;@zqR:@:+{1R91#X1nqw17Ô-1jOq13g1bY14n 2*2qMG2K|c2} 2#S2}'2aK2JF2W2*- 3g#3128>3k}^X3@+&;Fr3 )37ԄH]3rk3ge3L@3Ld 4_L !4+@94VnlP4əh4v3Q4h?44C4-404բ4GT5pƵ\5Σ4456I5f!S_5/#ct5Oݸ5X֦5 g5fit_KS_pH6= FittingStatic_constPotential(Coeff_PotentialsLS_pH6,x) Res_KS_pH6= KS_pH6[p] - FittingStatic_constPotential(Coeff_PotentialsLS_pH6,kappa_nm[p]) Coeff_PotentialsLS_pH6={3.385,39.26} V_chisq= 2.94598;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.267,6.87} Coefficient values one standard deviation PsiP =3.385 0.267 AH =39.26 6.87 MRp Su SRes_PotentialSLS_pH6<????x!l@M6?y^$A#@z#20@4gVP A Sy SCoeff_PotentialSLS_pH5<????4{r@Yg>@D  A S| Sfit_PotentialSLS_pH5<~&v????ffffff? %%\@f[@E-Z@t!zAY@\MRY@vX@n"`X@А9wW@T8V@ >UV@ *@;U@̍2GU@/T@̛IT@bS@\t~\S@H_R@ch}R@sh)R@`YܫQ@frGQ@\@K@nϯJ@"J@*RI@򓬝I@ݔאH@%D0H@6G@%G@l'F@6/F@ E@1uOE@™D@}UVxD@; BPtD@ͪC@gRzQGC@هAB@iB@0)B@kA@u#tA@aƎ HA@ə6@@q@@-!@@ W?@>@bU`>@=@zX1=@?֝<@l, <@(ov~;@*9L:@55j:@nu9@N -F_9@}M8@d6W]8@R'7@٬d7@#J`6@Bt6@4R!5@8g5@v 5@[Us4@<-<4@S3@+)'@4jLD`'@S&@&&3&@H ^%@L' %@da~$@m#@4̣d#@($f"@@R"@<-p!@d[F!@Ёn @4B @ąH@.3@B@3@xlZ@蒳@`2@,@u3@PZ @8`s+@!K@6Rn@_j&@h' t@k3@X)?R@@A@9A@pM @Ls @`* @ؿ@P$@[͖@ Rz@ä@_(@@%{m?ުs?%+? ;L?@HH_+?m?@6Ln?)`?@2?238?+n?p{?x󜯿)\̿V ؿ@Ch࿀Q@7P¢].M`& !Oհ ~/@|}&ڞ q`ng]PT=T0=1K慼HP]so _-PTp[Eh_ ȇkh P\ x6l +w TI=#s7ơ Mxw8T*1BY6 `o2ũaɩ H\LJo# A4{\:Jq]d-fit_KS_pH5= FittingStatic_constPotential(Coeff_PotentialsSLS_pH5,x) Res_KS_pH5= KS_pH5[p] - FittingStatic_constPotential(Coeff_PotentialsSLS_pH5,kappa_nm[p]) Coeff_PotentialsSLS_pH5={3.9311,30.834} V_chisq= 2.0986;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.324,8.85} Coefficient values one standard deviation PsiP =3.9311 0.324 AH =30.834 8.85 Rp A S~ SRes_PotentialSLS_pH5<????``V9T-@0tu$e;@!84hѿGD?$P S˫ SCoeff_PotentialSLS_pH4<????@[I;A@B ݜ S˿ Sfit_PotentialSLS_pH4<~&v????ffffff? 2u1c@/0b@Ҹ:b@Ya@A2/Va@FWm`@:3̂`@]y`@0BE{_@ӻ5^@^r ^@lM\]@jI\@a\@qϙq[@sA$Z@QlCZ@f?=Y@&b'Y@VQX@̲ylX@.RW@W@oV@ܿ~1V@FHU@+PU@ S T@DzT@G8T@JC"pWS@J/+OS@܅#R@6h6R@ph9R@ΖbQ@؋|Q@c7Q@A9P@ CΕP@nCmGP@G݂QO@ aO@9\ ,N@_ AN@3#sM@q-M@ L@c u$L@^ngK@'K@ѠJ@yMW4J@1% I@_xjKI@H@ kH@x@G@ahDžG@58G,G@wF@@u`F@VYz&E@&BE@Qk&>E@WxD@+D@ +D@qC@U{C@LIS&C@峉nB@'PB@SO.B@Վ4BA@ n A@]kCA@ @@@@G#Md@@{L-@@j?@B*?@2SB>@-B >@.[=@Uێ=@C-g<@7<@Π;@?N ;@V:@wB:@]C9@> q09@j^2f8@ctM8@稃 7@a`p7@,7@(;|6@xG06@(]5@Pwz3b5@{D4@4@,/i~z74@ s/3@kv3@Xj53@趛u2@X_2@82@TI1@KVR1@:H0@nn0@uWP0@X/@ܦ^R/@v >.@h, .@El-@=,@(|n2,@{ǝ+@4N=+@Pi*@$,)@hV)A)@Ǣ~(@Ib (@0P@ْ'@%0{'@ ƶ{&@Q"%@hj%@\c$@?;E`$@d$#@L @[#@ax"@0\"@ܙD!@Bkb!@@ @ n @@(۳@@s)@P&C)C@?m_@HBrX}@(@*@iސ@m]9B @@m6@vpb@re9@؉@@;Hu%@8S[@8GՓ@_@V}@-4 @08 @0Xc @`.@0r@pc-@p؜5@ yyqR@ߔ @c ?:TF? 30?l?`F!?w?ܮ?q"j?B:?,?Dʍ;?R/L}?f'k%ȿ!տ Q߿E֬俀3Òx@MD9@bx`?@B @Mjlfit_KS_pH4= FittingStatic_constPotential(Coeff_PotentialSLS_pH4,x) Res_KS_pH4= KS_pH4[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH4,kappa_nm[p]) Coeff_PotentialSLS_pH4={4.5057,34.463} V_chisq= 2.80161;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.421,14.1} Coefficient values one standard deviation PsiP =4.5057 0.421 AH =34.463 14.1 Sp S SRes_PotentialSLS_pH4<????8>`#(X7@S?om!h?I 2 r 7 SL Sfit_PotentialSLS_pH3<~&v????ffffff? fBq@DJip@`azp@wp@n<̃o@n@Σ,n@soOm@hS.l@PkTl@.Ek@;03k@-׶Ԫj@Ǎɬ&j@Fནi@nj)i@hknh@޹t;h@8sg@Fq[g@sf@8:f@`e$f@Wˑfe@*ԣ:!ce@xe@sSd@< Td@e.c@Nc@.Zc@lU c@Τ b@ı sb@_/%*b@iba@9_a@"%Ya@+`?a@< 7a`@R`@.MY`@3F`@r_@O_@ ^@@I/o^@$^@JИ]@ch1]@Uc\@ `g\@f^\@P ڦ[@TwBI[@׏TZ@fjZ@Q@xhZQ@#L*Q@vڢP@8PB'P@PVP@2-rP@6EP@e<P@y(fO@.O@?u3O@?qN@}+N@cM-4=N@1 eM@ xM@QM@GqjWM@:ʹL@P:oL@5Kl%L@q4K@CK@tNK@1K@(3؂J@s!NWJ@A/H@>!H@6G@>+G@PPG@LG@\F@ygF@W^knF@te7F@crIF@?}0E@;iE@^aE@E U-E@D@?ćD@(.D@i\nbD@+|1D@{9D@c|$zC@U3C@CqC@ILBC@~C@AuB@smfB@[\B@5vb5(`B@-z64B@S, B@U0A@IKA@aᙹˈA@[C^A@9?5A@MDA A@Oj @@)Dݻ@@9w[@@GGl@@S6E@@8@@@ŠB?@.pڷ_?@V$53Z?@=os?@u>@^|PL|>@mn4>@=@=@xO_=@%K=@RGl<@%<@RuK<@ 2:<@\ tUy;@V4N;@ʽ;"A;@dp;;@H7@D:@BRa:@:dc A:@aMA:@ϡ9@NG9@@:>I9@ʸg 9@;8@,e8@fit_KS_pH3= FittingStatic_constPotential(Coeff_PotentialSLS_pH3,x) Res_KS_pH3= KS_pH3[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH3,kappa_nm[p]) Coeff_PotentialSLS_pH3={5.7394,30} V_chisq= 216.417;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.14,0} Coefficient values one standard deviation PsiP =5.7394 0.14 AH =30 0 Rp 7 SI SRes_PotentialSLS_pH3<????ܶ %[@ ?`בE: @+J6P 7 S; SCoeff_PotentialSLS_pH3<????{ڴ@>@P SˡSCoeff_PotentialSLS_pH8<????}%`o"XQi(@D  S˴Sfit_PotentialSLS_pH8<~&v????ffffff? \#<&#+6#3#ir*#I##8#*Ħ#'#I*#B#AA#*U&#X#R#dN#}pq# wV#t鱽# #V #}\#T#V#I#5ٿ##`#h/X##8 #R"#>'$#*%#@O'#:J2(#TQ*#B)}+#F.-#+.#!/#T=1#2#C3#y5#V<6#? k7#œ8#hȵ9#:#;#>.7<#>#&?#@#+A#]tA#B#C#YD#aE#&F#`G#::\8H#* I#DmI#*J#PvpK#&;k5L#L#rM#oN#vD'O#JNO#|P#} N7S#VS#'{T#4U#~ƵU#)h%OV#^!V#&n#A8n#n#ᑫo#$So#>0o#Ko#>Ip#J,]p#6!͝p#ƕp#q#[q#'q#| q#6r#BPr#br#{r#1s#:s# ts#.s#s#t|t#<St#t#Mt#t#*u#%_u#)u#QͲu#zu#;X,v#w^v#6"v#Xv# v#q"w#^VRw#΁w# ڰw#8zw#t x#;x#X8hx#x# x#t^x#Ny#$Fy##@qy#e&y# by#jy#z#fit_KS_pH8= FittingStatic_constPotential(Coeff_PotentialSLS_pH8,x) Res_KS_pH8= KS_pH8[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH8,kappa_nm[p]) Coeff_PotentialSLS_pH8={-0.013249,12.206} V_chisq= 2.93516;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={109,8.74} Coefficient values one standard deviation PsiP =-0.013249 109 AH =12.206 8.74 Cp S˸SRes_PotentialSLS_pH8<????ZZ{h<9{?# @\ZČشu,H"@P SSCoeff_PotentialSLS_pH9<????g[ti#@F  SSfit_PotentialSLS_pH9<~&v????ffffff? uBrB3OBʝ6Bh6BsRVB?~tBTB,BuBTBQ@QBBB8'-BiDBatT[BuqB BsB.?B>vBWBGG@B*BҞBgKBi`)B]9BHBWB9yfBƶtB\B BK4B3] B?㒶BB1B!hBtB B(BYjtBUBBb$B+.B A8BuѕABJB SBOn\BeBnmBuBF}BB,uB BP[BBBߗ)BKBpBB)B,BaXBnD-BKBNB8BB6Bq\BB4RBܪBmB(kB(X2#Bl5(B}$-B:2B6B~;B!@BGDB3IB^͡MB̵QB34MVBZBY^BNbBTfByjBnBrBŚvBU"[zB_~BāBnfBBBLB*qBx֖Bdq0BNKB<àB{B^9+BOBiBDezBnB'~BqBW\B)=BMB BYQBlB"BBRwB/BϕB;B1uBCBBq.B B<:Bԧ[BoB"BW}LBB7B4VBk5B`B݅BhBIBBbB B B BRNBBfBB BP}BLYBg1Bg[B B"BQb$B#&B'BB)BM+BY,BΪ.BGS0B1B~3BV55Bj6B!c8Bt9B;B =B>By@BAB4CBDBFBmUwGBHBFSJBKB."MBȅNBOB BQB&RBjSBfit_KS_pH9= FittingStatic_constPotential(Coeff_PotentialSLS_pH9,x) Res_KS_pH9= KS_pH9[p] - FittingStatic_constPotential(Coeff_PotentialSLS_pH9,kappa_nm[p]) Coeff_PotentialSLS_pH9={-0.0016805,9.7065} V_chisq= 0.48032;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={687,6.87} Coefficient values one standard deviation PsiP =-0.0016805 687 AH =9.7065 6.87 Ap SSRes_PotentialSLS_pH9<????`?H0;cye'[r=#)@H?P SSCoeff_PotentialSLS_pH10<????;D @ޘ_A@H ] SSfit_PotentialSLS_pH10<~&v????ffffff? /Q@>E:GwP@$yO@5YN@&M@j0M@#L@KTeCK@s nJ@ezI@󩟯H@%\f;H@ 1aG@2IF@_S#`3F@KWE@QD@BD@{|C@G!B@C1WB@"UA@-'XBA@M½@@v[@<@@.@~?@~J>@ =@l㌶<@N!5y;@iL5:@$:@#ET9@&i28@5@J4@,J)4@흞~3@X2@S,32@*Q1@ex0@A##d]0@d//@D)j.@4EK-@Bּ?2,@[s>+@ՙ*@P )@\|`(@hg '@(K/&@!Sw%@̲L0$@x7ZF#@|`"@i!@( @бT@P!@ՖI@x5Ì@`ƌ@0@gmG @!Ǐ@PKE@yzz@=a>@`Ej @>. @ %I@`k@ wI @>}@ϵh?J? c]c#?2㭱?PKC?f?*<PԿ@_J@I'J뿀\W +򿠱DA44!APrAq`$ S˲SHamakerPotentialSLS<????AI B9A BSAaMCAMA7 B|( pH_zeta ?b!Sb!S@(\@Q@(\@(\@\(\@Gz@@Q@(\@= ףp @fffff!@, stdpH ?b!Sb!S????????????G 0 ZP_zeta ?b!Sb!S33333:@5@L1@0@0@&@\(\"@(\@ffffff?\(\翚&I4 ZetaDeviation ?b!Sb!S)\ @(\@Gz@ףp= @(\@Gz@ @(\ @{Gz@RQ @= ףp= @Q@.8 Z_Average ?b!Sb!So@33333z@`@33333#o@g@33333h@33333 t@@\@H@0@@QT< Mob ?b!Sb!SQ@Mb?X9v?)\(?jt?Yڊ?/$??On?S.QF_ؿ\m@ Mobility_Deviation ?b!Sb!S,C?Ӽ?߾3? cZ?ho? 0*?(\?S?ŏ1w-!?:H?|?5^?C? kaH D U˸U!M_Correlation<????/?_`?')pɡ?lmh?bFT?W뙫?mR?BtP?v~WH?A\X?\X?\X?*\X?Bw\X?n\X?z\X?冱\X?_`??/%a??EjwD?NӜ?H|?ͺ@u?Α?ʜ8?8?͢8?~8?C8?<8?8?੫8?')pɡ?/%a?? 'h?m8GT?py<뙫?SR? o"uP?^XH?C\X?F\X?C\X?MG\X?K\X?5I\X?TJ\X?I\X?lmh?? 'h??ވI8?5Bc?a>ױ?u?HT?~_?]_?:~_?_?_?n_?_?_?bFT?EjwD?m8GT?ވI8??"??JgɈ?cYl?*q8?8?8? 8?8?K8?i8?!8?W뙫?NӜ?py<뙫?5Bc?"??Uж?R{?l-?xw?؜}w?xw?~w?gQw?e)w?uɃw?(Ow?mR?H|?SR?a>ױ??Uж??PD}?.Fwx?r36?6?=6?O6?؝6?6?F6?lš6?BtP?ͺ@u? o"uP?u?JgɈ?R{?PD}??N"wu?an/ֻ?n/ֻ?twn/ֻ?n/ֻ?nn/ֻ?uXn/ֻ?Jn/ֻ?c}n/ֻ?v~WH?Α?^XH?HT?cYl?l-?.Fwx?N"wu??Oϻ?wTϻ? Oϻ?xUϻ?C[ϻ?Xϻ?WZϻ? Yϻ?A\X?ʜ8?C\X?~_?*q8?xw?r36?an/ֻ?Oϻ??a@?@T fitYCumData_PotSLS0?BScCS@ۓ@`@ ŽT@_B@Z./@`r@@[[@#JV@@C@P.@,@֩=T@jN@?5@K"@ @JWF@0@ %@n @4 :6 ?`=;@`;&h/`GT M(Ǥ! )%%8 eܿ@@׿#" $3@/N@ t;'@/ w!$X /FS˞FSGlobalFitCoefficients_BothSLS<????0m@A@>]*X@m ɮU@b#8tP@ | &J@{L@5`=;K@4YhNR@wnڞ!@O@yJ<@% @i(@64S@E В5@ݒ @!@\ 0FS˯FS`fitYCumData_BothSLS<`????@ۓ@`@ ŽT@_B@Z./@`r@@[[@#JV@@C@P.@,@֩=T@jN@?5@K"@ @JWF@0@ %@n @4 :6 ?`=;@`;&h/`GT M(Ǥ! )%%8 eܿ@@׿#" $3@/N@ t;'@/ w!@ۓ@`@ ŽT@_B@Z./@`r@@[[@#JV@@C@P.@,@֩=T@jN@?5@K"@ @JWF@0@ %@n @4 :6 ?`=;@`;&h/`GT M(Ǥ! )%%8 eܿ@@׿#" $3@/N@ t;'@/ w!Y|` fit_linearI15Вn@\UuN LSLSizmV:u>R@fit_KD_I15= Coeff_linearI15[0]+Coeff_linearI15[1]*x Coeff_linearI15={-1.7165,0.41025} V_chisq= 1452.38;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1.09938e-310;V_Rab= -0.258556; V_Pr= 0.895577;V_r2= 1.26148; W_sigma={0.169,0.00238} Coefficient values one standard deviation a =-1.7165 0.169 b =0.41025 0.00238 ΋h Coeff_linearI15? LS LSe]v3A?l Coeff_linearI30?DLSDLS&:XIiOn?Opp fit_linearI30Вn@\UuNDLSfLSS:}|M@fit_KD_I30= Coeff_linearI30[0]+Coeff_linearI30[1]*x Coeff_linearI30={-5.8216,0.35232} V_chisq= 1644.45;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 0;V_Rab= -0.526124;V_Pr= 0.689179; V_r2= 0.430371; W_sigma={0.192,0.00401} Coefficient values one standard deviation a =-5.8216 0.192 b =0.35232 0.00401 `x Coeff_linearI50?LSLSZ'L +3?Y| fit_linearI50Вn@\UuNLSLSjA}sOW@fit_KD_I50= Coeff_linearI50[0]+Coeff_linearI50[1]*x Coeff_linearI50={-3.6282,0.53755} V_chisq= 216.907;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 4.75079e-44;V_Rab= -0.268604; V_Pr= 0.905568;V_r2= 0.864167; W_sigma={0.193,0.00702} Coefficient values one standard deviation a =-3.6282 0.193 b =0.53755 0.00702  Coeff_linearI75?LSLST2 ?XJ fit_linearI75Вn@\UuNLSLS3H*/ka@fit_KD_I75= Coeff_linearI75[0]+Coeff_linearI75[1]*x Coeff_linearI75={-2.6401,0.77354} V_chisq= 527.469;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 1.01413e-110;V_Rab= 0.0299538; V_Pr= 0.874119;V_r2= 0.745867; W_sigma={0.189,0.0149} Coefficient values one standard deviation a =-2.6401 0.189 b =0.77354 0.0149 R Coeff_linearI100?IMSIMS0(?A&?I fit_linearI100Вn@\UuNIMSVMS`.?ܶoXZ@fit_KD_I100= Coeff_linearI100[0]+Coeff_linearI100[1]*x Coeff_linearI100={1.741,0.5604} V_chisq= 2267.04;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 0;V_Rab= 0.370263;V_Pr= 0.68028; V_r2= 0.526784; W_sigma={0.162,0.0107} Coefficient values one standard deviation a =1.741 0.162 b =0.5604 0.0107 Mh Coeff_linearI175?hMShMS[ɾE?Zc fit_linearI175Вn@\UuNhMSqMSƎ33ZYxA@fit_KD_I175= Coeff_linearI175[0]+Coeff_linearI175[1]*x Coeff_linearI175={-5.6793,0.22528} V_chisq= 338.156;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7;V_q= 5.37724e-70;V_Rab= 0.627853; V_Pr= 0.432657;V_r2= 0.124009; W_sigma={0.205,0.0201} Coefficient values one standard deviation a =-5.6793 0.205 b =0.22528 0.0201 M sU˼wUT_Constraints_Fitting<???? K1 > 0K1 < 10 zUAKH_pH3?,U,UJD~vBB@gd@gjAsdKH_pH3?,U,U&B+A\A,uA?XAXAZAKH_pH4?,U,U%8AsdKH_pH4?,U,UWA0AAu=A" AQAʬAKH_pH5?,U,U4BweCB!A~@X.@?AsdKH_pH5?,U,U_`OA14A_/A AbA.A$AKH_pH6?,U,UAs A4A;AtlOBXAsdKH_pH6?,U,UɒAI-AY$A{2AVAZ@xAKH_pH7?,U,U.@Z A;@i>@FAsdKH_pH7?,U,UAAw@[WAfA@nAAKH_pH8?,U,Uz?(ɐ2ey@AsdKH_pH8?,U,U–AAYA+!@."A7AAKH_pH9?,U,U@d,@EGAjlAVfAAAsdKH_pH9?,U,U$apAyA@c@Z4AB@xAKH_pH10?,U,U%Be@T?tl??>I AsdKH_pH10?,U,UAq,AAվ@(@2VfA?>CsdKH_I100?,U,U?XA" AbAVA@."AZ4A(@jCKH_I175?,U,Ud@>?O@ey@A>VCsdKH_I175?,U,UXAQA.AZ@nA7AB@prevHiddensContainsWave x}sStartWithve x}curSelGNamee x}gCurWinNotee x}@ 6P˸PwGrafList ???? ,@ 6P˸PwGrafSelList ????)@` 6P˸PwWaveNameList ????  wave namedata folder NewGlobalFitHӑ?! 9.f>NewGF_RebuildCoefListNowFitCurvePointsi@NewGF_MaxItersD@DoLogSpacingGlobalFit_WeightsAreSD?V_FitQuitReasonV_FitNumIters@NewGF_NewSetupNamex}GlobalFit_BothSLSnewGF_HoldStringex}<j\ 'SGUˀNewGF_DataSetListWave ????  KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10kappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotential2222222222222222root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY WavesX WavesFunction# Coefs $*17=CIOU[bjrz-F_x6Rn *5@LYfsL` 'SGU@NewGF_MainCoefListWave ???? k r0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr8:PsiPr9:PsiPr10:PsiPr11:PsiPr12:PsiPr13:PsiPr14:PsiPr15:PsiPr0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHr0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr8:PsiPr9:PsiPr10:PsiPr11:PsiPr12:PsiPr13:PsiPr14:PsiPr15:PsiPr0:AHr1:AHr2:AHr3:AHr4:AHr5:AHr6:AHr7:AHr8:AHr9:AHr10:AHr11:AHr12:AHr13:AHr14:AHr15:AHCoefs- K0K1 #(/6>FNV^fku $)07?GOW_glqv{;*@ 'SGUˀNewGF_DataSetListSelWave ????e?AAAAAAA+@` 'SGU@NewGF_MainCoefListSelWave ???? o????????????????backColorsj@ 'SGUPNewGF_LinkColors ????վ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸG B$ 'S˹UˠNewGF_CoefControlListWave ????(  root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10ZP[FittingStatic_constCharge][root:KS_pH3]Global AHZP[FittingStatic_constCharge][root:KS_pH4]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH5]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH6]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH7]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH8]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH9]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH10]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH3]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH4]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH5]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH6]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH7]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH8]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH9]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH10]LINK:Global AH232.69373000485935.311016903745798.112551480286335.311016903745787.105053570842335.311016903745767.41400290447335.311016903745752.298022170472835.311016903745756.967892511638435.311016903745754.467984675725735.311016903745775.443107386274235.31101690374578.802013832931735.31101690374574.5056408295610835.31101690374574.0595993608035535.31101690374573.3882318983444535.31101690374572.6927994049896235.31101690374572.4882057000045435.31101690374572.6512114121001935.31101690374573.3616552714325335.31101690374571e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-6Data SetNameInitial GuessHold?Epsilon !,7BMXcny  +6ALXd1?iw O]CQ )9IYix'7GWgw #'+/37;?CGKOSW[_cgkosw{(, 'SGUˠNewGF_CoefControlListSelWave ?????@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@BBBBBBBBBBBBBBBBB@@@@@@@@@@@@@@@@@oX`4 UGU SelectedDataSetsListWave ????8 0 root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY wavesX waves !,7BMYdoz '4AN[hu6< UGU SelectedDataSetsSelWave ???? `@D bUGUWeightingListWave ????H %@ root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10Data SetWeight Wave !,7BMYfsʀL UGUWeightingSelectionWave ????LuT U˸UNewGF_FitFuncNames ????P FittingStatic_constChargeFittingStatic_constPotential55X U˸U`NewGF_LinkageMatrix ????I????????@@@@@@@@@@@@@@@@@@@@@@@AA A0A@APA`ApAA????????????????g` U˸U0NewGF_DataSetsList ????C\ root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10root:sdKS_pH10Weights !,7BMYdoz '4AN[hu#1?M[h U˸U3NewGF_CoefWave ????l dD 3m@ fϧA@ 4X@!Ɯ2U@D P@)%&J@{L@;K@{*[R@6Þ!@@f=@6:US @jڊ@c@.T5@qل @ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>HoldEpsilon{Dt U˸UNewGF_CoefficientNames ????7p ZP[FittingStatic_constCharge][root:KS_pH3]Global AHZP[FittingStatic_constCharge][root:KS_pH4]ZP[FittingStatic_constCharge][root:KS_pH5]ZP[FittingStatic_constCharge][root:KS_pH6]ZP[FittingStatic_constCharge][root:KS_pH7]ZP[FittingStatic_constCharge][root:KS_pH8]ZP[FittingStatic_constCharge][root:KS_pH9]ZP[FittingStatic_constCharge][root:KS_pH10]PsiP[FittingStatic_constPotential][root:KS_pH3]PsiP[FittingStatic_constPotential][root:KS_pH4]PsiP[FittingStatic_constPotential][root:KS_pH5]PsiP[FittingStatic_constPotential][root:KS_pH6]PsiP[FittingStatic_constPotential][root:KS_pH7]PsiP[FittingStatic_constPotential][root:KS_pH8]PsiP[FittingStatic_constPotential][root:KS_pH9]PsiP[FittingStatic_constPotential][root:KS_pH10]*3]/ZEt3x U˹U`CoefDataSetLinkage ????????????@@AAAAB(B@BXBpBBBBBB@0AAAA B$B~WR=L@Bd?]V1YLc9(g`_$jv4J@&4@ek@ X 0NZ 4te60!3@+п̻G#4iD/!Ml2Yv7|8Ę'@HK22Ђ ~+&̋2DCzC5H|U9x-2@5|}Ӆg%R^&0 /<307? I@PF3@XmФO@fm\sf}!Mn7R0 MasterCoefs?UUdD 3m@ fϧA@ 4X@!Ɯ2U@D P@)%&J@{L@;K@{*[R@6Þ!@@f=@6:US @jڊ@c@.T5@qل @ȁ ;S˸U,PNewGF_TraceColors d????$IYyf&$lUULڶ02sa?H0 <efm23ya<$lUUUUl$ڶy0$Ia<aHy0 öm<@Wmʶ;@^_'䀬 /@\;@,@@@K0f%@KA 1f*1@x݂+@ܤU+@KjK8@vf>@'!E WD?"% 0@׆1@T0Ғ@h|@@6lu>\ؔ?Pb ,--@T$3@<@LWk;@x3E]'?4q#@,qt3@D9ua3@HJv87@* '@Ql/jWa5edjWZmb*}`<߽W0O2& bɩ8@ g9?`;@mK?`ΤaM$˿W-@ /D FD`Ի@}@"Q0!PT.@<ȸ|D'@б)0/j#2 ި@!܉aقҿCj@&@y> 4@>b7pid @pd@5 H<8@x58LyPPa!@@'?TK~o@ 渵0@ĬO1@Ʋ"@|r XmФfQ?m4[a?4ջ@ EpsilonWave?;SUư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư>ư> H U˸U!M_Covar ????>?@l?0{K? ?O?]!?Һ"C?B?ePT?=N }?-8?z?C?$!P=?t.;?1QU?[j?l?i'@'?:? ?r>PZ?=]@3S@hU ?DL?y!?Jg?>Aȶ?/y?r?V?Q?s#g]?0{K?'?hB.@B??tEm?P*l?a?GL?On@?Mk?-?a{'?&J"<ئ?qþ ?S? J 2?,ZOx? ?:?B? Xd'@P?@0` ?>mw?R?G?՛a?,C?(=Ѣ?p(?yP?a K|?^EG ?,?Ȇ8?O? ??P?*#@n׋?L2=?}g?cI?5pYc?@!$?H_J?wv{?x&?J?Y3B?ȉX?]!?r>PZ?tEm?@0` ?n׋?mV0@/@@\HfyH?CU?I ?*%$c?Kff?N]:6?% G?̸?wMF?%R[?Һ"C?=]@P*l?>mw?L2=?/@@WaB@M,@"?>?}ne?$.aA?+s??x?rC_?7Y Y.?Tl?B?3S@a?GL?R?}g?\HfyH?M,@b@@J_eЙ?r%k??96 ?ܓ9?T?r%k?r׎?:>'in?OQ?:BF(V~S?>'[W?jwOc]?W_?dR]? mW?-8?y!?-?(=Ѣ?@!$?*%$c?}ne??{?OQ?h?OCr c?(hMf?hޘl?pOo?;o'm?+!yf?z?Jg?a{'?p(?H_J?Kff?$.aA?96 ?m?:BF(V~S?OCr c?p9ޑ?JQi?o?*AR=q?Ǐ-p?3l=i?C?>Aȶ?&J"<ئ?yP?wv{?N]:6?+s?ܓ9?x5G?>'[W?(hMf?JQi?il?б s?"Χt?9Wbs? !ȓn?$!P=?/y?qþ ?a K|?x&?% G??x?Tez?ۇ~t?1QU?Q? J 2?,?Y3B?wMF?7Y Y.??%UG ?Cf6?dR]?;o'm?Ǐ-p?9Wbs?SRWdx?>ez?=SM.?Us?[j?s#g]?,ZOx?Ȇ8?ȉX?%R[?Tl?8.gl?ߺ? mW?+!yf?3l=i? !ȓn?˃ă 0K1 < 10 &`l=U#U MaskingListWave ????Ā=2h=root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:KD_pH3root:KD_pH4root:KD_pH5root:KD_pH6root:KD_pH7root:KD_pH8root:KD_pH9root:KD_pH10root:maskSLSpH3root:maskALLroot:maskALLroot:maskALLroot:maskALLroot:maskSLSpH8root:maskSLSpH9root:maskALLroot:maskSLSpH3root:maskALLroot:maskALLroot:maskALLroot:maskALLroot:maskSLSpH8root:maskSLSpH9root:maskALLData SetMask Wave !,7BMYdoz*6BNZixs|=#U#U MaskingSelectionWave ????^~c4=fitXCumData`?UU#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?#?8?`V??o?`a?j XCumData?UU#?8?`V??o?`a? NewGlobalFit_StoredSetups! GlobalFit_ChargeSLSetups! .f>NewGF_RebuildCoefListNowFitCurvePointsi@NewGF_MaxItersD@DoLogSpacingGlobalFit_WeightsAreSD?DoConstraintsDoWeighting?DoMaskingDoCovarMatrix?DoCorelMatrix?MakeFitCurves?AppendResults?DoResiduals?DoQuietDoFitProgressGraph?NewGF_NewSetupName}GlobalFit_ChargeSLSnewGF_HoldStringe}"B S>SS>S@NewGF_DataSetListWave ????  KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10kappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constCharge22222222root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY WavesX WavesFunction# Coefs $*19AIQYaiq 9:;<=>?@ALWbmx#` S>SS>S NewGF_MainCoefListWave ????  r0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHr0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr0:AHr1:AHr2:AHr3:AHr4:AHr5:AHr6:AHr7:AHCoefs- K0K1 #(-7AKU_isx}i@ S>SS>S@NewGF_DataSetListSelWave ????????????`5 ` S>SS>S NewGF_MainCoefListSelWave ???? ????????backColorsQ@ S>SS>SPNewGF_LinkColors ????վ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸ-,@ S>SS>SPNewGF_CoefControlListWave ????  root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10ZP[FittingStatic_constCharge][root:KS_pH3]Global AHZP[FittingStatic_constCharge][root:KS_pH4]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH5]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH6]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH7]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH8]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH9]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH10]LINK:Global AH229.0042394497217.996505586814989.009242497073517.996505586814977.011426284179117.996505586814956.460926485029117.996505586814935.879920493591117.996505586814927.968238431387917.996505586814929.641321650292817.996505586814961.548543521526617.99650558681491e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-6Data SetNameInitial GuessHold?Epsilon !,7BMXcnyGU'5`n} -=M]mmmmmmmmmmmmmmmmmquy}h S>SS>SPNewGF_CoefControlListSelWave ????@@@@@@@@@@@@@@@@@@@BBBBBBBBB@@@@@@@@@`@ S>SS>SSelectedDataSetsListWave ????  root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY wavesX waves !,7BMYfsr S>SS>SSelectedDataSetsSelWave ????`@ S>SS>SWeightingListWave ????  root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10Data SetWeight Wave !,7BMYfss S>SS>SWeightingSelectionWave ????ܘ$ S>SS>S,PNewGF_TraceColors d???? $IYyf&$lUULڶ02sa?H0 <efm23ya<$lUUUUl$ڶy0$Ia<aHy0 öm<SS>S(wk-k@* !qy@r]1QgJU7A0vAnGD@6@h)@5jA1@L @;D7~;@Fv/)*@`G &@x)@:ڲ2`"@EԚH#@X++@0-Ot1@/b-#XQP 2nI X#@ad/ĥ? ỲNȄ@:]P(@D|'0Vv?ͩ%@jU @K!I{g.@(L\`a>X@ U @P3u@jGA))@3b3/#@0ڿ rP B"1Ԫ@UN~I@Y@ GlobalFit_PotentialSLSps! .f>NewGF_RebuildCoefListNowFitCurvePointsi@NewGF_MaxItersD@DoLogSpacingGlobalFit_WeightsAreSD?DoConstraintsDoWeighting?DoMaskingDoCovarMatrix?DoCorelMatrix?MakeFitCurves?AppendResults?DoResiduals?DoQuietDoFitProgressGraph?NewGF_NewSetupName}GlobalFit_PotentialSLSnewGF_HoldStringe}:YZ BSBS@NewGF_DataSetListWave ???? : KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10kappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotential22222222root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY WavesX WavesFunction# Coefs $*19AIQYaiq5QRSTUVWXYdoz C}#` BSBS NewGF_MainCoefListWave ???? ; r0:PsiPr1:PsiPr2:PsiPr3:PsiPr4:PsiPr5:PsiPr6:PsiPr7:PsiPr0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHr0:PsiPr1:PsiPr2:PsiPr3:PsiPr4:PsiPr5:PsiPr6:PsiPr7:PsiPr0:AHr1:AHr2:AHr3:AHr4:AHr5:AHr6:AHr7:AHCoefs- K0K1#*18=GQ[eoy]^@ BSBS@NewGF_DataSetListSelWave ????<????????`` BSBS NewGF_MainCoefListSelWave ???? =????????backColors@ BSBSPNewGF_LinkColors ????>վ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸV @ BSBSPNewGF_CoefControlListWave ???? ? root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10PsiP[FittingStatic_constPotential][root:KS_pH3]Global AHPsiP[FittingStatic_constPotential][root:KS_pH4]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH5]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH6]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH7]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH8]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH9]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH10]LINK:Global AH9.5094092420586549.33334360720294.8993639023285549.33334360720294.4973827164536449.33334360720293.7103363707159949.33334360720293.1563195306053449.33334360720293.3561321889463749.33334360720293.4149668158470349.33334360720293.9057518236926849.33334360720291e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-6Data SetNameInitial GuessHold?Epsilon !,7BMXcny'Vd JX&6FVfv.] BSBSPNewGF_CoefControlListSelWave ????@@@@@@@@@@@@@@@@@@@@BBBBBBBBB@@@@@@@@@@@@@@@@`@ BSBSSelectedDataSetsListWave ???? A root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY wavesX waves !,7BMYfs-g BSBSSelectedDataSetsSelWave ????B`@ BSBSWeightingListWave ???? C root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10Data SetWeight Wave !,7BMYfs4h BSBSWeightingSelectionWave ????DLј BSBS,PNewGF_TraceColors d????E$IYyf&$lUULڶ02sa?H0 <efm23ya<$lUUUUl$ڶy0$Ia<aHy0 öm<NewGF_RebuildCoefListNowFitCurvePointsi@NewGF_MaxItersD@DoLogSpacingGlobalFit_WeightsAreSD?DoConstraintsDoWeighting?DoMaskingDoCovarMatrix?DoCorelMatrix?MakeFitCurves?AppendResults?DoResiduals?DoQuietDoFitProgressGraph?NewGF_NewSetupName}GlobalFit_BothSLSnewGF_HoldStringe}<\ FS˶FSˀNewGF_DataSetListWave ????$ X KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10kappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotentialFittingStatic_constPotential2222222222222222root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY WavesX WavesFunction# Coefs $*17=CIOU[bjrz-F_x6Rn *5@LYfsr`, FS˶FS@NewGF_MainCoefListWave ????0 Y( r0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr8:PsiPr9:PsiPr10:PsiPr11:PsiPr12:PsiPr13:PsiPr14:PsiPr15:PsiPr0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHr0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr8:PsiPr9:PsiPr10:PsiPr11:PsiPr12:PsiPr13:PsiPr14:PsiPr15:PsiPr0:AHr1:AHr2:AHr3:AHr4:AHr5:AHr6:AHr7:AHr8:AHr9:AHr10:AHr11:AHr12:AHr13:AHr14:AHr15:AHCoefs- K0K1 #(/6>FNV^fku $)07?GOW_glqv{T@4 FS˶FSˀNewGF_DataSetListSelWave ????Z?AAAAAAA} @`8 FS˶FS@NewGF_MainCoefListSelWave ????< [????????????????backColors@@ FS˶FSPNewGF_LinkColors ????\վ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸI PH FS˶FSˠNewGF_CoefControlListWave ????L ]D root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10ZP[FittingStatic_constCharge][root:KS_pH3]Global AHZP[FittingStatic_constCharge][root:KS_pH4]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH5]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH6]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH7]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH8]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH9]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH10]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH3]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH4]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH5]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH6]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH7]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH8]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH9]LINK:Global AHPsiP[FittingStatic_constPotential][root:KS_pH10]LINK:Global AH232.69344597803135.309935790006298.111960821505835.309935790006287.104418051499835.309935790006267.413343436213435.309935790006252.297203121728735.309935790006256.966967333850335.309935790006254.466987297290335.309935790006275.442285674948735.30993579000628.8019932041023635.30993579000624.5056049691362635.30993579000624.0595599781383735.30993579000623.3881852187537535.30993579000622.6927462082942335.30993579000622.4881674347039135.30993579000622.6511589345474635.30993579000623.3616082517869535.30993579000621e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-6Data SetNameInitial GuessHold?Epsilon !,7BMXcny  +6ALXd1?iw O]CQ )9IYiy )9IYiy                                  !%)-159=AEIMQUY]aeimquy} SP FS˶FSˠNewGF_CoefControlListSelWave ????^?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@BBBBBBBBBBBBBBBBB@@@@@@@@@@@@@@@@@k`X FS˶FS SelectedDataSetsListWave ????\ _T root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY wavesX waves !,7BMYdoz '4AN[hug^` FS˶FS SelectedDataSetsSelWave ????`H`@h FS˶FSWeightingListWave ????l ad root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10Data SetWeight Wave !,7BMYfs_p FS˶FSWeightingSelectionWave ????bȘt FS˶FS,PNewGF_TraceColors d????c$IYyf&$lUULڶ02sa?H0 <efm23ya<$lUUUUl$ڶy0$Ia<aHy0 öm<:@XU4B 5@@ [t9@C;@B;>@?e~;@Y'Xt /@2)$;@:@@ȫe@0e%@y13m.׏1@\j+@oL+@^#K8@bY >@3l!E@JLN?Bׅ0@ F1@hh|@@@ gu> N5?R--@T$3@mPn<@z E ;@uCQ3@<&?'&P#@3t3@fFq3@L987@g\^b'@j+w]4ed$R=W-@@Ҧ&DZ@Ũi@dP0.@.ÈD'@:i )9~_قZ#2hX@~f^@YA-Gҿ˯@&@% 4@b7`Ne ] @l*d@.=28@u858RM!.&? Ǜ @TSH0@h1@~KYe"@̡갟r ,wf@n?0rq_?S>@ LastSetupSavedLSlSLSps! .f>NewGF_RebuildCoefListNowFitCurvePointsi@NewGF_MaxItersD@DoLogSpacingGlobalFit_WeightsAreSD?DoConstraints?DoWeighting?DoMaskingDoCovarMatrix?DoCorelMatrix?MakeFitCurves?AppendResults?DoResiduals?DoQuietDoFitProgressGraph?NewGF_NewSetupName}GlobalFit_ChargeSLSconstraintnewGF_HoldStringe}"B8=U˳U@NewGF_DataSetListWave ????P=e4=KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10kappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constCharge22222222root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY WavesX WavesFunction# Coefs $*19AIQYaiq 9:;<=>?@ALWbmx#;_`=U˳U NewGF_MainCoefListWave ????=fx=r0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHr0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr0:AHr1:AHr2:AHr3:AHr4:AHr5:AHr6:AHr7:AHCoefs- K0K1 #(-7AKU_isx}G@=U˳U@NewGF_DataSetListSelWave ????g????????`v`=U˳U NewGF_MainCoefListSelWave ????=h????????backColors-@=U˳UPNewGF_LinkColors ????iվ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸ @=U˳UPNewGF_CoefControlListWave ????=j=root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10ZP[FittingStatic_constCharge][root:KS_pH3]Global AHZP[FittingStatic_constCharge][root:KS_pH4]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH5]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH6]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH7]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH8]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH9]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH10]LINK:Global AH233.1945744232591082.41292083740811070.60581419507471051.26077160054461021.903655766475910-6.92784968778563101.355134251074051055.3759978460241101e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-6Data SetNameInitial GuessHold?Epsilon !,7BMXcnyGU'5`n~ #'+/37;?\F=U˳UPNewGF_CoefControlListSelWave ????k@@@@@@@@@@@@@@@@@@@BBBBBBBBB@@@@@@@@@T`@=U˳USelectedDataSetsListWave ????=l=root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY wavesX waves !,7BMYfs[P=U˳USelectedDataSetsSelWave ????mr`@Ȇ=U˳UWeightingListWave ????̆=nĆ=root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10Data SetWeight Wave !,7BMYfsbQІ=U˳UWeightingSelectionWave ????ow$=U˳U,PNewGF_TraceColors d????#$IYyf&$lUULڶ02sa?H0 <efm23ya<$lUUUUl$ڶy0$Ia<aHy0 öm<NewGF_RebuildCoefListNowFitCurvePointsi@NewGF_MaxItersD@DoLogSpacingGlobalFit_WeightsAreSD?DoConstraintsDoWeightingDoMasking?DoCovarMatrix?DoCorelMatrix?MakeFitCurves?AppendResults?DoResiduals?DoQuietDoFitProgressGraph?NewGF_NewSetupName}GlobalFit_ChargeSLSconstraintnewGF_HoldStringe}"LBD U˫U@NewGF_DataSetListWave0 ????H @ KS_pH3KS_pH4KS_pH5KS_pH6KS_pH7KS_pH8KS_pH9KS_pH10kappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmkappa_nmFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constChargeFittingStatic_constCharge22222222root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY WavesX WavesFunction# Coefs $*19AIQYaiq 9:;<=>?@ALWbmx#x`T U˫U NewGF_MainCoefListWave0 ????X L r0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHLINK:r0:AHr0:ZPr1:ZPr2:ZPr3:ZPr4:ZPr5:ZPr6:ZPr7:ZPr0:AHr1:AHr2:AHr3:AHr4:AHr5:AHr6:AHr7:AHCoefs- K0K1 #(-7AKU_isx}@\ U˫U@NewGF_DataSetListSelWave0 ????????????`` U˫U NewGF_MainCoefListSelWave0 ???? ????????backColors@ U˫UPNewGF_LinkColors0 ????վ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸ15@ U˫UPNewGF_CoefControlListWave0 ????   root:KS_pH3root:KS_pH3root:KS_pH4root:KS_pH4root:KS_pH5root:KS_pH5root:KS_pH6root:KS_pH6root:KS_pH7root:KS_pH7root:KS_pH8root:KS_pH8root:KS_pH9root:KS_pH9root:KS_pH10root:KS_pH10ZP[FittingStatic_constCharge][root:KS_pH3]Global AHZP[FittingStatic_constCharge][root:KS_pH4]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH5]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH6]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH7]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH8]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH9]LINK:Global AHZP[FittingStatic_constCharge][root:KS_pH10]LINK:Global AH137.08871465778810.003294300234484.433981393433110.003294300234471.847921629436210.003294300234450.621499147751410.003294300234424.819282400012410.0032943002344-0.99665438919057410.0032943002344-5.6150700630207210.003294300234453.965539232502810.00329430023441e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-61e-6Data SetNameInitial GuessHold?Epsilon !,7BMXcnyGU'5`n~ 0AQaqqqqqqqqqqqqqqqqquy}Հ U˫UPNewGF_CoefControlListSelWave0 ????!@@@@@@@@@@@@@@@@@@@BBBBBBBBB@@@@@@@@@`@ U˫USelectedDataSetsListWave0 ????0 " root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmroot:kappa_nmY wavesX waves !,7BMYfs,݀@ U˫USelectedDataSetsSelWave0 ????%%`@l U˫UWeightingListWave0 ????p &h root:KS_pH3root:KS_pH4root:KS_pH5root:KS_pH6root:KS_pH7root:KS_pH8root:KS_pH9root:KS_pH10root:sdKS_pH4root:sdKS_pH4root:sdKS_pH5root:sdKS_pH6root:sdKS_pH7root:sdKS_pH8root:sdKS_pH9root:sdKS_pH10Data SetWeight Wave !,7BMYfs݀t U˫UWeightingSelectionWave0 ????'E U˫U,PNewGF_TraceColors0 d????K$IYyf&$lUULڶ02sa?H0 <efm23ya<$lUUUUl$ڶy0$Ia<aHy0 öm<lasttabnumcoefs?weighting_radio?destleni@nindvars?numpointsuseInitGuesstolMbP?iterationsY@popsize4@recomb?k_mffffff?cmdΔ }saveStatusΔ }ydataWav_setVAR_tab0:_none_;xdataWav_setvar_tab0:_calculated_;weightWav_setvar_tab1:_none_;maskWav_setvar_tab1:_none_;destWav_setvar_tab3:_auto_;resWav_setvar_tab3:_none_;coefWav_setvar_tab2:(no selection);limitsWav_setvar_tab2:_from below_cursorstartΔ }cursorfinish }ydataWAVish }_none_coefWAVish }(no selection)xdataWAVish } _calculated_weightWAVsh }_none_functionstr }FittingStatic_constChargeholdstring }maskWAVng }_none_limitsWAV } _from below_destWAVV }_auto_resWAVV }_none_@P :/S:/SGen_listwave ????L +@T :/S:/SGen_listselwave ???? ChargeSLSGlobalFitonstraint!\ P` ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH3\ ????<ź"l@y1@Pd ;Sˎ;SFitGlobalChargeSLSsig_KS_pH3\ ????Q'?%[?fh ;Sˎ;SFitGlobalChargeSLSGFit_KS_pH3\ zWdDt????#?1RUv@ ݦ@[M@)@@k~9@^1d@^ޒ@Ӊ@ơ@kea_@$^ү@8J<@<'c@TΧƅ@+/@ 'U @2ٯ @]ȑ퇃@j!@_^@I @c^@4-!@1@ȽG@0 @f8~@Bn4~@5ex}@{4|@ H|@\x\Hf{@qAIz@}mTz@ga8y@dCx@kqXx@66w@*Qכ?w@aRv@^/6v@Y:u@<n c!k@WLk@c?j@ ?=j@ Ϻi@.W-;i@gU@4whU@\6U@s@T@6K^T@T@&S@{x bS@U{ S@iЄU|R@p-YsR@&R@73Q@ "Q@WH\HQ@ƺBAQ@嗺P@TUuP@}F.߮1P@O@ZO@ON@Թ;[N@F٦M@Χt(dM@L@diCuL@6<L@_6K@IK@rpJ@Q4AJ@bI@ HlI@$.I@nW֞H@δleK:H@=YG@ڒuG@f<G@LȷF@ޠ#ZF@nvE@sE@`5-LE@6D@8D@])KD@)@=>@xbY=@X@=@[w<@۹(J<@`g;@cZ;@$m:@4Cq:@fLG9@<9WZ9@.Ƕt 9@t)8@A1G8@`97@aD_s7@o? 7@ 26@KA6@m5@pl ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH3\ ????(wk-k@* !qy@r]1QgJU7A0Pp ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH4\ ????}m@V@y1@Pt ;Sˎ;SFitGlobalChargeSLSsig_KS_pH4\ ????6y4w@%[?Qx ;Sˎ;SFitGlobalChargeSLSGFit_KS_pH4\ zWdDt????#?]Ω$b@/a@i@`@r^`@_@Q3^@n]@pݓ\@b[@OZ@iY@nk<Y@RX@jW@>4 V@V@[hU@,%T@ܾvqT@8zS@/R@ؔ!^LR@c창Q@003Q@ 띞?P@dL,+P@ppV\\O@fiN@FM@S{L@LFzK@7J@әJ@ \QI@.?ItH@.G@JUG@K)jF@uM˽E@vE@_jsD@u/C@ [@C^X>@AZ!=@/<@ ΔM;@xq:@d 9@(8@z̢7@ay97@NNOkx6@^ǀa>5@nPx5@]Q4@s3@QIK2@ LS2@V1@C"J1@^?Rz y0@k9/@(u.@P-@a8g,@iDU+@`"l(HJ*@(D)@"E(@Pq.&L'@!)IX&@Fi%@݀$@T5#@d7/"@D!@dߴ!@ > @l 2@8BU@0?ܫ5?)Z=?T 7ȿ[ڿ0D;`?oFY 87Zh1F[ vgp+ `bk0 GfJ ]> AH* ˲ @(K`JMLK ;@a0(-D@Ne)s]bq|!S_-k=T|qPaҳGY4bquZfL|qSm.|g E6Uº<[.s;ăFS{=E/W~Ϋr($G&\-A+ )^k\ 蒧#- CI R6 OLڛ.!vsxE!dM8r! !UE5_!!,8j"ؤG"8 op"Nu"87rd""<#-b4#H8Y#V=[~##طڒ#7AR#@$@ $>/$h2Q$.s$Қ,;$R(Ӵ$G"$K$%lѰ2%l].NQ%LbZo%p| ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH4\ ????vAnGD@6@h)@5jA1@L @P ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH5\ ????J7O5@S@y1@P ;Sˎ;SFitGlobalChargeSLSsig_KS_pH5\ ????XeJ@%[?< ;Sˎ;SFitGlobalChargeSLSGFit_KS_pH5\ zWdDt????#? Z@c&4Y@2QX@żxW@&$ V@>=.U@g$U@渽GeT@dS@$ WS@**dcR@kQ@lz F+Q@R~ P@'f_ P@O@dPM@(za,\L@@icL@kÛEK@XXC0J@ȽWRI@0)|H@R}u̬G@DF@ǗJ"F@UfE@qkD@< D@޺VC@K&B@B@ɣvA@9δ@@ ,O@@š?@q>@ g=@8k_e<@7bk;@ x:@yߋ9@Zf8_8@ba7@l?O6@́6@6O5@t'4@BY3@4 3@M\R2@v&1@ U;n0@/N4VI0@^I/@\^.@ EB,@>$q+@4Uw*@MV)@ő<(@l{)'@H&@d %@(?%$@,v-+!#@7%/"@хB!@ [ @N@x%<@[]@Dh@P@J@4F9@vYҺ@P8CE@Lq )@ﶊ@ܭ;, @0ϓq @j?@ hZ@<{@@Di@ ̧ /5Й/Q{HT.RܛӶRvk-S0|nJP9\!O!给 E hy6 Ul gk ܨq PǢ!r4u9!BJk!JЛ!Tu!U!fUҨ("Y:V"Y" N "wd"xaU#R/#mX#e##8#[$]#*3#Խ$vC$~Hh$%($_p2)$n`$e$%z;%ƄCE]%з<.~%֑I%O%u8 %0q% &h9&(@ W&:t&J&Sa.$&'R3&쀾&|#'+'@25(G=@0BR+ <@Fmwc:@"4?9@ֶb8@'7i7@h- )z6@zbA{5@\D4@H^3@bl2@d1@.2:o0@m@'0@2y-A.@Y5-@ ׅ+@HP;TM*@X~Ɯ(@ظs'@E&@R%@N#@D3"@s!@b5J;U @^ڹ@4.f@P [@4 _@r靰q@p4L@@/2P@Cjg@;e$@@- @0蘕@>}@03a@B9r]? pgȇ?2?g ?忹?W@?`-m˿࿠꿠ZXy?@eSP%  fvDqz`iK# 7   C|`ۥ{9S0l0%lnû(#R`?]anrfMmtY#?Fh=6 zZeJ Tޟr=9{@s0UsVR,(C<# 6Ma T8eN RlD 3 !]!2Rϙ!8! ")"(ĞF"r+?}"|?"*#5x"_fU#:P##Lʇ}S#ZF#[$$[B$.刌?p$ G$S(4 $tiR5$%r%a2H%29 q%9ai)%9_%ϝ=% A= &~2&<:W&ʫ?{&)[&hTBh&>ng&d$ni'''&'a_F'nqHxf'Dqυ'j^z'~2'p+'`EnL'S (,7(6,R(Yv\n(5kNP(C*Sӣ(/F(85b(&m(z )˚"")j*:)h}Q)wr%i) e)}){ԥT)S)Q)1)@/S]k**&>+*BIf0?**eR*qC0f*?y**Wͅ*ʠѾ** pc**v*"v+!+, )+ϘS=9+tU6I+U{NX+xh+v^ w+Chن+rx+ha+Sֲ++׾7P%+^=+ R+f?(+t,v0,~,YE,,{8,%HE,r)Q,;],\p ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH6\ ????EԚH#@X++@0-Ot1@/b-#XQP P ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH7\ ????@Li@T@FE ͳ@O @}ؒG@]P@ٚ?@-?=?!Ɣ!?ƔR?@$x*qֿ@}0leԾ` 2PÒJh@c 9v~@`2 P5 P8@blh00$cB6TEX`v7Le9T jbBf08\"_8$Jʋ1_lɞTxνOU05RoQl&qC )/[  d&0F!ױ! %Q!o ?5"3460"X"#ΰW#ia#h#" R$U\$b֙$"iu$=%3IH%f%H%G*%ziч&XBO&b×&Im]&/&i 'o 9'0ðd'EQ'2%&v'A'(|(@%{]/(s;U(_&Bz(v(S(Rp(f:4ud)0')@J 4G) g)&oɆ)„1)Oa)3|)()\*p*hO<3*WN*voi*PÂ*d*Ŷ*ZMN* ]*9*+KK)+YP>+X4~oT+VKui+N*G/~+``v+<΋N[+RG߹+zk+A+^(?+5W,Iaf,',Vަ8,pUtI,.1Y,&j,lmOz,䮉, q-1,p,a9,Vt,on,OCg,jԕ,0e9%,|x -M H!-b`,r$-R3>1-==-I,I-1ӬPU-ddz a-@qCm-x-N^-g[-##-d-x]e#-ƫ@-\"(o-nʏ̺-F.-+.wT .S.pL&.ܺ.zX).DLI?.yK.o].zZ.J./z/ބ /z/w/E|/KE /:%/Gp ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH7\ ????2nI X#@ad/ĥ? ỲNȄ@:]P(@mP ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH8\ ????My;@y1@P ;Sˎ;SFitGlobalChargeSLSsig_KS_pH8\ ????I^)@%[? ;Sˎ;SFitGlobalChargeSLSGFit_KS_pH8\ zWdDt????#?PB@_ǧ`5e,[9H`IYb0Er0 n rUxL%B/b,r_R,F8e,^x,F"3,0I, ,ٜV,-Q,_k1,]lФ<,K1--J"%!-`/q'0-.j>-XDHM-t/j[-FDi-.Wv-+-\Q:-Q-m-h-9%-X{-0-ػ--Бn-t.gt~.)Xn$.&.x 0.o9.\sIC.|!M.<_tV.}_.gPh.٥rq.}!z.~詂.VMB .YI.ab.qW.z _*.e۲.PZj.n1.^^(.eqDX.^_i.&ֆ\.X2.o.Zb.( .֒"p.P / /V/E/&É/x#/]t)/kp//E4/XS:/MPr?/HHD/I/$O/l_ T/@Y/$dQ]/Eub/g/x ^9l/ p/ɦ^u/my/6?~/ \g/vN݆/&P 7/l;/{h8S/b[/ȬU/s@/Mż/X/Fvy/`/\/zƟ/5+/fE./ /W,'Մ//hp./&@q//[%S/px//5 /ח/I{(/2p ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH8\ ????D|'0Vv?ͩ%@jU @K!I{g.@XP ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH9\ ????v9ڧ-=@y1@P ;Sˎ;SFitGlobalChargeSLSsig_KS_pH9\ ????Op: ?a%@%[? ;Sˎ;SFitGlobalChargeSLSGFit_KS_pH9\ zWdDt????#?2? )D?ʣ9Z? Ŀؑ&俰( 󽩶]~'uSȦba OR ¶H,(TGĺmBZG.XжiS,4) <漷Cle0BG77Ы%, Sp$@7տH d5ƭ 2Pۉ!vPCn!`! #"N QYy"f^ǖ "lhD;#Vm#kNy#5q.$WY-K$Z/ő$NiJ$_Ɩ% X%;v%K%%J_'&G&܆%a&&/&0- ' Y"P'.'Upn'km'4N (Ml7(M b(P!J(NR(L($rCY)6))TiM)zq)OJC[)h0)m~) )M3`*Fe8*vDZbV*AAg t*e*|V*l *!S *f73|*.{T+V"ܙ1+FBOJ+gczb+^z+jC|=+z&ݧ+5++2++w,+%,o M9,Ug`L,V{wm_,_bZq,pFF,6p֔,9 ,9<,%Wl, -,ܝ*},O1 ,VN-z/D-՜T#->gAQ2-"m@-VDN-ē?[-߭)i-V;v-9 -o-S|-(_-c-R-#(-Sfj-Mx-"R T-fn-Lv.Zh4 .%.hZ..Yu).zx3.4Q<.LWE.וVCN..W.mH`.]M@i.X@{q.2 z.5s>M.O_.TQO.T.auˡ.2[X.4,ư.b.J)E.͋W.L.w%.=u.&3.N .Bw.~g.@./#/]*/.c //B|/`/3#/Tfeu)/6./{44/Au9/pL>/i)C/msH/YR3M/4OR/ bW/h\/3`/ Qae/Pi/Eb7`n/Ir/w/Fh:d{/D/wă/Tu7݇/2l/*_/f98ѓ/]//dryG/H<./R /) `F/,3׭/9[/"gwӴ/ChC@/8YҠ/3/p ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH9\ ????(L\`a>X@ U @P3u@jGA))@3b3/#@LP ;Sˎ;SFitGlobalChargeSLSCoef_KS_pH10\ ????ұ6N@y1@FP ;Sˎ;SFitGlobalChargeSLSsig_KS_pH10\ ????kcH@%[? ;Sˎ;SFitGlobalChargeSLSGFit_KS_pH10\ zWdDt????#?o1dN@a6M@NzhL@nK@RZvI@/H@$n6G@ J G@k/F@ïXTE@jD@{C@zhB@LJZ17B@7!A@n @@_9Ū)@@pd ?@Hp=@1<@w%};@D b:@uP9@9!G8@=DcF7@<4>'O6@.`_5@"%Lw4@ 釞3@4;X 2@4aF1@r1@)X0@+f0/@~-@(JS,@`:B*@3 )@OX(@ؔF'@F5f%@R$@"q6#@ioNq"@V\!@ڹ:hO @LP$@ gM@@1c@Z?@\sw@kR*@=n@Xb] ž@4@4R @~+ @m:d@|B@X{@X&a?|m?W??i$?~)o\? \Ŀ xݿ@om`d\=%_Q@ ?50 iSЈӞ`R&=]dp6 @j1 Plk P 9pP%2>y]m)" DudlrZ3 -C t$-jgFV!HPk&$>bTs:uWi}zH7 dk#C荀9# /jcr@BL$#x4KSX҉o *Y@ ~ `. dd5 1!n+k!΢!!ҕ-"NF"yz"ظM߭"_-;"axt#~?9B#sq# D#=K{#^#IE/($S S$5ӭ~$*w$ }$~0`&$ǂp"%SQI%ܗ2p%m%3S%%8&<,T'&!6"J&|][l&̊$&V0A&q, &@Mѳ&Fn(5'fQ3.'.ݱL'慢j'~nqN8'$hE'Q'pp`';O'FV (7/(l2J(A3d(E}((ԯ(E(5NOX)Z)'w)ߔ) e=g)O|aM *pa1!*{+4*gF**QY*oPk*(Rk}*玳*Z2*t*Q+H*@T*ͮ *& * + -d+qt#+gQ52+0EA+lP+\_+ɖFn+WMc|+p ;Sˎ;SFitGlobalChargeSLSGRes_KS_pH10\ ????0ڿ rP B"1Ԫ@UN~I@Y@ PotentialsSLSGlobalFittraint! zCP BSBSFitGlobalPotSLSCoef_KS_pH3 ????I#@1H@~tP BSBSFitGlobalPotSLSsig_KS_pH3 ????沃tS@?CI+2@-T BSBSFitGlobalPotSLSGFit_KS_pH3 zWdDt????#?%[1@8ك@Ww^@A"2@@.{@{듂@H@]@@Vp@&-,@@G %@pNk@4l .@@p@Zp/#p@waPy~@6~@Q"H#~@"m+}@gRR}@/w|@0|@:X2*|@fp{@ `^p{@~6qR{@Э;z@j* hz@5Az@%DOy@tkCpy@t9!y@rx@)Zx@> =x@;-+w@ǣIw@L Jfw@!w@}^]v@@x8v@T[v@4 v@|>n(u@Hџu@cu@'w(u@ω]ft@*]t@zbp,W}t@KFt@o5t@sk s@%Ϧs@sss@J@s@Ms@yr@Nsr@6`5r@B&Pr@ѸӢ#r@F^q@=rq@9*!q@ݲ8sq@GHq@6aq@Ykp@p@IUYp@`f6p@YӧXp@2p@B9 < p@xHo@u5o@P@o@%Xn@Rn@bJYon@ +n@N;.l@xrTk@O:6k@rq|k@ECk@(ɕj k@ "Jj@TrK3j@,w_)dj@Z8V".j@i@hzi@i i@\i@?a)i@h@A$h@\-h@'&dh@[K4h@O36h@y g@Dhg@?I{g@ye2Ng@!g@zf@Dkf@ߘuf@Stf@Qg5Jf@W f@ u^e@ΝEe@?ZAUe@z~e@S'e We@x 0e@.mv e@*Id@;[d@$d@R8)sd@xXqNd@$WX*d@d@++c@Pc?c@{չ(c@w;zc@ `mXc@/6c@ c@)Bb@sxb@O~mb@4_ Xb@u&ΐsb@YTb@疀4b@wb@UXa@S?a@2wBa@X/a@ a@Okba@z=Fa@{{)a@*(q" a@O `@6`@q R`@:JN`@AR8`@eah`@G@M`@(Pk3`@ 0J`@/_@ֽp_@nI݋_@޻f_@>54_@xz5_@@rY^@#=^@Mp^@1e@^@r=G^@]@m]@> IDŽ]@ꑛV]@fM)]@|!\@T\@5 \@K v\@ &1K\@*\@\[@Vg[@@<&ğ[@MBu[@D!L[@Hل"[@nZ@li6$Z@S?p BSBSFitGlobalPotSLSGRes_KS_pH3 ????]閆@QY[ph͋Hh9IeaV!blipiYfBP BSBSFitGlobalPotSLSCoef_KS_pH4 ????@1H@itP BSBSFitGlobalPotSLSsig_KS_pH4 ????"?CI+2@S BSBSFitGlobalPotSLSGFit_KS_pH4 zWdDt????#?hC¿`@цG`@_@HV+_@E#^@7܊]@P#7:]@Ý\@ 6\@ޔyYq[@kZ@ȥ^mTZ@~5|Y@xӝ FY@p>X@.7iEX@rOkW@^KPW@4V@ΌhV@&آU@9"U@ G U@b͑$iT@*$PT@Ƹ*S@2whS@$*S@DR@AOqR@cb/R@%Q@C(jQ@F6Q@hL3DP@sP@l $P@1O@&gTO@ѣpN@WRqM@xxA`M@z_:L@`6LIL@HK@N:>K@qϻJ@qF;J@.\I@T' CI@]tH@PXvRH@*ܬSG@7kG@VqWF@"&?eF@|UF@hE@ .IE@gD@#B{D@6D@x/C@0lSC@\$!RB@|FB@T9B@:i A@ TA@ 3,A@{#@@Bԭ@@^W+@@ܐwٰ?@ls ?@qk>@X_=@8Y0=@PFQs<@p*t;@jPx|g;@E:@A:@犈9@y0$9@p=Y8@m8@8ɝ b7@-7@,5}{6@XwU"5@q~:x5@4@Ȧ{{4@X3@\ F3@Xt 3@Z2@tTw2@lyUH~1@PH]e81@R.@# .@hwoK-@Ȕ&ɜx,@m+@P);,*@*@3wG)@((@ ]8)'@h8n&@\(;&@x)~%@0-{$@`s $@xS#@m۝"@x!@pX:!@@` @@@fý@kg@@( @xz@8m62@xM@)@P5np@K6@P^o@Tn@(2V@`"@PGK} @ 9 @@@ @C0q@/':@@̼S?`d?`+l?(*??@! ?aw??D/X?c/̿!޿@ @iA(2e\ౌ:!`!N!O0֒,)1PL`wה@3v Ϥ > f b ePE%ɓ"1uWMXwؚ#ͦؔW0utOjv78[~с;{[ s@?Q:0r*d@^o" M.%\(M a x& !ba!(u+!P="o" ^Wt"G 3#IAv#A\#?>p BSBSFitGlobalPotSLSGRes_KS_pH4 ????@a7ޥm?6@PpB@b GA @:xW@RAP BSBSFitGlobalPotSLSCoef_KS_pH5 ????]Q@1H@TtP BSBSFitGlobalPotSLSsig_KS_pH5 ????g?CI+2@R BSBSFitGlobalPotSLSGFit_KS_pH5 zWdDt????#?_0gY@C2aY@ A~X@o5X@Eh$W@OW@&4V@ɜV@⠎U@҇U@2A"T@F !T@Vv7S@P@aX>tP@*JP@TPg|O@N@<7ijN@LvM@.L@J] 1L@25mK@Z1J@ra@bJ@>_:~I@֤,=I@ &(H@ppuJe%H@BsG@ZK p?G@OdNF@ZQF@\5VFE@da/^@E@AuD@ =.D@C@/HC@ Xb\B@:jB@:A@LY(A@ -A@z@@Ėb@@)S@@tY??@p܀>@3=@ѿ=@±`Y<@`-g;@ :@4M:@7"9@qͯ8@XZ8@7@LdF7@t~6@Дm5@/ *M5@,4@i4P&4@{s3@u/3@(h{2@8<1@8|ci1@ J(0@r_0@XUW/@ۺ.@(S;-@@,@(w+@\a*@ ҍ)@J)@*(@|`4'@@3R&@Zs%@$@!O#@`I"@"@ONB!@Ƥt @R@0@օL4@t.ݭ@)@H| @22@H-v@(-GN@X@)6 |@0)O2@pu @(@@4`sp@n; @l~?Gd?iY??@T? , ?Sؿ$rK:sؾ8 )ԍR.#lh}wpG @{⧿/MX#P/\sX<v^g6D8Tni'PzPԍ\]b PJ! K-o- M>-To-.g{.|ׂ<.4;[A2/ȹ?b/C/ c/xG!0ʂAF0B8Fwk0_d0+=p BSBSFitGlobalPotSLSGRes_KS_pH5 ????|A7x 7h(@PZF @\'"@< l&+@>@P BSBSFitGlobalPotSLSCoef_KS_pH6 ????zĮ @1H@?tP BSBSFitGlobalPotSLSsig_KS_pH6 ????ȦT~?CI+2@P BSBSFitGlobalPotSLSGFit_KS_pH6 zWdDt????#?K!Գ K@HU5J@je)3fI@|V H@(jG@rȧG@.bF@ #YM`E@҅E@vGАVD@hC@<+^C@rB@c@F=@ .<@HvaK";@8L,:@^?<9@ȜQ8@XS⸟l7@Lf~\6@ <5@H^ut4@h's4@ ;3@ q2@l1@|e*!0@Lo=/0@@`.@s$-@@i P,@H*@\l)@hhn(@&&@Y%@b,V$@ Of #@`7B!@` " @W~?@xci@ܙ@{p@P>"|@5c@bcT@@N@ @r@v@`eo@uD ? 06dx?Ł?:?qw"~17῀W ܜH#.N5oy`50:^n ٧ XtsjQxԳrṰ( J(8UbȊ\~S1q@a.fU&+XT qWX (} X+! -"Zx"zlZ#bЯ#p Ƙ$gn%to%dH+& R2}& 3.3>'4ѵ-',R@sJ(H (P)TTvZ){O* S*OH+32+47:,5n-,z\(-z-Ѫ.TJ.q.lF^`/%6/@0 DS0\fKS0"!ɼ0jv00!Z#1L!V1BXt؈1KSv1rW1<2ĆXL24B{2R+K2aN2f3@\"43}a3&Q63>zR3dW3 rh.4;4'2Ff4lM,4&_4V^̋4^ 535Xx2y[5)51MI55bҭ5iϸ6wB6 =g66T6p/g-6&nZ67s7-IY7 7(M8 8@]V4-8o2M8rYJn8đe8P(788y}e88ܓ 9 ;'*9؋1I9bg9Q99jj9U9e(9vS1:13: O:`]k:K:Zp :cgHS:іb:98:|; >);|>nC;Si]; IM.w;LB;HԊ;&1F;#Z<;;/@`}!-@p" ,@M*@6B(@O-&@G%@)w#@ ]n!@8K @6Lca@s@ @蘴@Qq@g@@!q.O @%f@(?ʆ}.?٪S?:h?L`hq6PhԄ %`=` `o0 XYso߲B$}:o-NW|؍mY/Wl ȹ!4P.a"xJ-#K\#@/w$LYʄ~%t]Y2=&FD&2Ű''8e(HP))]|s*˥R+ a`+~f,`4M-8~A-B.d|wZ.Ms/@G0v\ԘM0',˕0䧖0z"1*g1fN1N1{b02W\q2'2@2]/3$Ul3L"VE3PT P3^4!Y4t[4fzz4L<5(0:5uhp5|5dF 5k\6,;.;B6C)t6#6862Sg 7~$97H>i7`C78©X7\-_H7dK!8 -N8Kz8Ba8 8V P8wr&9P9:=y99z99@Q#:.m?:^f:+yU:l߱::@f:  ;8C;lg;NWƌ;zzML;iZ>;4;aS >ղ"9>CQeT>9p>]Ml>-]>ve >y1y>/>IM??mH)?=jB?C`[?0/nt?aY*? 9?IO?Ybv?}?}"Y@Z@Z0i@Q%@J4V1@{욦<@ lHG@R@̩]@h@s@}~@K*#@fT@(@/W@oӲ@(&@}&@d>/@c#@:x&@W @ <@f$AA2 A,AZƋAz'A@%1A n3S:A捫mCA1XvLAq۔lUA;p4 BSBSFitGlobalPotSLSGRes_KS_pH7 ????`܇g7@L|@G@u\{04@RIB@?@>P8 BSBSFitGlobalPotSLSCoef_KS_pH8 ????ԞD[ @1H@tP< BSBSFitGlobalPotSLSsig_KS_pH8 ???? WN ?CI+2@N@ BSBSFitGlobalPotSLSGFit_KS_pH8 zWdDt????#?SN`A@fk@@&A@@pV>@x,Y=@kUеP<@Е";@DT9@:|8@D`7@uKq6@h5@<;4@3@Lk2@>1@^00@#N# 0@#'*X.@8[oۛ,@-l>+@'g)@H'@x L&@P1$@U#@p^!@ @0 jA@`3P@B@06g_@I?@hAc@`ݴ @TP8 @03t@YF @FQW/,?6x?\7߀?u.ĿNZ84H(ਭѓ@?y^G)&Pi{ B$iv8jy~6OaXxFOտkjrgX/MA 6!cc!2v"-#̂a#23$$z>%|5d%r?v&M7' 'lb{(B)HlA)pO*wM[*|+󐆖,~,ȭhS/--F.:.yoV//b/0:p05v0D 0 k,-1, yj1t\5s1>)D1$ 2VVW2tS}.2*!2H3ި~83pP1io3|)?3bkj3n4,B4d*v4J&4,Y4dg 5 < <5l5 ?O5;ɯ5|65Ͻ3(6HU6=60FO6P 6oQ7=17H|[74/H7fiK'7\o27ҝD,88}s (8skoPP8)w8$О8V(C8c|M8U9.693![9D|!59U 98[N9 9i9 :EG0:XR:Tt:z:7[:>9J:X;:j w.;jF@'9;&X;c'I*x;}D6;ܔ);dGl; )?4;x<|Q.< W(eK, />WvH>2`>J;y>d9sN>D[,>1z7>JN>~ŷ>S5?H?z:4?I=J?a?x5T1w?Y&?P?܇?D5@\BN4@ h1]3@,CNSs2@cΓs1@<" 0@Hn[ѩ/@e-@?_,@X*@t=X;)@/{Ķ'@>Ŀ:&@0_Dk3$@sɫ[#@X*o!@Їzٛ @P)@`@H`je@hc2\@*7Pr@[ @@yc@o @p'A@0bC@F7?`p{k?zrN?ƛn?:uؿ@BoAh.U µ 3VX $[j-N!W9lx9/($E @I`KIXoo( IRL[ `;!M"vZ"O1l#xPX$p %%)ލK&=&/'0C((d@o(Ĵ[)MWg)|U *8g[++&4,lgy,X @J-`{ -h$X.~V.@^/,uve/J*/0*}m0 ˜0l<Җ0獥$18yp5`1ݚ1RF1. 2ۤcF24!~2,2TO2(:!3NkCV33Hcwg3\83nC $4<9tU4؇J4^r40545WdF5tB .fu52Ҝb5b5T5nf!<*6 Nm-V6 jR6>5ߙ66_u 7r\*7.:S7?'e|7~7ϋ7@_7N8͵uuA8edJg8_8P8ג8:Q8& 9fD9\㔄g9 9Pѭ9(B9Q Z9炆:S!5:/pV:]?[lw:!]:M3::qg: ;K5;39T;cr;`;uj*u;R;'9;6r4<h"<=_?<=Б[<ʣ݂w<-3<ҕ%<T.>{+ F>PVHD^>)r9u>=}>i,>VBtd>7>?O`>` >|?*?N@?ImV?@1H@CP\ BSBSFitGlobalPotSLSsig_KS_pH10 ????zi?CI+2@qU` BSBSFitGlobalPotSLSGFit_KS_pH10 zWdDt????#?VeP@%O@Ke N@O#N@9*u@M@:nL@uK@څOnJ@$J@<6%X\I@p,7ߤH@^OM2G@d,#DG@:F@}.E@~RSE@ID@WD@JeBtC@܇B@qfB@t$A@ǟFjSA@$'j@@$nL@@&ܶ?@@M4>@H I(=@5Ld<@`K;@X:@/:@h;9@`JFf8@E,G7@ԭ6@L5@DѴ:5@ y4@-ɻ3@73@ب8L2@T&1@O0@>0@+/@(w-@PXś,@Pι\+@U#*@se:(@g='@`zX&@Nm^s%@]'T$@)a:#@|q%"@X!@[ @@h^@Xݿ@1@0]|@$4@:V@A@@-]HAa @ p @GN@pyr@@p ? 2? j?@,EH/?F?bS(j߿3B.E 򼁃k#:Q*PgoG `P:Xf[P" piMO{pẌR ,މ(|Ƽz0͙ B>h0 8 d[8/O!!ff"(83t"uIv#5ל#p@ƀ$ I\%qVg%&(sK&;f&d ^y'U'Hkk(}8(q+X)xZn)d?*#*2~!+0h+J+'!dk,Д:,űbA-i¨- v].\y.D .v0D/@8}/0.:T60@9xf0u "Ö0\q8&0b 013|#1͊rQ1d~1`1( 1~2L1}02F[20i[2I 2*-23.3mV3Tg3p~3A%-53h3u4]`#D4%fj4dщN4B޵44*s4A$5ܠ H5jpl5^ 85|_m{5n #o585Ck6v=6#5_6 awp6nx\ա6@~6D!Q6C7X,#7zC7Ļb7^<=?7Zm=7Դ(7tJr@Mqq@֝q@!Cq@9Q5^q@B42q@q@^hp@ ;Òp@ܖmp@bD`p@"9p@ y=p@Ceo@/7 o@S;@o@F8n@+Rn@m# gn@óa n@Em@m@[Tm@`m@OŐol@GKl@ |Rl@xKl@Wck@ܙk@d/1^k@ )\#k@-{pYj@|z$j@Bչwj@U@j@7Y1 j@S i@J,i@_@hi@"4i@"˗i@{gh@nuxh@pkh@4{:h@i]^ h@b݋Vg@,vg@ꥴh,~g@.όzvPg@}6Q#g@'z\f@^@^@h̜^@pvk^@֩=^@n^@si]@]@T2]@f8']]@2]@ ]@L\@4[o\@vn\@{a]\@>I4\@)> \@#[@TU1[@.[@7lj[@&C[@ [@QARmZ@(r Z@*xZ@.4A8Z@]]Z@d;_8Z@9XqZ@۸K9Y@}Y@,Y@E@VtIE@6HND@zlyQD@n h1OD@`C@f(׮C@22`C@X~C@7wB@|B@y]3B@\|uA@27W֏A@Z|E]A@| A@NB@@\@@Q5SN@@/ @@B\?@{?@\Ljf>@0d">@R5y=@ ڎ0=@htK<@RϦE<@xqG;@zma;@wp:@/%:@騝:@U9@/u?9@a8@@ro8@8 8@|]667@;I7A7@>j6@LCv}6@f6@ÈXy5@+b5@5@4@vhP4@h3@L1x3@8\H3@^2@NnXޝ2@J2@1!1@<61@C*Ѓ/1@I 0@֓f0@jr0@/@i/@UFm.@%-@LȵeF-@w,@( &,@=+@kF& +@8*@3o)@{q)@,# (@$If(@<'@&a'@(YMg&@`&@%%@8*f%@HINr$@2p$@HM#@0#@Lh#@dٟߒ"@7~"@DP@!@"9!@w @83X @@ E"@0)L@͇f9F@fzp@Jp@m@h؍@G/@yZc@@E:@@E@0!ɂ @Q?/G@@@)@x@mYG@@#@Lb-@*yc@VZ @+  @%Z% @j- @!ӷ@t@>|@B@qt@X8d%@]J_? fq?x?S,?zp? r})B@ LA@lT/{A@4`m&A@v G@@&N@@W1@@D?@tQB)?@$>@wT=@Uch=@"ٞ<@Db+~I<@x^5u;@HE`3;@70:@@&:@9@l"9@]Rf8@8.H&8@°7@a617@P`6@D6@ؙ5@~\Ut^5@6Y4@B4@]n4@]$ަ3@Uu<3@jVe_2@-a_m2@XLz2@fO1@TS@1@0a@0@&0@Rt 0@$Z/@^.@*q.@@6Ce-@`r,@ ,@NrY+@@{*S@(qj@8n@RL@0!@K @` @NgV @<}@@,8V@@'@ib@!|@ ?`ۏa?  ?@f?@΁5t?*h?]?G|P?X?Y4͈?BlοȿmN׿5z:9῀< |激k誽4 PN}[% [uՍYbk+8!CHY%`0tp}Dz} q0!Ԡ4 GF п!q 3-~ pڝW\KCkJ, -PHO~@C @yTxq;}a/^XSZEje0yvn!qP`ln#3J4qBjPSè,<bhGK{h-U7kJEŨ܎55p 0FS0FSFitGlobalBothSLSGRes_KS_pH5l ????@v(>$R=W-@@Ҧ&DZ@Ũi@[%P 0FS0FSFitGlobalBothSLSCoef_KS_pH6l ????% @A@+P 0FS0FSFitGlobalBothSLSsig_KS_pH6l ????/3B?n,!e?X 0FS0FSFitGlobalBothSLSGFit_KS_pH6l zWdDt????#?Pl3O4J@\obI@^EH@O-H@2G@FF@ ľRF@(`ƼE@S}+E@VfW>D@(-D@VC@`g C@LwB@٤ B@>7/YA@8#A@{@@ ?9@@ٰ?@t>>@o=@C"=@l&Q|Z<@!ޖ;@d7+R:@)ɚ:@Cóe9@Ʋ8@T8@vL]X7@5j6@Rmm 6@^KH1k5@+4@LP34@.A3@&e3@n#w2@?1@]1@|'0@^7M0@86T/@ ;S@.@4b-@2,@ˎ+@82Y*@du)@q(@o4,'@|z'@TTͼB&@@Dj%@\E9o$@X#@;"@nB4/"@\`h!@! @pm@hR@@@6p@ʯ% @@`]J@h#"@%)0@A@fT@0V% @P@P@Pg3 @06<; @/@@[>@@4"|5@=4@umb?@}?`!ݚ?c4N?ZF#?Hl?T!?2ș>ѿ(ЉrY迠N(FI& DaFp?|dJF &FiD*) 0 (H zK)™[Chd"''u^|{c)!&[*MMG6_x`,oS n677,`ZDhp$ ~_@}a0Ix+Km; 5 i F Į!.>Oi!87]! !*BH":1h"Sv" #B(9ag#B#B1p#"$6$, aAz$ڽ$p0Q%L2!B%^K%ۨx%"5ռ&lYC&C&&~˿&J&.|D3:'Vov'N'3ل'@.(([ALb(vE((µGw )^ {E)\+|)>9) `)RÌ *O V*Hm+*ѱƿ*ZV;*-{'+iZ+6 +_xV+‍+e#, \wT,"Da,([,X1,ʿk?-wC-vnNr-Gy^-W p-,-8ɴ).#U.r6.4?.b.@/;0/ޜ_Z/Ƿ,/`2#/8/q1 0 5p 0FS0FSFitGlobalBothSLSGRes_KS_pH6l ????dP0.@.ÈD'@:i )9F%P 0FS0FSFitGlobalBothSLSCoef_KS_pH7l ????i(@A@v*P 0FS0FSFitGlobalBothSLSsig_KS_pH7l ????d~?n,!e?X 0FS0FSFitGlobalBothSLSGFit_KS_pH7l zWdDt????#?~_X3@W2@*nc2@{01@$Pޛb0@ 5/@8-@< 5,@m*@L~(!_)@N(@Ek&@%c%@k%H,!$@r8"@$u(MR!@³a @Pڸx@eB@Xf@B#H@:P6@1y0@(,7@$H@I @J  @O }@И3@{_?檆>?@!J?? bH?4 X?`Me˿ﯿZ|` -U@_`Xb!\/7 up PSt f]BI(D~~uj$A>>`7m|n 6kOwLPT=])-Zip+P trrhқ,gm<1 # d"!-r! / "Ɨi|"}"Z#f7(#03%1$u:$/d}%>(oh%p%2c/&3ٞC&jXO&'k O'*>'`0 (c(R.(IF)S$l)`E)I*i*Hλ*T#, ++\+&ͫ+ĬI+tF,H=_,o:$;,23"@̣a!@t- @~D@qg\@W@I @T,@ @@@;Z @ (@P~@_K*?Tj-/b?VO?Y]<*?ߋĽ Ӫ +_n,ƙ SRFm к^ Nα|r $L;)?;ۘY [:L!=hyd,HM5Z: ȺvHN_ :We Nt!8)ʆ!, ~"9*#a#T# Tcw$ު$?(f%%DM&f쬕,' r'{d(N%*m(XN¢(E{:)4:ީ)葙=?*6Db*:*Z+ԒwR|+ s+,A/1,z+,z,lݿX6-*,ъ-6 - 0.B,݀.zT.1f/xggl/G/juC0y '0K0*G4o0tr@0.IW0g[0*Y0࡫&1|R >1dR^1R;1%%m01W{^1-ξ'1o1nn\282pe#V22.s2@j"ؙ22a(B2!ا2 313~"63=Q3O0k3ǘGr3#@3Z3(v3Xt3f 4o#4ƨ148iI4L`4xw4ts̎4&[4?4V4^4s*4h35qz˨'5h3g<5_AQ5 e5ny52,5v?;ܡ5l}5j5m!)'5BS05d.6szYw6X&'6.o968K6+u]6d4o6F,'ƀ6Po;<-61h6-!y6s*(`6}U6_#066Vd7bM‚7nAcz'7wK77QF7.~V7re79LSu7 797A17#y7,J7K7VD7 7./1;7@NJ7y_y:8j{q85a~8;t+8JSڗ8*n8gQN89F8Ȋ8_õ8߃*R8p`ÿ8.Q}d8P͡f9e9wZ9O+(9z39؀mm>9oJ9ɒAU94p 0FS0FSFitGlobalBothSLSGRes_KS_pH8l ????b7`Ne ] @l*d@.=28@%P 0FS0FSFitGlobalBothSLSCoef_KS_pH9l ????E В5@A@N(P 0FS0FSFitGlobalBothSLSsig_KS_pH9l ????Q^)~?n,!e?X 0FS0FSFitGlobalBothSLSGFit_KS_pH9l zWdDt????#?u82@>.1@^,&Z0@mM/@y--@ȶED,@ *@]R)@>u'@0$_&@% %@@.#@}!"@xXPJ!@q`7 @0hx@(-n@w|h@7h@@@~w%@X@piH;4@PVq@@ l @MG@`G@`&~?`ſ7@G6$$'l e:Y`1ug  FxeL>h2x<*]63@UN_Vبуh985_8\IP4K) S Z ݑa HQt!!MDa"᷼"nF#Ƈ#\ث$$H|$v$bHNd%m-X%n82&^&h`& :Z'J|'pf( cG5v(Z-(2a,)uj)~ ^)( l3*Fˏ a*`*V0+bn+D&H+,",`q,,<:ؘ -aW-BB:-,M-fe3.'0J{.JO}<.& /g´L/\˿/8/)}% 0GL+0dDL0m;l0~SY΋03W0R3$0uB0W1lr>$1X0*rA1‰{^1(-{111 +K1UlQ14&m2X/ 2A ;2l=U2j#o2G2ې42HZ#2f2vto2yc=_3[䉮3Y`k43>!$K3 <&%c34߈S4׈[ h4ʟe|484Id~4@?41R=4VbcU04&`4t*mJb5s~554 *5jЙS=5ğO5+a5is5z5Z 56!5jp5n 5۹ 5:^5xxk5̢6`S)6?6.6Q>6mN63+^6Sn6N}6_R%J6TkN6Q6H~6\6Sg6b/ 66&7n5?7>Xh 7Pt.7j0˽a<702J7`{W7n9|e74r7wV7tg7 š7@YЧ7g\ô7F@fSHF@_K༰E@K(NE@T,ݍD@CD@dT[zC@ /MB@ OuB@hA@|A@A@b @@&W/h@@;Q a?@H>@T0%/=@ ؠ<@ۼ<@H^ X;@x:@D59@hJ#9@ܣlo8@-o7@hB17@`Ri6@ |5@D+2#5@n[4@s;3@T-|Q3@T$ 2@J :+2@Ӿ=1@T 1@O㖆0@ }$/@l}% .@?`-@߻,@d1\+@+@@!*@ss()@+>?@(@ʳz-\'@E<#|&@8%@B$@l*-#@TC4@"#@ T"@-n!@xLh @ l& @X5I6@Xn,d@4̰@M,&@Nw@y\@NC@mb@L8W@p%la @@ί@J2o( @ ! @+ad@@}SJ@L@Pü@?5{F?`q?sQ?˄p?U?q`?wy5ƴa_mտ9⿀ޝ@kC4`L>G `+o>1#?j@!#pp,<}@(`Jσ W6' ~?k )_0Ҡ˭Z{HjhFQax- c|0AtZdg5u(3HgIs;`+9kf `6|M3Usqn1Ѕ bjQvpC_) Y!qy ؂eF $B!xhc!^/!:B!HM-E"L=">}"ڎ!#.i#dZ#80Q#;$޶V$(h$PXe%wFJ%^ %`[[%@teT$&BՙJO&!Ў&.O&'0 'h"I'K؆'6&`'~V'>:(su(&Yگ(LVy(n")䲈C}[)@)sL)0vhq*<9* ߛ@ ChargeSLSGlobalFit_constraints!=JP=EUEUChargeSLSconstraintCoef_KS_pH3=???? <"a@!_ʯ$@NP=EUEUChargeSLSconstraintsig_KS_pH3=???? p@ܽ@=EUEUChargeSLSconstraintGFit_KS_pH3=+2op????8?!8x{b@8+b@'?a@3"la@6$ʘa@ `@<Uq`@D=6!`@^=_@9tЅ_@wz^@V}]@90M{_[]@\@rI\@p[@;D[@->qZ@s]hiKZ@f(dY@P]Y@xTX@(-3yX@  X@ؗq1W@?ع5W@;plV@ZEiV@1e}V@S{U@#XHGU@@?T@n~ˏT@CIX6T@BS@ZᑊS@$g 7S@α4R@R@6uFR@r,vQ@MQ@"jdQ@0Q@AnP@| P@$ aJP@sf9ZP@M9O@vB O@p`.N@ N@ەM@>K^M@.L@F‡6L@RK@._5VK@5&_J@Ϊ~J@\"^ښJ@>`rI@܀lII@B\H@jl}H@kH$H@j$p|G@H iG@FzPG@K(ϵF@2^F@ F@E@_E@5 E@nvpD@rGQnD@ʍ D@^ C@8,EՈC@>z >C@n#B@WB@&>hB@~9;#B@EoA@rw@Qwl>@fZ=@ѧh=@us =@ *<@K<@oz;@p};@n@;@I:@u R:@X9@/T9@z59@yj8@[S~8@%8@)Ł7@Ku7@BX= 7@->6@7x6@]B;&6@J5@?o5@5ZW75@Ͻ4@z4@K\)R4@_H04@+x֫3@Jwuv3@4J?/3@.*2@2@n_2@>4 2@ 1@Fv1@˫RW1@Kj1@Ȩ ?0@o0@? *%]0@_. 0@"-n/@u7T/@].@'Im.@vn,$-@PX-@*|-@)3,@ HE,@+@>[r+@;_ +@ʂ*@l@*@6Sz>)@XZ{)@8()@>e2(@@Tљ[(@) .'@v'@F'@Yn&@*&@<&@p_%@[䲏%@y;%@Z~Bt$@&'Jڔ$@)K>C$@B{#@%R#@H$W@*zgdV@}|U@_ U@@TfT@XQ`S@JrdS@76QeR@8UR@2Q@c(wWQ@ WbfP@+[jP@ O@fAO@cNEN@!xM@ AL@(NK@"L7K@~-[J@gOI@\Պ*I@ مH@Tz G@Xb٢JG@!s]F@9)"F@tʁ*E@: E@@G/r4D@:ЛD@| YC@f;zAC@>~B@RFL"B@C@A@@a=@~t =@o5[<@ˋ};@Mrb);@PH_:@5ZL9@"!9@aWI8@=7@i9K`7@6@XG6@!Ḩh5@-Ud"<5@4@<4@Q3@(QSI3@(2@x `2@S1@>.1@1ŭ1@Ẁή0@i+JH0@aT/@8[/@ o_/D.@K81-@hU!,@'],@lr!m+@Ě*@'*@6FvYNt)@\4 (@4(@jIL'@ŋ'@hDn&@d%@p,N%@Es$@m|9$@j#@[N0#@息"@p >1"@5Nt!@jV+A?>G?`v?|-?%AN?xt?e?-u?V^~GÿI$Ϳ`cqԿwٿݿc.l῰ڄ $1 p/*ɖ5``/ gQ`4.W8 X1X«y ~8*fd g N߱ozm@Um ,0F00# Ox40;T58Rn)b| p=EUEUChargeSLSconstraintGRes_KS_pH4=????!*f/<`bB@k‡0@0"֪@S&#@@Yw~IP=EUEUChargeSLSconstraintCoef_KS_pH5=????YDQ@!_ʯ$@P<=EUEUChargeSLSconstraintsig_KS_pH5=????s@_@ܽ@ͧ,=EUEUChargeSLSconstraintGFit_KS_pH5=zWdDt????#?!:Ҕ|{X@)~Z"W@EWV@gb,V@7ttvU@QUT@K0=f T@[;S@\M8R@MzOR@DZ6Q@%A5Q@`P@@/P@ +hO@CryN@m cM@YPL@RJK@K@թ HJ@"5߆I@nTI.H@eұH@N'iG@xƫvPF@j=F@$b~E@¾*D@~QD@2C@6C@prPB@L2-B@هsA@*3A@TzD@@VaH@@ |?@-.n>@8>@5=@ Nm<@wh7;@/1a:@g=7:@>9@q38@q:/8@em7@ O;l6@!C@P6@(O5@%5@Gp4@EE1 4@ݱ3@ 0u2@̟c}2@k1@Ep1@`iu 1@10@]='0@QXp/@6~m.@ ҿ_-@ej,@Чg.,@˜p1j+@u١*@=()@ 8)@Hb(@vD'@8SL!.'@tAp&@VT %@*p0F%@ ߪ$@($@nJ~#@VMja"@Nnrd_"@"!@4D(DL!@f; @PQE @ĽŌ@0ơ@(ß@RS@d M@4yp@/IQ@4M-7&@ U|O@ ؟4}@+ޮ@@@E`Xo\@;%@(@&.,@<0y@z@<$[@|]V@N @`W @5y @ @TX@YE@rW@,?7L5@İl@pQݓ@tI@`.@ raY?x)?hsa?Xx 4??ЌKVs? 0c{ ?`7?Xrjkm? sU?0?&z?0tMɨ#?|\?{B?@e?@i[?]1?X?j0ѷzƿ@п Bֿ'ܿ02#y}@ P ߟ@G@v-.Lt"XZՈڌ0m|-MjM]](XhC|=ZmfʹU|2[zɆ.04ߙ}E)QfDܿxZ{9КJO4S'^\1p>0xXC[܇T$@w2 !qs`Zh(_Wmv0Q&(unkQ D` ,Vkf ^93 ": rp 4 AD) ڢn րԟ d˨+ jJc 1 QڇK p=EUEUChargeSLSconstraintGRes_KS_pH5=????!HS+0~8@HXK@@0@.?tNz@ Fil?P=EUEUChargeSLSconstraintCoef_KS_pH6=???? HOI@!_ʯ$@PL=EUEUChargeSLSconstraintsig_KS_pH6=???? %C=@ܽ@@=EUEUChargeSLSconstraintGFit_KS_pH6=zWdDt????#? !zŒBqF@`aE@~HD@Ɗ<" &D@ȣqC@VB@\"-B@x?*~A@~ÙD@@dX/P@@I"K?@p>@%}[h=@IP#i<@d|5@eŁ"4@)\04@祐3@0/2@r92@Lל1@Ϊ1@5Bq0@/)@qc M@2@;}yI @$K  @`5b! @[ƛ@ Li@ ȶ@8SRA@L@P X @2@ 'M?:wK?r0?k?BT?0>? ~ `?0ʧ?}YN?ˮs?@j?y+ \?"ؼ?QO?桪@mxſ5ѿoٿW Z m 1~`̼0D꿐:H.O*hD9󿐙ІT%,MCH|#Q0?9!AB%tY``~`v7PM)lapJ{L(ǕGMd 1ųr0Tn/Pw8=2`^rNHƎdܓr,=CN 3 t/ @[ m 2 s D X\B '` Ir k W( ,}>)ʳ҈bNVt ;@.ܳ=:kqIiזrjIB:?4'5F7\hF\ҿ}|]]0?y,M1c(Sf p2:t0ʔQ;ܴ.rbPh3c0!uc NlQlk|If VXJ\OcD, =F#` jy:̒d  7ͲLD\tҺZ v=E!/7-c'N,>!dOvy5.< E =8lԼ%z#~ A;Lp8=EUEUChargeSLSconstraintGRes_KS_pH6=????!!zŒ@ɿ{򝇵@R @z%"@qU810׌U0EP=EUEUChargeSLSconstraintCoef_KS_pH7=????"=}8@!_ʯ$@P\=EUEUChargeSLSconstraintsig_KS_pH7=????# YZ'@ܽ@P=EUEUChargeSLSconstraintGFit_KS_pH7=zWdDt????#?$!$2⥩@,!@/|k@c@@\ m @87}^1 @xB@@Q,I@F@ۣ^@jI8?B{?^#q?82dK?P}DM5?pf:B?9?sezD3?) ?BH}Ͽ@*dۿ #D㿠ϊ.;Ԉ}rs+THaW >h˯8XƼ@8}+i`d{ueF.EZNK]ܒ+RVX3^IR di kN% qEv^|1rK0`zǍ08Inַ>?=5I=[ dBo;ƲWƷ uXHef_*͙KϐpH=EUEUChargeSLSconstraintGRes_KS_pH7=????%!(IdXs ؒ@bz#$ z6X'J @]P܄=EUEUChargeSLSconstraintCoef_KS_pH8=????&߾!_ʯ$@Pl=EUEUChargeSLSconstraintsig_KS_pH8=????'_0ir@ܽ@踀`=EUEUChargeSLSconstraintGFit_KS_pH8=Q78j????#?(!O°Iq!SgQduJMɪ^>cU$e|eHmMUġӳ+zc.4z8˽RD 5XWd:T;@u밮*K:ODQ]AT3m? =([Jx{R륒d=]Ғuq ui(iR2z&PĢ2Rɓ8c TK+R:9-2H^t삁T ̗kŔ JځzQ'%I)F, e31 Txe&ٕrI? `+ >\EkK_=ax=J~f瘩P}jtؖ#0iq8/`2Gp&\xaqr)(aeWPwv1ӗ$ on ,t=$ΜNXX_Aob+e<ҎG70\\'AA<ʘGk:R٘Ԁyu,0:_U+@7`fDJ9 Q$i]K'Mi(ku["%eX )BzIC&lvÙ9[cΙؙ6NH^'h*qk #e?G&2*/g)8ScAL=JT |R#[/{c'k۹szr{'yye;$XT)^ɔ,ǰ(﷚IŚ"w̚[`ӚHA OښLl62긩tE[FM'E "ZQAWԅ$+)+7^D/^)4(x1:F ?5Z D!JպWH-KJĠPHI#U>@ @ኰ'L8.־ 3! Ո\f_>F$[c!%F,*&/1Y4QSq8H=Ba3KeF?ЉJ'%N\$S@W-J[E)B_+cô=g;jMgnQ*r|;u@NyQp|V8j8׸ތ/v@gO)–>VǙ|X߯kAjم6A`A/WQ \5S6";%2P*&ɤbh xaUJ tU[ N&va۷.#o1FDRX3I35XQr`=`y~ 3Z`hL?8kHg!nni3k%g&=^ ywcTD:Ļ_M!N`g,ǒW+xe,8UN<I V ' O-DZl2;9hN[>ݦ&E%k`%ܛ3_>0:(%Puw ͙/!C\"-H#\$al &7'VuJ$(I~+)/*n0+.,[z *-͎Z".?ߑ/\ 0`-0 >@1\Ҡ25zW3Ran4G 5`6R>7UH8F8r#9M̠:m;rx<<Ho=dk=yaɿ>da?%@v@||A,eBΰ C)sCWDPGEWE[FޫO]G%Fg H4H<bIE J⥬JKVKKFKv5PLLn@ #Z*=@Z{8<@EW!N;@[BYZm:@)*f9@u*8@>7@K})07@y3q6@y5R5@"5@g.Z4@C:3@\C3@S:s2@Ji1@UAH1@F&>0@W.0@|hOO/@~J.@Ȍ~dM-@txo[W,@*"wth+@̂n*@; )@z` (@b`5'@'T '@,R1W&@Fh%@Z$]$@D`L$@:h#@X^"@4}h"@z5ZWh!@se @ή?') @K6C@Fڣ@D uW@|@|@$ˠ@D~ @h@гZ@T@dA@D@4|@Tu@70@p=le.@CaZ[@a@l " @& @fs~ @ F  @ ,@lF1@p{Iq@!s|@y'j-@)`@X-J?x?0bȾr? ?P?R^?,%_?yDq?,7J^~px=EUEUChargeSLSconstraintGRes_KS_pH10=????!x?T @܋=)\u*N4փ D= ChargeBothGlobalFitonstraints!|KBP=U˹UChargeBothCoef_KS_pH3|K???? 6Þ!@ fϧA@;P=U˹UChargeBothsig_KS_pH3|K????,̑x1?ke?=U˹UChargeBothGFit_KS_pH3|KzWdDt????#?-$XU吁@M5E@5\@J6m;@ }q@嬥8.@l's@04]@оX,~@nj~@0}@>e}@V@!}@ r|@+|A|@w${@@#gSw{@ֈ{@z@ݱX&Zz@"y@vy@Py@Gx@_j©x@ݗYx@h4 x@kHw@[c=qw@!'w@b xv@QD#v@%tSv@Kv@˳v/u@R:u@Z`@=&!`@S5`@b^`@=DK`@d[t`@PE5Z`@9$A`@'`@UÞs`@B{_@w_@⟶o_@* W_@V'_@Z ^@x5 ^@^@Mqk^@P,=^@+^@~. P]@oek]@p q]@mĩ]]@Phd2]@G]@+\@4ׂ\@`f\@ӑ]\@L%@4\@dSx^5 \@΍([@c3([@j%[@#wj[@J=C[@J[@1dZ@%FZ@ihZ@3.Z@L]Z@8Z@@֟">@l2m=@[0=@"><@bZE<@6\Z;@K| a;@P":@6ْ:@:@H9@2--d?9@T8@vt,o8@J3w 8@n3 7@ &$A7@Ƌ6@Z}6@q6@9 e5@ʐBa5@`5@Ɔ4j4@1SP4@WWR3@7a3@lP}H3@J2@Ɲ2@ 9I2@T 1@ ±1@ȺJ#T1@t;P1@0^0@Nf0@⁒fX0@DLc /@%}k/@`}{l.@-@da F-@X#̵,@LUU&,@X'c+@^ +@S*@d4)@nq)@T#J(@)sf(@ '@p`'@U)&@5+`&@ݺ%@x/e%@.2$@L[o$@::#@~#@TMy&#@X="@z3;"@Xh|!@N8!@H2 @,vW @Ѕ +@iJ @@t"E@WFp@&K@Xu@T4&@_9p.@`cb@H@ @k @|Y @F@Ά @:@y #@>F@@|~' @ޯ@’@w@PY @@ @@4> @Ы^, @mjy@M|`s@;@ E"@0zs@p$@٢"Ѯ??J? $?x(?Nr?kC?ALt(? AJ?v?YPGY?M?du?P,gĿhӿ-ܿp=U˹UChargeBothGRes_KS_pH4|K????F$0O2& bɩ8@ g9?`;@mK?`ΤAP=U˹UChargeBothCoef_KS_pH5|K????Gf=@ fϧA@P8=U˹UChargeBothsig_KS_pH5|K????H\g?ke?U(=U˹UChargeBothGFit_KS_pH5|KzWdDt????#?I$6LV@6U5BV@jU@*| MU@RzT@gT@*ܹi|S@ES@,=mb$S@"R@Ve{[R@*<=Q@Q@fdSAQ@TYP@rP@ 3)B@_QA@Sap{A@Sr&A@G}K@@@@@[1@@ÁI?@ 6*?@~ ӧ>@a}==@|h=@<@z0wI<@ u;@yJ3;@{0:@jUt&:@B۔9@7~"9@B2_c8@;7D&8@R7@ 17@[6@X1D6@05@nm^5@`{Q4@{4@d"ve4@ զ3@v?<3@T2@#Tm2@2@nz߸1@Ԓ@1@0@0@wY 0@49/@0q.@|$^.@%e-@t{~,@#Gj,@ŌoY+@昿K*@H[*@('a)@8(@nZ0T(@pd|'@ ޅ>&@ #C&@XJd%@ 4E%@``|$@C/P#@ V#@T"@6"@+!@D!@t/˝ @XTY @(:S @p؋@o@hs@ @2n@@[,c@8@J^@@x@4?+@|f=@> R@;+;j@oM@{^נ@o@00U[ @@pt @ U @@(3@N֫@=U@?+@}d@{@@?l&X? F܏?A:U}?`w\r?@ g?j??}vaP?rw?d}A64/ȿfj6W׿ϭ=@@e79쿠Ǭ@ UG (7e +1D 愅߲2O PEu~d(y/p0k @"G P}r 4 @%T_xT͠p۰-練aCr:7kU顨wXʏpdbN#4ej8tˎH7oѐo0L@/sj5#dT8yb (V (({F}>p=U˹UChargeBothGRes_KS_pH5|K????J$aM$˿W-@ /D FD`Ի@}@>P=U˹UChargeBothCoef_KS_pH6|K????M6:US @ fϧA@͇PL=U˹UChargeBothsig_KS_pH6|K????NE!]B?ke?:<=U˹UChargeBothGFit_KS_pH6|KzWdDt????#?O$_$jv4J@9I@GwH@E˵ .H@۠G@I?F@6gRF@ezE@iV.+E@})[D@7tID@7ӌC@K C@oJ0B@/ B@zqA@-LZA@6;@@/q':@@Hp!?@uSf>@BlƯ=@"=@6aZ<@P;@X}:@ a:@Z2Re9@n98@zc8@'xX7@$a6@2bv 6@6k5@>G/4@34@]3@P=_7x3@B5w2@z1@x#]1@DE=-0@BH(@R38'@|G힛'@SB&@4j%@ 7$@ #@ }"@Q7/"@ h!@7. @}@xRJR@~6@F.p@ @`?]@IJ@(ЋC @K @HFKT@n* @=3@`ix@pc# @-; @0_X@`#@%5@@ 7@@ͭa?`?վD?M?%3!?r*|Ҋ?_?[/RpW~kBѿ׋`H(,[迀v^`Of OW U6JkiF@_Up<~FɍP\DpBy? PF] pV3I h.CPS~چ˽3Jd WÂ&qxގ! H_ڒmu2)+,8 (pi&-EnGG]{8 @QH"r(p3+(<=CE5 (G? 9@1 N3!J\i!6nI!k1I!2OH"T"c"d> !#|ߢg#L2넭#bҲ#8A/7$0z$v2')$d鸕%fB%^n%1b% 2& A(NC&&&&z&!4&{:'5iv'bl'"'Xs$Px((fb(b?R,(t:(p )8$E)l_EK})?N)Y) *jN4gV*"\z*`y*':*'+2j'[+}i+4M+P)8+<k#,PW.!T,t}p,q, nM,F4^-d(C- b6r-gz-, -?D-Z,e).J'V.:5D.R8.Xj@C.";s/0/z6[/`/p8 {/1+/4te60wp0=U˹UChargeBothGRes_KS_pH6|K????T$"Q0!PT.@<ȸ|D'@б)0/jsPh=U˹UChargeBothCoef_KS_pH7|K????Wjڊ@ fϧA@P\=U˹UChargeBothsig_KS_pH7|K????X}?ke?P=U˹UChargeBothGFit_KS_pH7|KzWdDt????#?^$!3@js2@4L2@:01@rAXY/)0Е%ztY ۪L{   sIYH0~>?#? <Iv6gLSM]ilihp)!tx>rh>"mW1 N4 Ev"!̗!&зD "|"s"LZ#A#M;1$D`$n%h%*Ͼ%ǡ/&8%Pc&2p&­1P'\ʻa'rwT (֖{c(ЁIS(m)ZLl)`)_4s*'Ai**=Q +l- ]+˄++:8JF,fv,¬k,P7O'-|Ap- C-W[-4&4V 4x 4G}4Έ4j4&vj5X 5kTמ25=byD5W`*V5rg5$Ly5eI5@=Z5DC5T5{ˣ5 ё5qtn5 5ưv6Vނ6eR.6=68DsM6A\6C# l6-({6Ax#6JSg6A6U66zQ516Ǝq6޾B6o{66 7{GM7a)&7m}347݊B7%bO7葕k\7.٘i7Yv7SpH=U˹UChargeBothGRes_KS_pH7|K????_$#2 ި@!܉aقҿCj@&@y> 4@iP\=U˹UChargeBothCoef_KS_pH8|K????lc@ fϧA@Pt=U˹UChargeBothsig_KS_pH8|K????m<-?ke?`=U˹UChargeBothGFit_KS_pH8|KzWdDt????#?n$|8Ę'@L$+PƟ%@(+$@,i:I"@ysa!@\_ @c@0>t@RÄ@h2 @p5@X`@` @@yZ @(@@@ *?`W,a?z P?7;i?˽I'T ￀/?I@Tp-e~0C  F< +4s8>h9F?/6X:~hKB`XoN-àZ~Iգ,$]#` p9Hw |,t!^'!n/~"~g`#n#L#lNlKw$x $>bf%F%FyMM&ҽ&lD06cV1o25>1Py_1Hf1<[1*1) 141< ."2P92{˱V2čs2uƐ23H26"o2w?2bi373$63Mf/Q3>^k3^I|?3=~Ҟ3/3-C33WONI314SXS4-=024H?I4H`a4-x4Zd4/4kkݻ4N4qy4: \45и5!'5`3u<5+ tQ5.Xhe52-z5#+Q955 V55Z5ь;d5ڊ!=<6S?6l>['6UƬ96𮦽K6ؔک]6$.ho6C6mb6w6F. *6.Z9K6MT6J 6%,U68z7A7\3}'7vn77N-G7zLV7 xlf7Uu70[p7h7EQe>7c7ap77b7pid @pd@5 H<8@P =U˹UChargeBothCoef_KS_pH9|K????p.T5@ fϧA@jP=U˹UChargeBothsig_KS_pH9|K????q’\?ke?شx=U˹UChargeBothGFit_KS_pH9|KzWdDt????#?r$x-2@b|_L.1@xZ0@`b/@K-@45,@*@h)@ bͺ'@|'x_&@@VS %@#@ln5"@ 9J!@+ @8M$@P @{h@P@@ӵ&@70@@ɶ@PA@07m @p*U!@{@э;+?Y?- ?@N{İ?-N?|S ſ{GV"6^B KIdWM:P!(ШBg إךZL0{D+Q P j 3s 4_(]vٖXb4Gl JţOMH{4/aN dq h(0 Dldt!ΚU!@HmjYa"(r"JLݰF##i$$\v1$>$K<e%p=(v%& >W2&P m&v &6Y?Z''>(4CsK_S4F8n7* 7`.7$<7$TaJ7|8X7rƟDe7,O's7 O7?9ʍ72@7}4o7G772׀707pp=U˹UChargeBothGRes_KS_pH9|K????s$x58LyPPa!@@'?TK~o@ 渵0@ĬO1@QP,=U˹UChargeBothCoef_KS_pH10|K????tqل @ fϧA@P=U˹UChargeBothsig_KS_pH10|K????uVk?ke?Ԇ=U˹UChargeBothGFit_KS_pH10|KzWdDt????#?v$? I@diH@f)H@!TτG@0aF@m=KuHF@m8}ݰE@/mE@͢:D@ʐeaD@ wzC@WB@e)uB@ A@A}A@B&A@G !@@#~@@N׉4a?@n>@JMW=@©<@juH=<@1X;@o:@j-]V9@ꦿ>#9@b1o8@Re7@t'07@` j6@?D5@k K#5@Θ4@6o3@µR3@y.2@]M+2@ףO1@M"1@ᦆ0@T01/@(M'.@Q-@v5,@ +@{ֆ+@)"*@ r()@LMRO@(@;\'@'&/|&@9%@ Ⱦ$@D\!5#@ܭGG"#@DT"@t!@mj @e2a' @X,#4@`e-`@Z#@xW&@X @s/\@5n2@.@`"W@_;u @J\j@T2v@QE @5re @x@sJ@01@yϟ@c*?`iE?O$?^8?pran?m?:b?֌Դpտ}4ErpٟwBxG5ĺR Qc$Ha`ȩJk0 b vʻ *k -ב OQn# y{i%F\\8WȍyZ*Z`JAc tQ8JTȩ9d0g0qg™p?q 4PO`L8QW_0kR&Ȁ6DӲR) 靬y !ǁ ~!`c!̕!,>!›jJ:F" _`,"i(Y" &!#ӏni#R`]#vr#&7o<$6ۀ$M '칫pJ' a ' 2Ũ'Z'x.;(L^su(*)9$(J3(J#)lo][)`B)WȘ)Іr*~b9*Po*~8F"4*ld\c*`14+ YC+&$!w+l*v+iW+W,6A&A, ]Xs,hf|,J4,‰u-| 1g5-L)d-eӪ--^`-`Fl.5JmL.HZ9y. `.I.. qd*/ T1U/{~/n]/>h/@lp >@} Jq=@%<<@#D<@yPP;@moC%;@_:@ Վ:@ 9@; 9@br8@8|q8@ Ӗ7@97@~Hc6@V:jo96@45@ u\5@V~4@3B4@f/Q#"4@,E3@\P\3@ !2@# 2@UT>A2@>1@D91@K71@a0@gYҕ0@6Y=0@̗/@ >/@>b/.@d4p.@ˉդz-@%ܻ,@]x [,@ [L+@u+G+@K *@V'>*@%+j2)@6}>)@"rP(@ LH(@Ƌ P'@9bH\'@x&@zilx&@@7 &@+j%@g1%@`ci$@Ya$@9F#@#@ll$8#@]"@0y`z"@Qΐ"@Z4rd!@d ISj!@p_!@W6߼ @WKkh @E3q @8uЇ@渒@4@CJ@V:U@|"9@ |@ʥf@RZuI^@ED@vD@[@D~`4@$@v -@B2Ŭ@V.@a@iC8@a-%@4)I@6۾@>9cc@4T@r).@^mvB@aF@G+B@Ouq@שt@>- @"4+@ιoK@@%@$/p@$-a@x}8 @ @DKBD @ m @#A& @:@ @d @Lh@lQBT@Oô@ p@ H}@x$@ O@%F@Q'Ƴ)@!&F@s @U8>@MA @ű`Oq@5@M{h@?X?@g9?f,i? .$?.[?@z ?`?n'8J9?U?Ju?M|}?2x?ڳ}?z%?~}jqB? OFt?p܆=UˉUChargeBothGRes_KD_pH3|K????{f7-V@HY-^%B`J?Di)@+%@ aCݢ?؅PT=UˉUChargeBothCoef_KD_pH4|K????|`CHq`@$@JP=UˉUChargeBothsig_KD_pH4|K????}1*?¸=UˉUChargeBothGFit_KD_pH4|KzWdDt????#?~BVN@V|}M@wwAL@3/hK@U I@{H,H@]RG@9|<F@F@V"E@sLD@ƷC@ZB@^B@MybQA@hj5@@X4p@@S_>@Q5/=@ߵk<@mrx;@T"q:@jv9@=8@c;7@oJG6@歁Z05@Z5@,Y4@{3@DcnX2@Xfά82@.mY1@L0@lw8]S0@^{/@m5|Z.@g*xD-@g.8,@K(9T6+@{HY=*@29M)@pe(@uy'@;$ T&@Z. %@>%@3TR$@+ #@m}ђ"@&o?2"@N3Լ!@79 @V@F @TY@0@2;j@T#Ta4@·@F!o@@@5@> @|lO#@(8D@+vl@F7@%3@; @+J@fU5@a^@X@ ]O` @p @x @6%i@ @2'@Y@}@-_ 4@XL@_[cӞ@办@ 7@r[(A}?#-@?w`C辿tǿ=EϿN[!sӿ=,׿@3rQڿP7H1^޿Tpy@i⿼xF@ڨ\y翨iغ`( d@Ƕu(yͱK} $B*wQpȾfL]Oh53Yt$LX#*$3tD3^XqUDXqW%`k8 eg[85^,AExQ>f%":3%}ʇ UxZb 9бy%ڇaOdFrM._1:+) %nWV\ЍCƋr]Bw[j8&n;Mys˾ &McZ)j, XA(h3Jnlhq ۭ Ȱ f )dWnG~d6?d!Z 4;≠0vĐw"z3;қT99 moF &+߳Vm!mU1>5 p=UˉUChargeBothGRes_KD_pH4|K????Z$e+ @Փ6 @O,@q`;#@w) ÅPd=UˉUChargeBothCoef_KD_pH5|K????Z@$@6P=UˉUChargeBothsig_KD_pH5|K????A'>?=UˉUChargeBothGFit_KD_pH5|KzWdDt????#?CC@JB@DQkeA@ưw*A@8d#o@@.=`cy?@蔙2&>@}<@} w;@ K}:@[ p9@ t[[d8@sc&d7@n&@G/<%@)S$@u#@zf@Y #@H"@EUY!@ʇ @!z% @$Xd@^@2%w@y$rG@Yf"@2@z;|@5@@&6@4 @W&@WH@P/q@M@K^[@kg+@hZT @'@E @@k,6_ @?WH@?B@ --A@`y̟@ @]FĐx@!\@>CI@BO]~?:nx?ʜF? ?8~VL?Ͱ?zZ.\7?Qم?1m?,B2?<7Os?$Jn?ļ^?HE?+E?賋W?B?? ?QH(m?n% ;)q08Y$ǿ'Ͽ`v|%ԿNDؿAe;Gܿ2k$_̿clۿX̜^ 98T:z_&!jHx H\[E0tiQjcJ\{feQBAyQfl2<֛Fq^|N8(Ml+M'cAW$͆q:OxJ*7:z<Zg4V_u@* s1 0spVh">z{z.!uyhtKc(%*&b(hKmAkکuDl-fDCjuQ5z[9d tZ߅<<3X0s&[,ЧLcrh{&jVKepII t#H N:BU+QNϝg:ɧ}>ҖKK\3iF^dNY ;7 aJ @583 kTqEZ WLNi)zrXx̜,`ʫLƚïLndj - L?@(lx6p=UˉUChargeBothGRes_KD_pH5|K????0dL !?S?3Id@g@yX?(ƱP=UˉUChargeBothCoef_KD_pH6|K????3WT@$@P,=UˉUChargeBothsig_KD_pH6|K????]"5RV?=UˉUChargeBothGFit_KD_pH6|KzWdDt????#??>6@#5@64@\3@J02@B\>1@* 1@>_D0@x/@8-@J0U,@+"7d8_Eceg5GW"]Zu߂~ Dۡ㩧mx&>0Rxi'/_XG|bSfӠ򷥄=A0RШل] %+qr- GSYFa7WUzpk*{${;'-{+n|T<p W-S1j/F7Z##n:fS2 ;|F+D-ADB x}nf"z3/#BnR{RĂapo4p>l~:0*EG4b;%Q"K .t^ؕ+*VP=k//gn(Aq3~z?J]ڮTzEf_j,gNtLUjh~`Va!Rz7;_e CGJ̳y3I^ٔp=UˉUChargeBothGRes_KD_pH6|K????@Qܽ @ʝJ޿1+OB`"6EP؆=UˉUChargeBothCoef_KD_pH7|K????Ɖ1@$@P`=UˉUChargeBothsig_KD_pH7|K????ǰH @{0=UˉUChargeBothGFit_KD_pH7|KzWdDt????#?vT#(%z#(ucp#tKsPR V^R"Onp|GP3 , ЭFگ~6Up8Kn2UIICCgo ^ܧQ! .Gr1'+S.t66t\~񐹯W>:Zg yC9Ɨ/Q>.5h`~`ThnKDWe0I\7Q+Nf&[މ W .% ^d>q4 RSRC XQ oH6_ yYl ny ) x] ; 1 T~mS %O 5^׳; sq1 DO 1k (Y r. i. u vmw lh' B|s. 5 f j< jB 1I `0OO E@U Vfޯ[ %` A$Jf Oak >{ p 5u |7&kz **( Z Ń %sjA om ,z\ߐ f zw P1Cq .-m-Ǡ +~ - g u VѢq acv e& T  >Ż / YN #i L 5N. W= v 0' ^R (6 ny. tK ar Řb 2xq fi $v f~ ^ 2 - ۫: 9Ns Xk 4 P\ .hb ,%Gu jǥ Kk  }jqB g  EeZ fNK O, S ! Z J jBy C - r,& ׋R  k ;SKs N| L @ ކ= Hup" Iv LS_ b EE z $R 8Q% DWq = '! tsJ" K # }# ;$ y[~4% 4b% ]?& Y@' 7ϒ' Ķ( #/) ) Pk* !+ 5v+ 6 Ĕp =UˉUChargeBothGRes_KD_pH7|K????(Z6R$s) J"S>+)s)0P=UˉUChargeBothCoef_KD_pH8|K????A8 $@P=UˉUChargeBothsig_KD_pH8|K????%d[%'@g€d=UˉUChargeBothGFit_KD_pH8|KO.D}d????#?ں p6Yx cR5   p^!+ ּ :5hD k$ fW6 OK dE i\ T\ +O ʧ6 x!o ?  ՜+ ^~W  ?O c. \u7 O : G6 2Bg- !Ȋ! K2 " v" j@# V8뷭$ % GCW& 3$' 6(/' [( Vts) \V1/* n* YB+ L, #J, J|A- hG. 3. H / }?#0 )י70 fn P1 1 U@p2 ϒa2 sn^3 ǔ 4 M4 r«5 55 { 6 B6 '6 +:n7 ,7 Q8 پ8 v֑*9 49 @(9 4.na: : j&; :҆; ; JA< RՔ< Ӿ< L= r*ȡ= N = afH> bl> z> 97? baÃ? i? W@ ;a@ #s@ ɷ @ lK3A -xwA W7A >%A (;C;B RUCzB Y+B B C0C 8kC WoSC C *D iLD vD !ķD J D 2E ?%QE (46E NE IE !F 8AF ֡<1oF #^F \OIF &0F }*G (ƜHG W'RrG yƚG CG ^ZG '`3H o7H P]H K(H _H (E$H EH %jI %2I ZUTI ruI !꜖I #ֶI N7SI I xJ 2J LPJ >A:nJ O7J OŧJ elJ sNJ .4J EK q^0K XJK AdK Z}K ]ϥK MK ҾK 6W`K ^Q)K  oL |+a%L ;L cLRL  HhL R}L %.VL m$iL .2L H۰L 1L lML ;~ M M EZ4M (/FM SyYM ^kM }M {8ˏM jM y̲M ]PFM 1yM M k M =^MN gXN -&N չQ5N "78EN PpTN 1DucN ?HrN D N ymg[N N %دN kaN ^iKN N ľ3N sgfN p@=UˉUChargeBothGRes_KD_pH8|K????>J*фJ?Z8.F̒uL^U>VP=UˉUChargeBothCoef_KD_pH9|K?????̹?$@P=UˉUChargeBothsig_KD_pH9|K???? vea@:€=UˉUChargeBothGFit_KD_pH9|KO.D}d????#?=MR ~|R 老R D>_R xR `R R g`R -_R 1R rxS q@A S R+ S mxS ,S *?S wyS Y^#S á'S I+S >g/S '3S @6S fd:S ]=S +MAS bDS #GS _MdKS i/1NS ;IS ҒjS S @S /S }ťS q(.S ;2S "`S r S KS KjɬS S 4S AS - S >S }S ut, S 6S US mS QRͷS S ڔS =rS aLS 1u"S CS eĽS ojS 5>WS DS S S -1US  S ;S ؚ}rS g S 7S `9uS +S dS p^S S ^@S 1z1S }~S bv[S PS R|S N S S }S ߙS G'S |S Ү)S XէS $S WS S G.MS M S tS 6/S ?US ޟsS Q9/S \S 7S [SjS gS e4S 0S [lS *jXS S lS oS #(S ?#S za {S l^S m&S zS S {S oS G_S + S qZS iզS S ';S -S fS }S iYS ̱^S .`S Egt%S gS _zިS @C]<@0ϊ@쯯 @@'x @ t1 @AI:@K*y@%TLs@d@&k@|;@*lT ?bѫ[? 7?-? {F3a?>$i8?Fo#?LB?|Sc?4$2,?T ?X)ձ?:c?pqC!?`?s?v$?:EWRÿpk οfY'ԿƱٿs޿_Sԓ*~jȳ[Yn4aT"ľΟUj[D2+_ L, a~ȧeMlʱ$,lEA?C]13w/[\|׹&U>_]0 j:}9eSSP>`AJ'XEXM,21 wFH42˼v3qs)Hi?no3/yy3^hhcXbony[e*l= 1f`yLF׍HAtaWD4*#&Fih!݉>[GGGm!2>%bB ,_Zmz!&w"܂ djXf:Ѱj;餴sމa,2/C!zu)g.TJuVjS ܄#za36xkc Ɣ: $Jf *M(v 75$ WS, Șe4 ftN < nC \J 03R Ǽ@TY : U` ;8g \#Vm t |,{ Z ܴ e!g; )}< $ `V6 Jdp=UˉUChargeBothGRes_KD_pH10|K????LW{@OxЍ@ze ϭM"{{ *sQ// Platform=Macintosh, IGORVersion=6.220, architecture=Intel Silent 101 // use | as bitwise or -- not comment. DefaultFont "Geneva" MoveWindow/P 428,44,1488,781 MoveWindow/C 16,609,1443,818 OpenProc/W=(455,45,1372,814)/P=home "Visualisation_of_input.ipf" GlobalFitGraph() I_slopes_GlobalFit_SLS() NewGlobalFitPanel() Window NewGlobalFitPanel() : Panel PauseUpdate; Silent 1 // building window... NewPanel /K=1 /W=(421,44,1295,734) as "Global Analysis" TabControl NewGF_TabControl,pos={10,7},size={857,379},proc=WM_NewGlobalFit1#NewGF_TabControlProc TabControl NewGF_TabControl,tabLabel(0)="Data Sets and Functions" TabControl NewGF_TabControl,tabLabel(1)="Coefficient Control",value= 1 Button NewGF_HelpButton,pos={657,3},size={50,20},proc=NewGF_HelpButtonProc,title="Help" DefineGuide TabAreaLeft={FL,13},TabAreaRight={FR,-10},TabAreaTop={FT,31},TabAreaBottom={FB,-307} DefineGuide GlobalControlAreaTop={FB,-297},Tab0ListTopGuide={TabAreaTop,130} SetWindow kwTopWin,hook=WC_WindowCoordinatesHook SetWindow kwTopWin,hook(PopupWS_HostWindowHook)=PopupWSHostHook SetWindow kwTopWin,hook(NewGF_Resize)=NewGF_PanelHook NewPanel/W=(198,191,594,573)/FG=(TabAreaLeft,TabAreaTop,TabAreaRight,TabAreaBottom)/HOST=# /HIDE=1 ModifyPanel frameStyle=0, frameInset=0 GroupBox NewGF_DataSetsGroup,pos={12,5},size={315,113},title="Data Sets" GroupBox NewGF_DataSetsGroup,fSize=12,fStyle=1 PopupMenu NewGF_AddDataSetMenu,pos={23,29},size={140,20},bodyWidth=140,proc=WM_NewGlobalFit1#NewGF_AddYWaveMenuProc,title="Add Data Sets" PopupMenu NewGF_AddDataSetMenu,mode=0,value= #"NewGF_YWaveList(1)" Button NewGF_AddRemoveWavesButton,pos={23,61},size={220,20},proc=NewGF_AddRemoveWavesButtonProc,title="Add/Remove Waves..." PopupMenu NewGF_RemoveDataSetMenu1,pos={175,29},size={140,20},bodyWidth=140,proc=WM_NewGlobalFit1#NewGF_RemoveDataSetsProc,title="Remove" PopupMenu NewGF_RemoveDataSetMenu1,mode=0,value= #"NewGF_RemoveMenuList()" PopupMenu NewGF_SetFunctionMenu,pos={23,90},size={160,20},bodyWidth=160,proc=NewGF_SetFuncMenuProc,title="Choose Fit Function" PopupMenu NewGF_SetFunctionMenu,mode=0,value= #"NewGF_FitFuncList()" GroupBox NewGF_CoefficientsGroup,pos={358,5},size={331,113},title="Coefficients" GroupBox NewGF_CoefficientsGroup,fSize=12,fStyle=1 Button NewGF_LinkCoefsButton,pos={373,81},size={140,20},proc=NewGF_LinkCoefsButtonProc,title="Link Selection" Button NewGF_UnLinkCoefsButton,pos={531,81},size={140,20},proc=NewGF_UnLinkCoefsButtonProc,title="Unlink Selection" PopupMenu NewGF_SelectAllCoefMenu,pos={373,39},size={140,20},bodyWidth=140,proc=WM_NewGlobalFit1#NewGF_SelectAllCoefMenuProc,title="Select Coef Column" PopupMenu NewGF_SelectAllCoefMenu,mode=0,value= #"WM_NewGlobalFit1#NewGF_ListFunctionsAndCoefs()" PopupMenu NewGF_SelectAlsoCoefMenu,pos={532,38},size={140,20},bodyWidth=140,proc=WM_NewGlobalFit1#NewGF_SelectAllCoefMenuProc,title="Add To Selection" PopupMenu NewGF_SelectAlsoCoefMenu,mode=0,value= #"WM_NewGlobalFit1#NewGF_ListFunctionsAndCoefs()" ListBox NewGF_DataSetsList,pos={10,130},size={339,217},proc=WM_NewGlobalFit1#NewGF_DataSetListBoxProc ListBox NewGF_DataSetsList,frame=2 ListBox NewGF_DataSetsList,listWave=root:Packages:NewGlobalFit:NewGF_DataSetListWave ListBox NewGF_DataSetsList,selWave=root:Packages:NewGlobalFit:NewGF_DataSetListSelWave ListBox NewGF_DataSetsList,row= 3,mode= 10,editStyle= 1,widths={10,10,10,6} ListBox NewGF_DataSetsList,userColumnResize= 1,clickEventModifiers= 5 ListBox NewGF_Tab0CoefList,pos={358,130},size={491,217},proc=WM_NewGlobalFit1#NewGF_DataSetListBoxProc ListBox NewGF_Tab0CoefList,frame=2 ListBox NewGF_Tab0CoefList,listWave=root:Packages:NewGlobalFit:NewGF_MainCoefListWave ListBox NewGF_Tab0CoefList,selWave=root:Packages:NewGlobalFit:NewGF_MainCoefListSelWave ListBox NewGF_Tab0CoefList,colorWave=root:Packages:NewGlobalFit:NewGF_LinkColors ListBox NewGF_Tab0CoefList,row= 3,mode= 10,editStyle= 1,widths={100} ListBox NewGF_Tab0CoefList,userColumnResize= 1,clickEventModifiers= 5 GroupBox NewGF_Tab0ListDragLine,pos={353,130},size={4,217},frame=0 RenameWindow #,Tab0ContentPanel SetActiveSubwindow ## NewPanel/W=(119,117,359,351)/FG=(TabAreaLeft,TabAreaTop,TabAreaRight,TabAreaBottom)/HOST=# ModifyPanel frameStyle=0, frameInset=0 ListBox NewGF_CoefControlList,pos={4,34},size={841,312},proc=WM_NewGlobalFit1#NewGF_CoefListBoxProc ListBox NewGF_CoefControlList,frame=2 ListBox NewGF_CoefControlList,listWave=root:Packages:NewGlobalFit:NewGF_CoefControlListWave ListBox NewGF_CoefControlList,selWave=root:Packages:NewGlobalFit:NewGF_CoefControlListSelWave ListBox NewGF_CoefControlList,row= 13,mode= 10,editStyle= 1,widths={15,15,7,4,5} ListBox NewGF_CoefControlList,userColumnResize= 1 TitleBox NewGF_CoefControlIGTitle,pos={139,8},size={71,16},title="Initial guess:" TitleBox NewGF_CoefControlIGTitle,fSize=12,frame=0,anchor= RC PopupMenu NewGF_SetCoefsFromWaveMenu,pos={219,7},size={112,20},proc=NewGF_SetCoefsFromWaveProc,title="Set from Wave" PopupMenu NewGF_SetCoefsFromWaveMenu,mode=0,value= #"NewGF_ListInitGuessWaves(0, 0)" PopupMenu NewGF_SaveCoefstoWaveMenu,pos={343,7},size={104,20},proc=NewGF_SaveCoefsToWaveProc,title="Save to Wave" PopupMenu NewGF_SaveCoefstoWaveMenu,mode=0,value= #"\"New Wave...;-;\"+NewGF_ListInitGuessWaves(0, 0)" RenameWindow #,Tab1ContentPanel SetActiveSubwindow ## NewPanel/W=(495,313,643,351)/FG=(FL,GlobalControlAreaTop,FR,FB)/HOST=# ModifyPanel frameStyle=0, frameInset=0 TitleBox NewGF_ResultWavesTitle,pos={23,6},size={77,16},title="Result Waves" TitleBox NewGF_ResultWavesTitle,fSize=12,frame=0,fStyle=1 CheckBox NewGF_MakeFitCurvesCheck,pos={28,34},size={145,16},proc=WM_NewGlobalFit1#NewGF_FitCurvesCheckProc,title="Make Fit Curve Waves" CheckBox NewGF_MakeFitCurvesCheck,fSize=12,value= 1 CheckBox NewGF_AppendResultsCheckbox,pos={50,56},size={186,16},proc=WM_NewGlobalFit1#NewGF_AppendResultsCheckProc,title="And Append Them to Graphs" CheckBox NewGF_AppendResultsCheckbox,fSize=12,value= 1 CheckBox NewGF_DoResidualCheck,pos={51,79},size={127,16},proc=WM_NewGlobalFit1#NewGF_CalcResidualsCheckProc,title="Calculate Residuals" CheckBox NewGF_DoResidualCheck,fSize=12,value= 1 SetVariable NewGF_SetFitCurveLength,pos={27,114},size={149,19},bodyWidth=50,title="Fit Curve Points:" SetVariable NewGF_SetFitCurveLength,fSize=12 SetVariable NewGF_SetFitCurveLength,limits={2,inf,1},value= root:Packages:NewGlobalFit:FitCurvePoints CheckBox NewGF_DoDestLogSpacingCheck,pos={51,140},size={135,16},title="Logarithmic Spacing" CheckBox NewGF_DoDestLogSpacingCheck,fSize=12,value= 0 SetVariable NewGF_ResultNamePrefix,pos={27,177},size={202,19},bodyWidth=50,title="Result Wave Name Prefix:" SetVariable NewGF_ResultNamePrefix,fSize=12,value= _STR:"ChargeBoth" TitleBox NewGF_ResultWavesDFTitle,pos={27,212},size={199,16},title="Make Result Waves in Data Folder:" TitleBox NewGF_ResultWavesDFTitle,fSize=12,frame=0 Button NewGF_ResultsDFSelector,pos={50,231},size={206,20},proc=PopupWaveSelectorButtonProc,title="\\JRroot:ChargeBothGlobalFit \\W623" Button NewGF_ResultsDFSelector,help={"root:ChargeSLSGlobalFit_constraints"} Button NewGF_ResultsDFSelector,userdata(NewGF_SavedSelection)= "root:ChargeBothGlobalFit" Button NewGF_ResultsDFSelector,userdata(popupWSInfo)= A"!!*'pATpX\\Ddm-k7VQs@@;]Xm,>Mfo7n-iUCip#7W3*RATAnG/hT3" Button NewGF_ResultsDFSelector,fSize=12 GroupBox NewGF_GlobalDivider1,pos={284,7},size={4,242} TitleBox NewGF_OptionsTitle,pos={304,5},size={45,16},title="Options",fSize=12 TitleBox NewGF_OptionsTitle,frame=0,fStyle=1 CheckBox NewGF_FitProgressGraphCheckBox,pos={318,34},size={124,16},title="Fit Progress Graph" CheckBox NewGF_FitProgressGraphCheckBox,fSize=12,value= 1 CheckBox NewGF_Quiet,pos={318,58},size={124,16},title="No History Output" CheckBox NewGF_Quiet,fSize=12,value= 0 CheckBox NewGF_DoCovarMatrix,pos={318,83},size={120,16},proc=WM_NewGlobalFit1#NewGF_CovMatrixCheckProc,title="Covariance Matrix" CheckBox NewGF_DoCovarMatrix,fSize=12,value= 1 CheckBox NewGF_CorrelationMatrixCheckBox,pos={339,102},size={120,16},proc=WM_NewGlobalFit1#NewGF_CorMatrixCheckProc,title="Correlation Matrix" CheckBox NewGF_CorrelationMatrixCheckBox,fSize=12,value= 1 SetVariable NewGF_SetMaxIters,pos={318,129},size={135,19},bodyWidth=50,title="Max Iterations" SetVariable NewGF_SetMaxIters,fSize=12 SetVariable NewGF_SetMaxIters,limits={5,500,1},value= root:Packages:NewGlobalFit:NewGF_MaxIters CheckBox NewGF_ConstraintsCheckBox,pos={318,206},size={95,16},proc=WM_NewGlobalFit1#ConstraintsCheckProc,title="Constraints..." CheckBox NewGF_ConstraintsCheckBox,fSize=12,value= 0 CheckBox NewGF_WeightingCheckBox,pos={318,156},size={87,16},proc=WM_NewGlobalFit1#NewGF_WeightingCheckProc,title="Weighting..." CheckBox NewGF_WeightingCheckBox,fSize=12,value= 1 CheckBox NewGF_MaskingCheckBox,pos={318,181},size={75,16},proc=WM_NewGlobalFit1#NewGF_MaskingCheckProc,title="Masking..." CheckBox NewGF_MaskingCheckBox,fSize=12,value= 0 GroupBox NewGF_SaveSetupGroup,pos={489,7},size={4,258} TitleBox NewGF_SaveSetupTitle,pos={513,5},size={65,16},title="Save Setup" TitleBox NewGF_SaveSetupTitle,fSize=12,frame=0,fStyle=1 SetVariable NewGF_SaveSetSetName,pos={523,39},size={170,19},bodyWidth=130,title="Name:" SetVariable NewGF_SaveSetSetName,fSize=12 SetVariable NewGF_SaveSetSetName,value= root:Packages:NewGlobalFit:NewGF_NewSetupName CheckBox NewGF_StoredSetupOverwriteOKChk,pos={572,70},size={95,16},title="Overwrite OK" CheckBox NewGF_StoredSetupOverwriteOKChk,fSize=12,value= 1 Button NewGF_SaveSetupButton,pos={585,101},size={50,20},proc=WM_NewGlobalFit1#NewGF_SaveSetupButtonProc,title="Save" Button NewGF_SaveSetupButton,fSize=12 PopupMenu NewGF_RestoreSetupMenu,pos={536,177},size={140,20},bodyWidth=140,proc=WM_NewGlobalFit1#NewGF_RestoreSetupMenuProc,title="Restore Setup" PopupMenu NewGF_RestoreSetupMenu,fSize=12 PopupMenu NewGF_RestoreSetupMenu,mode=0,value= #"WM_NewGlobalFit1#NewGF_ListStoredSetups()" Button DoFitButton,pos={202,266},size={167,20},proc=WM_NewGlobalFit1#NewGF_DoTheFitButtonProc,title="Fit!" Button DoFitButton,fSize=12,fColor=(16385,49025,65535) RenameWindow #,NewGF_GlobalControlArea SetActiveSubwindow ## EndMacro Window I_slopes_GlobalFit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(441,49,1334,824) KS_pH3 vs kappa_nm AppendToGraph KS_pH4 vs kappa_nm AppendToGraph KS_pH5 vs kappa_nm AppendToGraph KS_pH6 vs kappa_nm AppendToGraph KS_pH7 vs kappa_nm AppendToGraph KS_pH8 vs kappa_nm AppendToGraph KS_pH9 vs kappa_nm AppendToGraph KS_pH10 vs kappa_nm AppendToGraph :ChargeBothGlobalFit:ChargeBothGFit_KS_pH3,:ChargeBothGlobalFit:ChargeBothGFit_KS_pH4 AppendToGraph :ChargeBothGlobalFit:ChargeBothGFit_KS_pH5,:ChargeBothGlobalFit:ChargeBothGFit_KS_pH6 AppendToGraph :ChargeBothGlobalFit:ChargeBothGFit_KS_pH7,:ChargeBothGlobalFit:ChargeBothGFit_KS_pH8 AppendToGraph :ChargeBothGlobalFit:ChargeBothGFit_KS_pH9,:ChargeBothGlobalFit:ChargeBothGFit_KS_pH10 ModifyGraph mode(KS_pH3)=3,mode(KS_pH4)=3,mode(KS_pH5)=3,mode(KS_pH6)=3,mode(KS_pH7)=3 ModifyGraph mode(KS_pH8)=3,mode(KS_pH9)=3,mode(KS_pH10)=3 ModifyGraph marker(KS_pH3)=19,marker(KS_pH4)=16,marker(KS_pH5)=18,marker(KS_pH6)=14 ModifyGraph marker(KS_pH7)=23,marker(KS_pH8)=48,marker(KS_pH9)=32,marker(KS_pH10)=62 ModifyGraph lSize(KS_pH3)=2.5,lSize(KS_pH4)=2.5,lSize(KS_pH5)=2.5,lSize(KS_pH6)=2.5 ModifyGraph lSize(KS_pH7)=2.5,lSize(KS_pH8)=2.5,lSize(KS_pH9)=2.5,lSize(KS_pH10)=2.5 ModifyGraph lStyle(KS_pH8)=1 ModifyGraph rgb(KS_pH3)=(0,0,0),rgb(KS_pH5)=(1,16019,65535),rgb(KS_pH6)=(65535,0,52428) ModifyGraph rgb(KS_pH7)=(3,52428,1),rgb(KS_pH8)=(0,0,0),rgb(KS_pH9)=(39321,39319,1) ModifyGraph rgb(KS_pH10)=(0,2,26214) ModifyGraph msize(KS_pH6)=7,msize(KS_pH10)=10 ModifyGraph mrkThick(KS_pH8)=4 ModifyGraph useMrkStrokeRGB(KS_pH3)=1,useMrkStrokeRGB(KS_pH4)=1,useMrkStrokeRGB(KS_pH5)=1 ModifyGraph useMrkStrokeRGB(KS_pH6)=1,useMrkStrokeRGB(KS_pH7)=1,useMrkStrokeRGB(KS_pH8)=1 ModifyGraph useMrkStrokeRGB(KS_pH9)=1,useMrkStrokeRGB(KS_pH10)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=9 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -30,200 SetAxis/N=2 bottom 0.35,1.45 TextBox/C/N=text3/S=3/A=MC/X=-43.76/Y=-46.39 "\\F'Arial Bold'\\Z24a" Legend/C/N=text0/J/S=3/A=MC/X=37.97/Y=31.20 "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7" AppendText "\\s(KS_pH8) Exp pH=8\r\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10\r\\s(ChargeBothGFit_KS_pH3) ChargeBothGFit_KS_pH3" AppendText "\\s(ChargeBothGFit_KS_pH4) ChargeBothGFit_KS_pH4\r\\s(ChargeBothGFit_KS_pH5) ChargeBothGFit_KS_pH5\r\\s(ChargeBothGFit_KS_pH6) ChargeBothGFit_KS_pH6" AppendText "\\s(ChargeBothGFit_KS_pH7) ChargeBothGFit_KS_pH7\r\\s(ChargeBothGFit_KS_pH8) ChargeBothGFit_KS_pH8\r\\s(ChargeBothGFit_KS_pH9) ChargeBothGFit_KS_pH9" AppendText "\\s(ChargeBothGFit_KS_pH10) ChargeBothGFit_KS_pH10" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window GlobalFitGraph() : Graph PauseUpdate; Silent 1 // building window... String fldrSav0= GetDataFolder(1) SetDataFolder root:Packages:NewGlobalFit: Display /W=(596,65,1300,713) YCumData[0,5] vs fitXCumData[0,5] as "Global Analysis Progress" AppendToGraph FitY[0,5] vs fitXCumData[0,5] AppendToGraph YCumData[6,11] vs fitXCumData[6,11] AppendToGraph FitY[6,11] vs fitXCumData[6,11] AppendToGraph YCumData[12,17] vs fitXCumData[12,17] AppendToGraph FitY[12,17] vs fitXCumData[12,17] AppendToGraph YCumData[18,23] vs fitXCumData[18,23] AppendToGraph FitY[18,23] vs fitXCumData[18,23] AppendToGraph YCumData[24,29] vs fitXCumData[24,29] AppendToGraph FitY[24,29] vs fitXCumData[24,29] AppendToGraph YCumData[30,35] vs fitXCumData[30,35] AppendToGraph FitY[30,35] vs fitXCumData[30,35] AppendToGraph YCumData[36,41] vs fitXCumData[36,41] AppendToGraph FitY[36,41] vs fitXCumData[36,41] AppendToGraph YCumData[42,47] vs fitXCumData[42,47] AppendToGraph FitY[42,47] vs fitXCumData[42,47] AppendToGraph YCumData[48,53] vs fitXCumData[48,53] AppendToGraph FitY[48,53] vs fitXCumData[48,53] AppendToGraph YCumData[54,59] vs fitXCumData[54,59] AppendToGraph FitY[54,59] vs fitXCumData[54,59] AppendToGraph YCumData[60,65] vs fitXCumData[60,65] AppendToGraph FitY[60,65] vs fitXCumData[60,65] AppendToGraph YCumData[66,71] vs fitXCumData[66,71] AppendToGraph FitY[66,71] vs fitXCumData[66,71] AppendToGraph YCumData[72,77] vs fitXCumData[72,77] AppendToGraph FitY[72,77] vs fitXCumData[72,77] AppendToGraph YCumData[78,83] vs fitXCumData[78,83] AppendToGraph FitY[78,83] vs fitXCumData[78,83] AppendToGraph YCumData[84,89] vs fitXCumData[84,89] AppendToGraph FitY[84,89] vs fitXCumData[84,89] AppendToGraph YCumData[90,95] vs fitXCumData[90,95] AppendToGraph FitY[90,95] vs fitXCumData[90,95] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[0,5] vs fitXCumData[0,5] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[6,11] vs fitXCumData[6,11] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[12,17] vs fitXCumData[12,17] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[18,23] vs fitXCumData[18,23] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[24,29] vs fitXCumData[24,29] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[30,35] vs fitXCumData[30,35] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[36,41] vs fitXCumData[36,41] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[42,47] vs fitXCumData[42,47] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[48,53] vs fitXCumData[48,53] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[54,59] vs fitXCumData[54,59] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[60,65] vs fitXCumData[60,65] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[66,71] vs fitXCumData[66,71] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[72,77] vs fitXCumData[72,77] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[78,83] vs fitXCumData[78,83] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[84,89] vs fitXCumData[84,89] AppendToGraph/L=ResidLeftAxis NewGF_ResidY[90,95] vs fitXCumData[90,95] SetDataFolder fldrSav0 ModifyGraph gbRGB=(17476,17476,17476) ModifyGraph mode(YCumData)=2,mode(YCumData#1)=2,mode(YCumData#2)=2,mode(YCumData#3)=2 ModifyGraph mode(YCumData#4)=2,mode(YCumData#5)=2,mode(YCumData#6)=2,mode(YCumData#7)=2 ModifyGraph mode(YCumData#8)=2,mode(YCumData#9)=2,mode(YCumData#10)=2,mode(YCumData#11)=2 ModifyGraph mode(YCumData#12)=2,mode(YCumData#13)=2,mode(YCumData#14)=2,mode(YCumData#15)=2 ModifyGraph mode(NewGF_ResidY)=2,mode(NewGF_ResidY#1)=2,mode(NewGF_ResidY#2)=2,mode(NewGF_ResidY#3)=2 ModifyGraph mode(NewGF_ResidY#4)=2,mode(NewGF_ResidY#5)=2,mode(NewGF_ResidY#6)=2 ModifyGraph mode(NewGF_ResidY#7)=2,mode(NewGF_ResidY#8)=2,mode(NewGF_ResidY#9)=2 ModifyGraph mode(NewGF_ResidY#10)=2,mode(NewGF_ResidY#11)=2,mode(NewGF_ResidY#12)=2 ModifyGraph mode(NewGF_ResidY#13)=2,mode(NewGF_ResidY#14)=2,mode(NewGF_ResidY#15)=2 ModifyGraph marker(YCumData)=8,marker(YCumData#1)=8,marker(YCumData#2)=8,marker(YCumData#3)=8 ModifyGraph marker(YCumData#4)=8,marker(YCumData#5)=8,marker(YCumData#6)=8,marker(YCumData#7)=8 ModifyGraph marker(YCumData#8)=8,marker(YCumData#9)=8,marker(YCumData#10)=8,marker(YCumData#11)=8 ModifyGraph marker(YCumData#12)=8,marker(YCumData#13)=8,marker(YCumData#14)=8,marker(YCumData#15)=8 ModifyGraph lSize(YCumData)=2,lSize(YCumData#1)=2,lSize(YCumData#2)=2,lSize(YCumData#3)=2 ModifyGraph lSize(YCumData#4)=2,lSize(YCumData#5)=2,lSize(YCumData#6)=2,lSize(YCumData#7)=2 ModifyGraph lSize(YCumData#8)=2,lSize(YCumData#9)=2,lSize(YCumData#10)=2,lSize(YCumData#11)=2 ModifyGraph lSize(YCumData#12)=2,lSize(YCumData#13)=2,lSize(YCumData#14)=2,lSize(YCumData#15)=2 ModifyGraph lSize(NewGF_ResidY)=2,lSize(NewGF_ResidY#1)=2,lSize(NewGF_ResidY#2)=2 ModifyGraph lSize(NewGF_ResidY#3)=2,lSize(NewGF_ResidY#4)=2,lSize(NewGF_ResidY#5)=2 ModifyGraph lSize(NewGF_ResidY#6)=2,lSize(NewGF_ResidY#7)=2,lSize(NewGF_ResidY#8)=2 ModifyGraph lSize(NewGF_ResidY#9)=2,lSize(NewGF_ResidY#10)=2,lSize(NewGF_ResidY#11)=2 ModifyGraph lSize(NewGF_ResidY#12)=2,lSize(NewGF_ResidY#13)=2,lSize(NewGF_ResidY#14)=2 ModifyGraph lSize(NewGF_ResidY#15)=2 ModifyGraph rgb(YCumData#1)=(18724,65535,0),rgb(FitY#1)=(18724,65535,0),rgb(YCumData#2)=(0,43690,65535) ModifyGraph rgb(FitY#2)=(0,43690,65535),rgb(YCumData#3)=(65535,34327,0),rgb(FitY#3)=(65535,34327,0) ModifyGraph rgb(YCumData#4)=(0,65535,11915),rgb(FitY#4)=(0,65535,11915),rgb(YCumData#5)=(0,9362,65535) ModifyGraph rgb(FitY#5)=(0,9362,65535),rgb(YCumData#6)=(65535,65535,0),rgb(FitY#6)=(65535,65535,0) ModifyGraph rgb(YCumData#7)=(0,65535,44682),rgb(FitY#7)=(0,65535,44682),rgb(YCumData#8)=(22936,0,65535) ModifyGraph rgb(FitY#8)=(22936,0,65535),rgb(YCumData#9)=(31207,65535,0),rgb(FitY#9)=(31207,65535,0) ModifyGraph rgb(YCumData#10)=(0,56172,65535),rgb(FitY#10)=(0,56172,65535),rgb(YCumData#11)=(65535,21845,0) ModifyGraph rgb(FitY#11)=(65535,21845,0),rgb(YCumData#12)=(0,65535,0),rgb(FitY#12)=(0,65535,0) ModifyGraph rgb(YCumData#13)=(0,21845,65535),rgb(FitY#13)=(0,21845,65535),rgb(YCumData#14)=(65535,56172,0) ModifyGraph rgb(FitY#14)=(65535,56172,0),rgb(YCumData#15)=(0,65535,32767),rgb(FitY#15)=(0,65535,32767) ModifyGraph rgb(NewGF_ResidY#1)=(18724,65535,0),rgb(NewGF_ResidY#2)=(0,43690,65535) ModifyGraph rgb(NewGF_ResidY#3)=(65535,34327,0),rgb(NewGF_ResidY#4)=(0,65535,11915) ModifyGraph rgb(NewGF_ResidY#5)=(0,9362,65535),rgb(NewGF_ResidY#6)=(65535,65535,0) ModifyGraph rgb(NewGF_ResidY#7)=(0,65535,44682),rgb(NewGF_ResidY#8)=(22936,0,65535) ModifyGraph rgb(NewGF_ResidY#9)=(31207,65535,0),rgb(NewGF_ResidY#10)=(0,56172,65535) ModifyGraph rgb(NewGF_ResidY#11)=(65535,21845,0),rgb(NewGF_ResidY#12)=(0,65535,0) ModifyGraph rgb(NewGF_ResidY#13)=(0,21845,65535),rgb(NewGF_ResidY#14)=(65535,56172,0) ModifyGraph rgb(NewGF_ResidY#15)=(0,65535,32767) ModifyGraph zero(ResidLeftAxis)=1 ModifyGraph lblPos(left)=112,lblPos(ResidLeftAxis)=51 ModifyGraph freePos(ResidLeftAxis)={0,kwFraction} ModifyGraph axisEnab(left)={0,0.78} ModifyGraph axisEnab(ResidLeftAxis)={0.82,1} SetWindow kwTopWin,hook=WC_WindowCoordinatesHook EndMacro  #pragma rtGlobals=1 // Use modern global access method. #include Function KillAllGraphs() string fulllist = WinList("*", ";","WIN:1") string name, cmd variable i for(i=0; iaAop+#=@lFH4`\"\\AFC.j\"3r" // Display/W=(0.378,0.028,0.846,0.385)/HOST=# // ModifyGraph gFont="Arial Black" // RenameWindow #,G0 // SetActiveSubwindow ## // Display/W=(0.333,0.007,0.794,0.389)/PG=(,PT,,)/HOST=# R_A vs pH // ModifyGraph gFont="Arial Black",frameStyle=2 // ModifyGraph mode=3 // ModifyGraph marker=19 // ModifyGraph useMrkStrokeRGB=1 // ModifyGraph nticks(left)=7,nticks(bottom)=10 // ModifyGraph minor(left)=1 // ModifyGraph lblMargin(left)=5,lblMargin(bottom)=8 // Label left "\\Z16\\F'Arial Black' a [nm]" // Label bottom "\\Z16\\Z14pH" // SetAxis left 4,6.1 // SetAxis bottom 2.5,10.5 // ErrorBars/T=2/L=2/Y=6 R_A Y,wave=(sdR_A,sdR_A) // RenameWindow #,Graph1 // SetActiveSubwindow ## //EndMacro Window intercepts_pH_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(64,44,910,822) D0_I15 vs pH AppendToGraph D0_I30 vs pH AppendToGraph D0_I50 vs pH AppendToGraph D0_I75 vs pH AppendToGraph D0_I100 vs pH AppendToGraph D0_I175 vs pH ModifyGraph mode=4 ModifyGraph marker(D0_I15)=19,marker(D0_I30)=16,marker(D0_I50)=18,marker(D0_I75)=14 ModifyGraph marker(D0_I100)=23,marker(D0_I175)=48 ModifyGraph lSize=3 ModifyGraph lStyle(D0_I175)=1 ModifyGraph rgb(D0_I15)=(0,0,0),rgb(D0_I50)=(1,16019,65535),rgb(D0_I75)=(65535,0,52428) ModifyGraph rgb(D0_I100)=(3,52428,1),rgb(D0_I175)=(0,0,0) ModifyGraph msize(D0_I75)=7 ModifyGraph mrkThick(D0_I175)=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror=1 ModifyGraph nticks(left)=7 ModifyGraph minor(left)=1 ModifyGraph lblMargin(left)=15,lblMargin(bottom)=6 ModifyGraph standoff=0 ModifyGraph lblPosMode(bottom)=1 ModifyGraph lblPos(left)=92,lblPos(bottom)=38 ModifyGraph lblLatPos(left)=2 Label left "D\\B0\\M [10\\S-7\\Mcm\\S2\\M/s]" Label bottom "pH" SetAxis/N=2 left 3.9,4.6 SetAxis/N=1/E=1 bottom 2.8,10.2 ErrorBars/T=3/L=3/Y=6 D0_I15 Y,wave=(sdD0_I15,sdD0_I15) ErrorBars/T=3/L=3/Y=6 D0_I30 Y,wave=(sdD0_I30,sdD0_I30) ErrorBars/T=3/L=3/Y=6 D0_I50 Y,wave=(sdD0_I50,sdD0_I50) ErrorBars/T=3/L=3/Y=6 D0_I75 Y,wave=(sdD0_I75,sdD0_I75) ErrorBars/T=3/L=3/Y=6 D0_I100 Y,wave=(sdD0_I100,sdD0_I100) ErrorBars/T=3/L=3/Y=6 D0_I175 Y,wave=(sdD0_I175,sdD0_I175) Legend/C/N=text0/J/S=3/A=MC/X=1.90/Y=-14.71 "\\Z15\\s(D0_I15)\\F'Symbol'k=\\F'Geneva' 0.40 nm\\S-1\\M\r\\Z15\\s(D0_I30)\\Z15\\F'Symbol'k=\\F'Geneva' 0.57 nm\\S-1\\M" AppendText "\\Z15\\s(D0_I50)\\Z15\\F'Symbol'k=\\F'Geneva' 0.74 nm\\S-1\\M\r\\Z15\\s(D0_I75)\\Z15\\F'Symbol'k=\\F'Geneva' 0.90 nm\\S-1\\M" AppendText "\\Z15\\s(D0_I100)\\Z15\\F'Symbol'k=\\F'Geneva' 1.04 nm\\S-1\\M\r\\Z15\\s(D0_I175)\\Z15\\F'Symbol'k=\\F'Geneva' 1.38 nm\\S-1\\M" TextBox/C/N=text2/S=3/A=MC/X=-45.68/Y=46.70 "\\F'Arial Bold'\\Z24b" EndMacro Window intercepts_pH_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(64,44,910,822) M_I15 vs pH AppendToGraph M_I30 vs pH AppendToGraph M_I50 vs pH AppendToGraph M_I75 vs pH AppendToGraph M_I100 vs pH AppendToGraph M_I175 vs pH ModifyGraph mode=4 ModifyGraph marker(M_I15)=19,marker(M_I30)=16,marker(M_I50)=18,marker(M_I75)=14 ModifyGraph marker(M_I100)=23,marker(M_I175)=48 ModifyGraph lSize=3 ModifyGraph lStyle(M_I175)=1 ModifyGraph rgb(M_I15)=(0,0,0),rgb(M_I50)=(1,16019,65535),rgb(M_I75)=(65535,0,52428) ModifyGraph rgb(M_I100)=(3,52428,1),rgb(M_I175)=(0,0,0) ModifyGraph msize(M_I75)=7 ModifyGraph mrkThick(M_I175)=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror=1 ModifyGraph nticks(left)=7 ModifyGraph minor(left)=1 ModifyGraph lblMargin(left)=8,lblMargin(bottom)=6 ModifyGraph standoff=0 ModifyGraph lblPosMode(bottom)=1 ModifyGraph lblPos(left)=92,lblPos(bottom)=38 ModifyGraph lblLatPos(left)=1 Label left "M\\B2\\M [\\u\\F'Geneva'g/mol]" Label bottom "pH" SetAxis/N=2 left 105000,200000 SetAxis/N=1/E=1 bottom 2.8,10.2 Legend/C/N=text0/J/S=3/A=MC/X=30.00/Y=36.32 "\\Z15\\s(M_I15)\\F'Symbol'k=\\F'Geneva' 0.40 nm\\S-1\\M\r\\Z15\\s(M_I30)\\Z15\\F'Symbol'k=\\F'Geneva' 0.57 nm\\S-1\\M" AppendText "\\Z15\\s(M_I50)\\Z15\\F'Symbol'k=\\F'Geneva' 0.74 nm\\S-1\\M\r\\Z15\\s(M_I75)\\Z15\\F'Symbol'k=\\F'Geneva' 0.90 nm\\S-1\\M" AppendText "\\Z15\\s(M_I100)\\Z15\\F'Symbol'k=\\F'Geneva' 1.04 nm\\S-1\\M\r\\Z15\\s(M_I175)\\Z15\\F'Symbol'k=\\F'Geneva' 1.38 nm\\S-1\\M" TextBox/C/N=text2/S=3/A=MC/X=-35.22/Y=46.47 "\\F'Arial Bold'\\Z24a" EndMacro Window I_slopes_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KS_pH3 vs kappa_nm AppendToGraph KS_pH4 vs kappa_nm AppendToGraph KS_pH5 vs kappa_nm AppendToGraph KS_pH6 vs kappa_nm AppendToGraph KS_pH7 vs kappa_nm AppendToGraph KS_pH8 vs kappa_nm AppendToGraph KS_pH9 vs kappa_nm AppendToGraph KS_pH10 vs kappa_nm AppendToGraph fit_ChargeSLS_pH3,fit_PotentialSLS_pH3,fit_ChargeSLS_pH4,fit_PotentialSLS_pH4 AppendToGraph fit_ChargeSLS_pH5,fit_PotentialSLS_pH5,fit_ChargeSLS_pH6,fit_PotentialSLS_pH6 AppendToGraph fit_ChargeSLS_pH7,fit_PotentialSLS_pH7,fit_ChargeSLS_pH8,fit_PotentialSLS_pH8 AppendToGraph fit_ChargeSLS_pH9,fit_PotentialSLS_pH9,fit_ChargeSLS_pH10,fit_PotentialSLS_pH10 ModifyGraph mode(KS_pH3)=3,mode(KS_pH4)=3,mode(KS_pH5)=3,mode(KS_pH6)=3,mode(KS_pH7)=3 ModifyGraph mode(KS_pH8)=3,mode(KS_pH9)=3,mode(KS_pH10)=3 ModifyGraph marker(KS_pH3)=19,marker(KS_pH4)=16,marker(KS_pH5)=18,marker(KS_pH6)=14 ModifyGraph marker(KS_pH7)=23,marker(KS_pH8)=48,marker(KS_pH9)=32,marker(KS_pH10)=62 ModifyGraph lSize(KS_pH3)=2.5,lSize(KS_pH4)=2.5,lSize(KS_pH5)=2.5,lSize(KS_pH6)=2.5 ModifyGraph lSize(KS_pH7)=2.5,lSize(KS_pH8)=2.5,lSize(KS_pH9)=2.5,lSize(KS_pH10)=2.5 ModifyGraph lSize(fit_ChargeSLS_pH3)=3,lSize(fit_PotentialSLS_pH3)=3,lSize(fit_ChargeSLS_pH4)=3 ModifyGraph lSize(fit_PotentialSLS_pH4)=3,lSize(fit_ChargeSLS_pH5)=3,lSize(fit_PotentialSLS_pH5)=3 ModifyGraph lSize(fit_ChargeSLS_pH6)=3,lSize(fit_PotentialSLS_pH6)=3,lSize(fit_ChargeSLS_pH7)=3 ModifyGraph lSize(fit_PotentialSLS_pH7)=3,lSize(fit_ChargeSLS_pH8)=3,lSize(fit_PotentialSLS_pH8)=3 ModifyGraph lSize(fit_ChargeSLS_pH9)=3,lSize(fit_PotentialSLS_pH9)=3,lSize(fit_ChargeSLS_pH10)=3 ModifyGraph lSize(fit_PotentialSLS_pH10)=3 ModifyGraph lStyle(KS_pH8)=1,lStyle(fit_PotentialSLS_pH3)=3,lStyle(fit_PotentialSLS_pH4)=3 ModifyGraph lStyle(fit_PotentialSLS_pH5)=3,lStyle(fit_ChargeSLS_pH6)=3,lStyle(fit_PotentialSLS_pH6)=3 ModifyGraph lStyle(fit_PotentialSLS_pH7)=3,lStyle(fit_PotentialSLS_pH8)=3,lStyle(fit_PotentialSLS_pH9)=2 ModifyGraph lStyle(fit_PotentialSLS_pH10)=3 ModifyGraph rgb(KS_pH3)=(0,0,0),rgb(KS_pH5)=(1,16019,65535),rgb(KS_pH6)=(65535,0,52428) ModifyGraph rgb(KS_pH7)=(3,52428,1),rgb(KS_pH8)=(0,0,0),rgb(KS_pH9)=(39321,39319,1) ModifyGraph rgb(KS_pH10)=(0,2,26214),rgb(fit_ChargeSLS_pH3)=(0,0,0),rgb(fit_PotentialSLS_pH3)=(0,0,0) ModifyGraph rgb(fit_ChargeSLS_pH5)=(1,16019,65535),rgb(fit_PotentialSLS_pH5)=(1,16019,65535) ModifyGraph rgb(fit_ChargeSLS_pH6)=(65535,0,52428),rgb(fit_PotentialSLS_pH6)=(65535,0,52428) ModifyGraph rgb(fit_ChargeSLS_pH7)=(3,52428,1),rgb(fit_PotentialSLS_pH7)=(3,52428,1) ModifyGraph rgb(fit_ChargeSLS_pH8)=(0,0,0),rgb(fit_PotentialSLS_pH8)=(0,0,0),rgb(fit_ChargeSLS_pH9)=(39321,39319,1) ModifyGraph rgb(fit_PotentialSLS_pH9)=(39321,39319,1),rgb(fit_ChargeSLS_pH10)=(13112,0,26214) ModifyGraph rgb(fit_PotentialSLS_pH10)=(13112,0,26214) ModifyGraph msize(KS_pH6)=7,msize(KS_pH10)=10 ModifyGraph mrkThick(KS_pH8)=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=9 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -30,150 SetAxis/N=2 bottom 0.35,1.45 TextBox/C/N=text3/S=3/A=MC/X=-43.76/Y=-46.39 "\\F'Arial Bold'\\Z24a" Legend/C/N=text0/J/S=3/A=MC/X=35.02/Y=32.88 "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7" AppendText "\\s(KS_pH8) Exp pH=8\r\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window I_slopes_GlobalFit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(442,73,1335,848) KS_pH3 vs kappa_nm AppendToGraph KS_pH4 vs kappa_nm AppendToGraph KS_pH5 vs kappa_nm AppendToGraph KS_pH6 vs kappa_nm AppendToGraph KS_pH7 vs kappa_nm AppendToGraph KS_pH8 vs kappa_nm AppendToGraph KS_pH9 vs kappa_nm AppendToGraph KS_pH10 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker(KS_pH3)=19,marker(KS_pH4)=16,marker(KS_pH5)=18,marker(KS_pH6)=14 ModifyGraph marker(KS_pH7)=23,marker(KS_pH8)=48,marker(KS_pH9)=32,marker(KS_pH10)=62 ModifyGraph lSize=2.5 ModifyGraph lStyle(KS_pH8)=1 ModifyGraph rgb(KS_pH3)=(0,0,0),rgb(KS_pH5)=(1,16019,65535),rgb(KS_pH6)=(65535,0,52428) ModifyGraph rgb(KS_pH7)=(3,52428,1),rgb(KS_pH8)=(0,0,0),rgb(KS_pH9)=(39321,39319,1) ModifyGraph rgb(KS_pH10)=(0,2,26214) ModifyGraph msize(KS_pH6)=7,msize(KS_pH10)=10 ModifyGraph mrkThick(KS_pH8)=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=9 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -30,200 SetAxis/N=2 bottom 0.35,1.45 TextBox/C/N=text3/S=3/A=MC/X=-43.76/Y=-46.39 "\\F'Arial Bold'\\Z24a" Legend/C/N=text0/J/S=3/A=MC/X=37.97/Y=31.20 "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7" AppendText "\\s(KS_pH8) Exp pH=8\r\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window I_slopes_GlobalFit_SeparateSLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(442,73,1335,848) KS_pH3 vs kappa_nm AppendToGraph KS_pH4 vs kappa_nm AppendToGraph KS_pH5 vs kappa_nm AppendToGraph KS_pH6 vs kappa_nm AppendToGraph KS_pH7 vs kappa_nm AppendToGraph KS_pH8 vs kappa_nm AppendToGraph KS_pH9 vs kappa_nm AppendToGraph KS_pH10 vs kappa_nm AppendToGraph :ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH3,:ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH4 AppendToGraph :ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH5,:ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH6 AppendToGraph :ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH7,:ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH8 AppendToGraph :ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH9,:ChargeSLSGlobalFit:FitGlobalChargeSLSGFit_KS_pH10 AppendToGraph :PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH3,:PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH4 AppendToGraph :PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH5,:PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH6 AppendToGraph :PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH7,:PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH8 AppendToGraph :PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH9,:PotentialsSLSGlobalFit:FitGlobalPotSLSGFit_KS_pH10 ModifyGraph mode(KS_pH3)=3,mode(KS_pH4)=3,mode(KS_pH5)=3,mode(KS_pH6)=3,mode(KS_pH7)=3 ModifyGraph mode(KS_pH8)=3,mode(KS_pH9)=3,mode(KS_pH10)=3 ModifyGraph marker(KS_pH3)=19,marker(KS_pH4)=16,marker(KS_pH5)=18,marker(KS_pH6)=14 ModifyGraph marker(KS_pH7)=23,marker(KS_pH8)=48,marker(KS_pH9)=32,marker(KS_pH10)=62 ModifyGraph lSize(KS_pH3)=2.5,lSize(KS_pH4)=2.5,lSize(KS_pH5)=2.5,lSize(KS_pH6)=2.5 ModifyGraph lSize(KS_pH7)=2.5,lSize(KS_pH8)=2.5,lSize(KS_pH9)=2.5,lSize(KS_pH10)=2.5 ModifyGraph lSize(FitGlobalChargeSLSGFit_KS_pH3)=2,lSize(FitGlobalChargeSLSGFit_KS_pH4)=2 ModifyGraph lSize(FitGlobalChargeSLSGFit_KS_pH5)=2,lSize(FitGlobalChargeSLSGFit_KS_pH6)=2 ModifyGraph lSize(FitGlobalChargeSLSGFit_KS_pH7)=2,lSize(FitGlobalChargeSLSGFit_KS_pH8)=2 ModifyGraph lSize(FitGlobalChargeSLSGFit_KS_pH9)=2,lSize(FitGlobalChargeSLSGFit_KS_pH10)=2 ModifyGraph lSize(FitGlobalPotSLSGFit_KS_pH3)=4,lSize(FitGlobalPotSLSGFit_KS_pH4)=4 ModifyGraph lSize(FitGlobalPotSLSGFit_KS_pH5)=4,lSize(FitGlobalPotSLSGFit_KS_pH6)=4 ModifyGraph lSize(FitGlobalPotSLSGFit_KS_pH7)=4,lSize(FitGlobalPotSLSGFit_KS_pH8)=4 ModifyGraph lSize(FitGlobalPotSLSGFit_KS_pH9)=4,lSize(FitGlobalPotSLSGFit_KS_pH10)=4 ModifyGraph lStyle(KS_pH8)=1 ModifyGraph rgb(KS_pH3)=(0,0,0),rgb(KS_pH5)=(1,16019,65535),rgb(KS_pH6)=(65535,0,52428) ModifyGraph rgb(KS_pH7)=(3,52428,1),rgb(KS_pH8)=(0,0,0),rgb(KS_pH9)=(39321,39319,1) ModifyGraph rgb(KS_pH10)=(0,2,26214),rgb(FitGlobalChargeSLSGFit_KS_pH3)=(0,0,0) ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH5)=(16385,28398,65535),rgb(FitGlobalChargeSLSGFit_KS_pH6)=(65535,0,52428) ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH7)=(26205,52428,1),rgb(FitGlobalChargeSLSGFit_KS_pH8)=(0,0,0) ModifyGraph rgb(FitGlobalChargeSLSGFit_KS_pH9)=(39321,39319,1),rgb(FitGlobalChargeSLSGFit_KS_pH10)=(0,2,26214) ModifyGraph rgb(FitGlobalPotSLSGFit_KS_pH5)=(16385,28398,65535),rgb(FitGlobalPotSLSGFit_KS_pH6)=(65535,0,52428) ModifyGraph rgb(FitGlobalPotSLSGFit_KS_pH7)=(26205,52428,1),rgb(FitGlobalPotSLSGFit_KS_pH8)=(0,0,0) ModifyGraph rgb(FitGlobalPotSLSGFit_KS_pH9)=(39321,39319,1),rgb(FitGlobalPotSLSGFit_KS_pH10)=(0,2,26214) ModifyGraph msize(KS_pH6)=7,msize(KS_pH10)=10 ModifyGraph mrkThick(KS_pH8)=4 ModifyGraph useMrkStrokeRGB(KS_pH3)=1,useMrkStrokeRGB(KS_pH4)=1,useMrkStrokeRGB(KS_pH5)=1 ModifyGraph useMrkStrokeRGB(KS_pH6)=1,useMrkStrokeRGB(KS_pH7)=1,useMrkStrokeRGB(KS_pH8)=1 ModifyGraph useMrkStrokeRGB(KS_pH9)=1,useMrkStrokeRGB(KS_pH10)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=9 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -30,200 SetAxis/N=2 bottom 0.35,1.45 TextBox/C/N=text3/S=3/A=MC/X=-43.76/Y=-46.39 "\\F'Arial Bold'\\Z24a" Legend/C/N=text0/J/S=3/A=MC/X=14.91/Y=18.42 "\\s(KS_pH3) Exp pH=3\r\\s(KS_pH4) Exp pH=4\r\\s(KS_pH5) Exp pH=5\r\\s(KS_pH6) Exp pH=6\r\\s(KS_pH7) Exp pH=7" AppendText "\\s(KS_pH8) Exp pH=8\r\\s(KS_pH9) Exp pH=9\r\\s(KS_pH10) Exp pH=10\r\\s(FitGlobalChargeSLSGFit_KS_pH3) Global Charge " AppendText "\\s(FitGlobalPotSLSGFit_KS_pH3) Global Potential" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window I_slopes_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH3 vs kappa_nm AppendToGraph KD_pH4 vs kappa_nm AppendToGraph KD_pH5 vs kappa_nm AppendToGraph KD_pH6 vs kappa_nm AppendToGraph KD_pH7 vs kappa_nm AppendToGraph KD_pH8 vs kappa_nm AppendToGraph KD_pH9 vs kappa_nm AppendToGraph KD_pH10 vs kappa_nm ModifyGraph mode=4 ModifyGraph marker(KD_pH3)=19,marker(KD_pH4)=16,marker(KD_pH5)=18,marker(KD_pH6)=14 ModifyGraph marker(KD_pH7)=23,marker(KD_pH8)=48,marker(KD_pH9)=32,marker(KD_pH10)=62 ModifyGraph lSize=2.5 ModifyGraph lStyle(KD_pH8)=1 //ModifyGraph lStyle(fit_PotentialSLS_pH3)=3, lStyle(fit_PotentialSLS_pH4)=3, lStyle(fit_PotentialSLS_pH5)=3, lStyle(fit_PotentialSLS_pH6)=3 //ModifyGraph lStyle(fit_PotentialSLS_pH7)=3, lStyle(fit_PotentialSLS_pH8)=3, lStyle(fit_PotentialSLS_pH9)=3, lStyle(fit_PotentialSLS_pH10)=3 ModifyGraph rgb(KD_pH3)=(0,0,0),rgb(KD_pH5)=(1,16019,65535),rgb(KD_pH6)=(65535,0,52428) ModifyGraph rgb(KD_pH7)=(3,52428,1),rgb(KD_pH8)=(0,0,0),rgb(KD_pH9)=(39321,39319,1) ModifyGraph rgb(KD_pH10)=(0,2,26214) //ModifyGraph rgb(fit_ChargeSLS_pH3)=(0,0,0),rgb(fit_PotentialSLS_pH5)=(1,16019,65535),rgb(Res_ChargeSLS_pH6)=(65535,0,52428) //ModifyGraph rgb(fit_ChargeSLS_pH7)=(3,52428,1),rgb(fit_PotentialSLS_pH8)=(0,0,0),rgb(Res_ChargeSLS_pH9)=(39321,39319,1) //ModifyGraph rgb(fit_ChargeSLS_pH10)=(0,2,26214) ModifyGraph msize(KD_pH6)=7,msize(KD_pH10)=10 ModifyGraph mrkThick(KD_pH8)=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -25,60 SetAxis/N=2 bottom 0.35,1.45 ErrorBars/T=3/L=3/Y=6 KD_pH3 Y,wave=(sdKD_pH3,sdKD_pH3) ErrorBars/T=3/L=3/Y=6 KD_pH4 Y,wave=(sdKD_pH4,sdKD_pH4) ErrorBars/T=3/L=3/Y=6 KD_pH5 Y,wave=(sdKD_pH5,sdKD_pH5) ErrorBars/T=3/L=3/Y=6 KD_pH6 Y,wave=(sdKD_pH6,sdKD_pH6) ErrorBars/T=3/L=3/Y=6 KD_pH7 Y,wave=(sdKD_pH7,sdKD_pH7) ErrorBars/T=3/L=3/Y=6 KD_pH8 Y,wave=(sdKD_pH8,sdKD_pH8) ErrorBars/T=3/L=3/Y=6 KD_pH9 Y,wave=(sdKD_pH9,sdKD_pH9) ErrorBars/T=3/L=3/Y=6 KD_pH10 Y,wave=(sdKD_pH10,sdKD_pH10) TextBox/C/N=text3/S=3/A=MC/X=-43.76/Y=-46.39 "\\F'Arial Bold'\\Z24b" Legend/C/N=text0/J/S=3/A=MC/X=36.84/Y=31.51 "\\s(KD_pH3) pH = 3\r\\s(KD_pH4) pH = 4\r\\s(KD_pH5) pH = 5\r\\s(KD_pH6) pH = 6\r\\s(KD_pH7) pH = 7\r\\s(KD_pH8) pH = 8" AppendText "\\s(KD_pH9) pH = 9\r\\s(KD_pH10) pH = 10" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH3_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH3 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=19 ModifyGraph lSize=2.5 ModifyGraph rgb=(0,0,0) ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH3_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(407,44,1300,819) KS_pH3 vs kappa_nm AppendToGraph fit_ChargeSLS_pH3,fit_PotentialSLS_pH3 AppendToGraph/L=Res_Left Res_ChargeSLS_pH3 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH3 vs kappa_nm ModifyGraph mode(KS_pH3)=3,mode(Res_ChargeSLS_pH3)=3,mode(Res_PotentialSLS_pH3)=3 ModifyGraph marker(KS_pH3)=19,marker(Res_ChargeSLS_pH3)=19,marker(Res_PotentialSLS_pH3)=8 ModifyGraph lSize(KS_pH3)=2.5,lSize(fit_ChargeSLS_pH3)=3,lSize(fit_PotentialSLS_pH3)=3 ModifyGraph lStyle(fit_PotentialSLS_pH3)=3 ModifyGraph rgb=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH3)=1,useMrkStrokeRGB(Res_ChargeSLS_pH3)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -15,1350 SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH3) Experiment pH = 3\r\\s(fit_ChargeSLS_pH3) fit Constant charge pH = 3" AppendText "\\s(fit_PotentialSLS_pH3) fit Constant potential pH = 3\r\\s(Res_ChargeSLS_pH3) Residual Constant charge pH = 3" AppendText "\\s(Res_PotentialSLS_pH3) Residual Constant potential pH = 3" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH4_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH4 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=16 ModifyGraph lSize=2.5 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH4_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(469,44,1362,819) KS_pH4 vs kappa_nm AppendToGraph fit_ChargeSLS_pH4,fit_PotentialSLS_pH4 AppendToGraph/L=Res_Left Res_ChargeSLS_pH4 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH4 vs kappa_nm ModifyGraph mode(KS_pH4)=3,mode(Res_ChargeSLS_pH4)=3,mode(Res_PotentialSLS_pH4)=3 ModifyGraph marker(KS_pH4)=16,marker(Res_ChargeSLS_pH4)=19,marker(Res_PotentialSLS_pH4)=8 ModifyGraph lSize(KS_pH4)=2.5,lSize(fit_ChargeSLS_pH4)=3,lSize(fit_PotentialSLS_pH4)=3 ModifyGraph lStyle(fit_PotentialSLS_pH4)=3 ModifyGraph rgb(fit_ChargeSLS_pH4)=(0,0,0),rgb(fit_PotentialSLS_pH4)=(0,0,0),rgb(Res_ChargeSLS_pH4)=(0,0,0) ModifyGraph rgb(Res_PotentialSLS_pH4)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH4)=1,useMrkStrokeRGB(Res_ChargeSLS_pH4)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -15,130 SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH4) Experiment pH = 4\r\\s(fit_ChargeSLS_pH4) fit Constant charge pH = 4" AppendText "\\s(fit_PotentialSLS_pH4) fit Constant potential pH = 4\r\\s(Res_ChargeSLS_pH4) Residual Constant charge pH = 4" AppendText "\\s(Res_PotentialSLS_pH4) Residual Constant potential pH = 4" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH5_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH5 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=18 ModifyGraph lSize=2.5 ModifyGraph rgb=(1,16019,65535) ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH5_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(416,44,1309,819) KS_pH5 vs kappa_nm AppendToGraph fit_ChargeSLS_pH5,fit_PotentialSLS_pH5 AppendToGraph/L=Res_Left Res_ChargeSLS_pH5 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH5 vs kappa_nm ModifyGraph mode(KS_pH5)=3,mode(Res_ChargeSLS_pH5)=3,mode(Res_PotentialSLS_pH5)=3 ModifyGraph marker(KS_pH5)=18,marker(Res_ChargeSLS_pH5)=19,marker(Res_PotentialSLS_pH5)=8 ModifyGraph lSize(KS_pH5)=2.5,lSize(fit_ChargeSLS_pH5)=3,lSize(fit_PotentialSLS_pH5)=3 ModifyGraph lStyle(fit_PotentialSLS_pH5)=3 ModifyGraph rgb(KS_pH5)=(1,16019,65535),rgb(fit_ChargeSLS_pH5)=(0,0,0),rgb(fit_PotentialSLS_pH5)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH5)=(0,0,0),rgb(Res_PotentialSLS_pH5)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH5)=1,useMrkStrokeRGB(Res_ChargeSLS_pH5)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -15,110 SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH5) Experiment pH = 5\r\\s(fit_ChargeSLS_pH5) fit Constant charge pH = 5" AppendText "\\s(fit_PotentialSLS_pH5) fit Constant potential pH = 5\r\\s(Res_ChargeSLS_pH5) Residual Constant charge pH = 5" AppendText "\\s(Res_PotentialSLS_pH5) Residual Constant potential pH = 5" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH6_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH6 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=14 ModifyGraph lSize=2.5 ModifyGraph rgb=(65535,0,52428) ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -10,22 SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH6_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(446,44,1339,819) KS_pH6 vs kappa_nm AppendToGraph fit_ChargeSLS_pH6,fit_PotentialSLS_pH6 AppendToGraph/L=Res_Left Res_ChargeSLS_pH6 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH6 vs kappa_nm ModifyGraph mode(KS_pH6)=3,mode(Res_ChargeSLS_pH6)=3,mode(Res_PotentialSLS_pH6)=3 ModifyGraph marker(KS_pH6)=14,marker(Res_ChargeSLS_pH6)=19,marker(Res_PotentialSLS_pH6)=8 ModifyGraph lSize(KS_pH6)=2.5,lSize(fit_ChargeSLS_pH6)=3,lSize(fit_PotentialSLS_pH6)=3 ModifyGraph lStyle(fit_PotentialSLS_pH6)=3 ModifyGraph rgb(KS_pH6)=(65535,0,52428),rgb(fit_ChargeSLS_pH6)=(0,0,0),rgb(fit_PotentialSLS_pH6)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH6)=(0,0,0),rgb(Res_PotentialSLS_pH6)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH6)=1,useMrkStrokeRGB(Res_ChargeSLS_pH6)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -30,60 SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH6) Experiment pH = 6\r\\s(fit_ChargeSLS_pH6) fit Constant charge pH = 6" AppendText "\\s(fit_PotentialSLS_pH6) fit Constant potential pH = 6\r\\s(Res_ChargeSLS_pH6) Residual Constant charge pH = 6" AppendText "\\s(Res_PotentialSLS_pH6) Residual Constant potential pH = 6" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH7_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH7 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=23 ModifyGraph lSize=2.5 ModifyGraph rgb=(3,52428,1) ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH7_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(433,44,1326,819) KS_pH7 vs kappa_nm AppendToGraph fit_ChargeSLS_pH7,fit_PotentialSLS_pH7 AppendToGraph/L=Res_Left Res_ChargeSLS_pH7 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH7 vs kappa_nm ModifyGraph mode(KS_pH7)=3,mode(Res_ChargeSLS_pH7)=3,mode(Res_PotentialSLS_pH7)=3 ModifyGraph marker(KS_pH7)=23,marker(Res_ChargeSLS_pH7)=19,marker(Res_PotentialSLS_pH7)=8 ModifyGraph lSize(KS_pH7)=2.5,lSize(fit_ChargeSLS_pH7)=3,lSize(fit_PotentialSLS_pH7)=3 ModifyGraph lSize(Res_ChargeSLS_pH7)=2.5 ModifyGraph lStyle(fit_PotentialSLS_pH7)=3 ModifyGraph rgb(KS_pH7)=(3,52428,1),rgb(fit_ChargeSLS_pH7)=(0,0,0),rgb(fit_PotentialSLS_pH7)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH7)=(0,0,0),rgb(Res_PotentialSLS_pH7)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH7)=1,useMrkStrokeRGB(Res_ChargeSLS_pH7)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -18,10 SetAxis/N=2 bottom 0.35,1.45 SetAxis/N=2 Res_Left -11,7 Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH7) Experiment pH = 7\r\\s(fit_ChargeSLS_pH7) fit Constant charge pH = 7" AppendText "\\s(fit_PotentialSLS_pH7) fit Constant potential pH = 7\r\\s(Res_ChargeSLS_pH7) Residual Constant charge pH = 7" AppendText "\\s(Res_PotentialSLS_pH7) Residual Constant potential pH = 7" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH8_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH8 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=48 ModifyGraph lSize=2.5 ModifyGraph rgb=(0,0,0) ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH8_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(416,46,1309,821) KS_pH8 vs kappa_nm AppendToGraph fit_ChargeSLS_pH8,fit_PotentialSLS_pH8 AppendToGraph/L=Res_Left Res_ChargeSLS_pH8 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH8 vs kappa_nm ModifyGraph mode(KS_pH8)=3,mode(Res_ChargeSLS_pH8)=3,mode(Res_PotentialSLS_pH8)=3 ModifyGraph marker(KS_pH8)=48,marker(Res_ChargeSLS_pH8)=19,marker(Res_PotentialSLS_pH8)=8 ModifyGraph lSize(KS_pH8)=2.5,lSize(fit_ChargeSLS_pH8)=3,lSize(fit_PotentialSLS_pH8)=3 ModifyGraph lSize(Res_ChargeSLS_pH8)=2.5 ModifyGraph lStyle(fit_PotentialSLS_pH8)=3 ModifyGraph rgb(KS_pH8)=(0,0,0),rgb(fit_ChargeSLS_pH8)=(0,0,0),rgb(fit_PotentialSLS_pH8)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH8)=(0,0,0),rgb(Res_PotentialSLS_pH8)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH8)=1,useMrkStrokeRGB(Res_ChargeSLS_pH8)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/N=2 left -70,45 SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH8) Experiment pH = 8\r\\s(fit_ChargeSLS_pH8) fit Constant charge pH = 8" AppendText "\\s(fit_PotentialSLS_pH8) fit Constant potential pH = 8\r\\s(Res_ChargeSLS_pH8) Residual Constant charge pH = 8" AppendText "\\s(Res_PotentialSLS_pH8) Residual Constant potential pH = 8" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH9_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH9 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=32 ModifyGraph lSize=2.5 ModifyGraph rgb=(39321,39319,1) ModifyGraph mrkThick=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH9_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(447,48,1340,823) KS_pH9 vs kappa_nm AppendToGraph fit_ChargeSLS_pH9,fit_PotentialSLS_pH9 AppendToGraph/L=Res_Left Res_ChargeSLS_pH9 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH9 vs kappa_nm ModifyGraph mode(KS_pH9)=3,mode(Res_ChargeSLS_pH9)=3,mode(Res_PotentialSLS_pH9)=3 ModifyGraph marker(KS_pH9)=32,marker(Res_ChargeSLS_pH9)=19,marker(Res_PotentialSLS_pH9)=8 ModifyGraph lSize(KS_pH9)=2.5,lSize(fit_ChargeSLS_pH9)=3,lSize(fit_PotentialSLS_pH9)=3 ModifyGraph lSize(Res_ChargeSLS_pH9)=2.5 ModifyGraph lStyle(fit_PotentialSLS_pH9)=3 ModifyGraph rgb(KS_pH9)=(39321,39319,1),rgb(fit_ChargeSLS_pH9)=(0,0,0),rgb(fit_PotentialSLS_pH9)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH9)=(0,0,0),rgb(Res_PotentialSLS_pH9)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH9)=1,useMrkStrokeRGB(Res_ChargeSLS_pH9)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH9) Experiment pH = 9\r\\s(fit_ChargeSLS_pH9) fit Constant charge pH = 9" AppendText "\\s(fit_PotentialSLS_pH9) fit Constant potential pH = 9\r\\s(Res_ChargeSLS_pH9) Residual Constant charge pH = 9" AppendText "\\s(Res_PotentialSLS_pH9) Residual Constant potential pH = 9" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH10_fit_DLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(107,44,1000,819) KD_pH10 vs kappa_nm ModifyGraph mode=3 ModifyGraph marker=62 ModifyGraph lSize=2.5 ModifyGraph rgb=(0,2,26214) ModifyGraph mrkThick=4 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1 ModifyGraph lblPos(left)=95,lblPos(bottom)=76 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28 Label left "\\Z24k\\BD" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro Window pH10_fit_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(489,47,1382,822) KS_pH10 vs kappa_nm AppendToGraph fit_ChargeSLS_pH10,fit_PotentialSLS_pH10 AppendToGraph/L=Res_Left Res_ChargeSLS_pH10 vs kappa_nm AppendToGraph/L=Res_Left Res_PotentialSLS_pH10 vs kappa_nm ModifyGraph mode(KS_pH10)=3,mode(Res_ChargeSLS_pH10)=3,mode(Res_PotentialSLS_pH10)=3 ModifyGraph marker(KS_pH10)=62,marker(Res_ChargeSLS_pH10)=19,marker(Res_PotentialSLS_pH10)=8 ModifyGraph lSize(KS_pH10)=2.5,lSize(fit_ChargeSLS_pH10)=3,lSize(fit_PotentialSLS_pH10)=3 ModifyGraph lSize(Res_ChargeSLS_pH10)=2.5 ModifyGraph lStyle(fit_PotentialSLS_pH10)=3 ModifyGraph rgb(KS_pH10)=(0,2,26214),rgb(fit_ChargeSLS_pH10)=(0,0,0),rgb(fit_PotentialSLS_pH10)=(0,0,0) ModifyGraph rgb(Res_ChargeSLS_pH10)=(0,0,0),rgb(Res_PotentialSLS_pH10)=(0,0,0) ModifyGraph useMrkStrokeRGB(KS_pH10)=1,useMrkStrokeRGB(Res_ChargeSLS_pH10)=1 ModifyGraph grid(bottom)=2 ModifyGraph mirror(bottom)=1 ModifyGraph nticks(bottom)=8 ModifyGraph minor(left)=1,minor(Res_Left)=1 ModifyGraph lblMargin(bottom)=14 ModifyGraph standoff=0 ModifyGraph zeroThick(left)=4,zeroThick(Res_Left)=4 ModifyGraph lblPosMode(left)=3,lblPosMode(bottom)=1,lblPosMode(Res_Left)=3 ModifyGraph lblPos(left)=95,lblPos(bottom)=76,lblPos(Res_Left)=95 ModifyGraph lblLatPos(left)=1,lblLatPos(bottom)=-28,lblLatPos(Res_Left)=1 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Label left "\\Z24k\\BS" Label bottom " \\Z24\\F'Symbol'k \\F'Geneva'[nm\\S-1\\M]" SetAxis/A/N=2 left SetAxis/N=2 bottom 0.35,1.45 SetAxis/A/N=2 Res_Left Legend/C/N=text0/J/S=3/A=MC/X=24.66/Y=14.07 "\\s(KS_pH10) Experiment pH = 10\r\\s(fit_ChargeSLS_pH10) fit Constant charge pH = 10" AppendText "\\s(fit_PotentialSLS_pH10) fit Constant potential pH = 6\r\\s(Res_ChargeSLS_pH10) Residual Constant charge pH = 10" AppendText "\\s(Res_PotentialSLS_pH10) Residual Constant potential pH = 10" ToolsGrid gridx=(114,72,8),gridy=(656,72,8) EndMacro //------------------------------------------ // FIT FUNCTIONS - > SLOPES //------------------------------------------ // Fitting function for dimensionless second virial coefficient in the case of constant surface charge Function FittingStatic_constCharge(w,x) : FitFunc Wave w Variable x //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable lam_B = 7e-10 // constant (Bjerrum length) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ variable gamma_S = 1.14 //calculated constant in vdW term //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ // Independent variable X is multiplied with 1e-09 because X is in units of nm and we need units of m //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable kappa_a = x*1e+9*a //CurveFitDialog/ Variable term1 = 1+kappa_a //CurveFitDialog/ Variable term2 = 1+2*kappa_a //CurveFitDialog/ Variable Up = 3*ZP^2*lam_B*term2 //CurveFitDialog/ Variable Down = 2*a*kappa_a^2*term1^2 //CurveFitDialog/ //CurveFitDialog/ Variable Elec = Up/Down //CurveFitDialog/ //CurveFitDialog/ Variable val //local variable to accumulate result value //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ val = 4 + Elec - AH*gamma_S //CurveFitDialog/ //CurveFitDialog/ f(x) = val //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ x //CurveFitDialog/ Coefficients 2 //CurveFitDialog/ w[0] = ZP //CurveFitDialog/ w[1] = AH Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) Variable lam_B = 7e-10 // constant (Bjerrum length) variable gamma_S = 1.14 //calculated constant in vdW term // Independent variable X is multiplied with 1e-09 because X is in units of nm and we need units of m Variable kappa_a = x*1e+9*a Variable term1 = 1+kappa_a Variable term2 = 1+2*kappa_a Variable Up = 3*w[0]^2*lam_B*term2 Variable Down = 2*a*kappa_a^2*term1^2 Variable Elec = Up/Down Variable val //local variable to accumulate result value val = 4 + Elec - w[1]*gamma_S return val End // Fitting function for dimensionless second virial coefficient in the case of constant surface potential Function FittingStatic_constPotential(w,x) : FitFunc Wave w Variable x //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable lam_B = 7e-10 // constant (Bjerrum length) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ variable gamma_S = 1.14 //calculated constant in vdW term //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable kappa_a = x*1e+09*a //CurveFitDialog/ Variable term1 = 1+kappa_a //CurveFitDialog/ Variable Up = 3*PsiP^2*a*term1 //CurveFitDialog/ Variable Down = 2*lam_B*kappa_a^2 //CurveFitDialog/ //CurveFitDialog/ Variable Elec = Up/Down //CurveFitDialog/ Variable val //local variable to accumulate result value //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ val = 4 + Elec - AH*gamma_S //CurveFitDialog/ //CurveFitDialog/ f(x) = val //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ x //CurveFitDialog/ Coefficients 2 //CurveFitDialog/ w[0] = PsiP //CurveFitDialog/ w[1] = AH Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) Variable lam_B = 7e-10 // constant (Bjerrum length) variable gamma_S = 1.14 //calculated constant in vdW term Variable kappa_a = x*1e+09*a Variable term1 = 1+kappa_a Variable Up = 3*w[0]^2*a*term1 Variable Down = 2*lam_B*kappa_a^2 Variable Elec = Up/Down Variable val //local variable to accumulate result value val = 4 + Elec - w[1]*gamma_S return val End ///////////////////////// // Fitting function for dimensionless interaction parameter in the case of constant surface charge Function FittingDynamic_constCharge(w,x) : FitFunc Wave w Variable x //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable lam_B = 7e-10 // constant (Bjerrum length) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable gamma_S = 1.14 //calculated constant in static vdW term //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable gamma_H = 1.0424 //calculated constant in hydrodynamic vdW term //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable gamma_ = gamma_S - gamma_H //CurveFitDialog/ //CurveFitDialog/ Variable kappa_a = x*1e+9*a //CurveFitDialog/ Variable term1 = 1+kappa_a //CurveFitDialog/ Variable term2 = 1+2*kappa_a //CurveFitDialog/ Variable val //local variable to accumulate result value //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //static part //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable UpStat= 3*lam_B*term2 //CurveFitDialog/ Variable DownStat = 2*a*kappa_a^2*term1^2 //CurveFitDialog/ Variable ElecStat = UpStat/DownStat //CurveFitDialog/ //hydro part //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable UpHydro = 3*lam_B //CurveFitDialog/ Variable DownHydro = a*kappa_a*term1^2 //CurveFitDialog/ Variable ElecHydro = UpHydro/DownHydro //CurveFitDialog/ //CurveFitDialog/ Variable Elec = ElecStat - ElecHydro //CurveFitDialog/ //CurveFitDialog/ //result as dynamic //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ val = -2.44 + ZP^2*Elec - AH*gamma_ //CurveFitDialog/ //CurveFitDialog/ f(x) = val //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ x //CurveFitDialog/ Coefficients 2 //CurveFitDialog/ w[0] = ZP //CurveFitDialog/ w[1] = AH Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) Variable lam_B = 7e-10 // constant (Bjerrum length) Variable gamma_S = 1.14 //calculated constant in static vdW term Variable gamma_H = 1.0424 //calculated constant in hydrodynamic vdW term Variable gamma_ = gamma_S - gamma_H Variable kappa_a = x*1e+9*a Variable term1 = 1+kappa_a Variable term2 = 1+2*kappa_a Variable val //local variable to accumulate result value //static part Variable UpStat= 3*lam_B*term2 Variable DownStat = 2*a*kappa_a^2*term1^2 Variable ElecStat = UpStat/DownStat //hydro part Variable UpHydro = 3*lam_B Variable DownHydro = a*kappa_a*term1^2 Variable ElecHydro = UpHydro/DownHydro Variable Elec = ElecStat - ElecHydro //result as dynamic val = -2.44 + w[0]^2*Elec - w[1]*gamma_ return val End // Fitting function for dimensionless interaction parameter in the case of constant surface potential Function FittingDynamic_constPotential(w,x) : FitFunc Wave w Variable x //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable lam_B = 7e-10 // constant (Bjerrum length) //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ variable gamma_S = 1.14 //calculated constant in static vdW term //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ variable gamma_H = 1.0424 //calculated constant in hydrodynamic vdW term //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable kappa_a = x*1e+09*a //CurveFitDialog/ Variable term1 = 1+kappa_a //CurveFitDialog/ Variable term2 = x*lam_B //CurveFitDialog/ Variable val //local variable to accumulate result value //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //static part //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable UpStat = 3*PsiP^2*a*term1 //CurveFitDialog/ Variable DownStat = 2*lam_B*kappa_a^2 //CurveFitDialog/ //CurveFitDialog/ Variable ElecStat = UpStat/DownStat //CurveFitDialog/ val = 4 //CurveFitDialog/ val+= ElecStat //CurveFitDialog/ val -= AH*gamma_S //CurveFitDialog/ //hydro part //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ Variable UpHydro = 3*PsiP^2 //CurveFitDialog/ //CurveFitDialog/ Variable ElecHydro = UpHydro/term2 //CurveFitDialog/ val -= 6.44 //CurveFitDialog/ val -= ElecHydro //CurveFitDialog/ val += AH*gamma_H //CurveFitDialog/ //CurveFitDialog/ //result as dynamic //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ //CurveFitDialog/ f(x) = val //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ x //CurveFitDialog/ Coefficients 2 //CurveFitDialog/ w[0] = PsiP //CurveFitDialog/ w[1] = AH Variable a = 5.58346e-09 - 0.08e-09 // constant (bare radius) Variable lam_B = 7e-10 // constant (Bjerrum length) variable gamma_S = 1.14 //calculated constant in static vdW term variable gamma_H = 1.0424 //calculated constant in hydrodynamic vdW term Variable kappa_a = x*1e+09*a Variable term1 = 1+kappa_a Variable term2 = x*lam_B Variable val //local variable to accumulate result value //static part Variable UpStat = 3*w[0]^2*a*term1 Variable DownStat = 2*lam_B*kappa_a^2 Variable ElecStat = UpStat/DownStat val = 4 val+= ElecStat val -= w[1]*gamma_S //hydro part Variable UpHydro = 3*w[0]^2 Variable ElecHydro = UpHydro/term2 val -= 6.44 val -= ElecHydro val += w[1]*gamma_H //result as dynamic return val End //////////////// ///////////////////// /////////////// Window ChargeHamaker_SLS() : Graph PauseUpdate; Silent 1 // building window... Display /W=(190,115,929,723) ChargeSLS vs pH AppendToGraph/L=L2 HamakerChargeSLS vs pH AppendToGraph/R PotentialSLS vs pH AppendToGraph/R=R2 HamakerPotentialSLS vs pH ModifyGraph margin(right)=85,height=510.236 ModifyGraph mode=4 ModifyGraph marker=19 ModifyGraph lSize=3 ModifyGraph rgb(PotentialSLS)=(1,4,52428),rgb(HamakerPotentialSLS)=(1,12815,52428) ModifyGraph msize(ChargeSLS)=6,msize(HamakerChargeSLS)=6 ModifyGraph mrkThick(ChargeSLS)=2.5,mrkThick(HamakerChargeSLS)=2.5,mrkThick(PotentialSLS)=3 ModifyGraph mrkThick(HamakerPotentialSLS)=3 ModifyGraph useMrkStrokeRGB=1 ModifyGraph grid(bottom)=2 ModifyGraph zero(L2)=4 ModifyGraph nticks(bottom)=10 ModifyGraph minor(bottom)=1,minor(L2)=1 ModifyGraph sep(L2)=4 ModifyGraph lblMargin(bottom)=10 ModifyGraph standoff(bottom)=0 ModifyGraph zeroThick(left)=2,zeroThick(L2)=2 ModifyGraph lblPosMode(R2)=1 ModifyGraph lblPos(left)=79,lblPos(bottom)=46,lblPos(L2)=78,lblPos(right)=78 ModifyGraph freePos(L2)={0,kwFraction} ModifyGraph freePos(R2)={0,kwFraction} ModifyGraph axisEnab(left)={0,0.48} ModifyGraph axisEnab(L2)={0.52,1} ModifyGraph axisEnab(right)={0,0.48} ModifyGraph axisEnab(R2)={0.52,1} Label left "\\Z16z\\Bp\\M\\Z16 [\\F'Geneva'e\\B0\\M/monomer]" Label bottom "\\Z16\\F'Arial Black'pH" Label L2 "\\Z16A\\BH\\M\\Z16 [\\F'Geneva'k\\BB\\MT] (Surface charge)" Label right "\\Z20\\F'Symbol'y\\M\\F'Geneva'\\Bp\\M\\Z16 \\M[\\Me\\M/k\\BB\\MT]" Label R2 "\\Z16A\\BH\\M\\Z16 [\\F'Geneva'k\\BB\\MT] (Surface potential)" SetAxis left -10.01537299,150.04991 SetAxis bottom 2.5,10.5 SetAxis L2 8.0855112,20.259575 SetAxis right -1.013249273,5.7393556 Legend/C/N=text0/J/S=3/A=MC/X=-29.02/Y=-41.76 "\\s(ChargeSLS) Constant charge\r\\s(PotentialSLS) Constant potential" EndMacro