4Misc_Start4Platform@ fROGIXXp 1<4!*\d>winspoolKONICA MINOLTA PS Color Laser Class Driver10.120.99.11KONICA MINOLTA PS Color Laser  odXXLetterGIS4PRIV0''''\KhCo` SMTJ{E771FD8A-DDB6-47ba-BF85-0337950BEF58}PageOrientationPortraitCollateTrueInputSlotTray1MediaTypePrinterDefaultPageSizeLetterOffsetNoneOutputBinDefaultBindingNoneKMDuplex2SidedStapleNonePunchNoneFoldNoneResolution600dpiKMSelectColorColorPageRegionV4DM fROGIXXp 1<4!*\d>winspoolKONICA MINOLTA PS Color Laser Class Driver10.120.99.11KONICA MINOLTA PS Color Laser  odXXLetterGIS4PRIV0''''\KhCo` SMTJ{E771FD8A-DDB6-47ba-BF85-0337950BEF58}PageOrientationPortraitCollateTrueInputSlotTray1MediaTypePrinterDefaultPageSizeLetterOffsetNoneOutputBinDefaultBindingNoneKMDuplex2SidedStapleNonePunchNoneFoldNoneResolution600dpiKMSelectColorColorPageRegionV4DM fROGIXXp 1<4!*\d>winspoolKONICA MINOLTA PS Color Laser Class Driver10.120.99.11KONICA MINOLTA PS Color Laser  odXXLetterGIS4PRIV0''''\KhCo` SMTJ{E771FD8A-DDB6-47ba-BF85-0337950BEF58}PageOrientationPortraitCollateTrueInputSlotTray1MediaTypePrinterDefaultPageSizeLetterOffsetNoneOutputBinDefaultBindingNoneKMDuplex2SidedStapleNonePunchNoneFoldNoneResolution600dpiKMSelectColorColorPageRegionV4DM f ROGIXXp 1<4!*\d>winspoolKONICA MINOLTA PS Color Laser Class Driver10.120.99.11KONICA MINOLTA PS Color Laser  odXXLetterGIS4PRIV0''''\KhCo` SMTJ{E771FD8A-DDB6-47ba-BF85-0337950BEF58}PageOrientationPortraitCollateTrueInputSlotTray1MediaTypePrinterDefaultPageSizeLetterOffsetNoneOutputBinDefaultBindingNoneKMDuplex2SidedStapleNonePunchNoneFoldNoneResolution600dpiKMSelectColorColorPageRegionV4DM^Graph*@@??WDashSettings#  !oJNormal@ Arial<HHHH$$oJNormal@ Arial<HHHH$$444444 x:-Normal@ Arial<HHHH$$4 4 4 4 4 4 phome<4dLCC:Users:Tika:Desktop:C:Users:Tika:Desktop w\8oxd/ `Pd,kw<w'wwZTww%OP! Y`T%OL%w8wcc 5RecentWindowsCurve Fitting.ihfErrors.ihfFittingGraph4:col_40ps,...;...Help BrowserIgor Reference.ihfManual Peak Adjust.ipfMulti-peak Fit Set 3Multi-peak Fitting 2.0.ipfMultipeakFit_Set3:col_40ps,...;... 4Misc_EndXOPState_Start`Data Browserstom ParameterseoGizmoPeakFunctions2 Data Browserroot4XOPState_End\D=Created from experiment '5nm_FZnPc', 2017-08-16 7:50:20 PM matrixop col_0ps=col(f34,40) matrixop col_40ps=col(f35,0) Display/K=0 col_0ps Display/K=0 col_40ps SetAxis/A SetAxis/A Legend/C/N=text0/J/F=0/S=3/H={0,0,5}/A=MC "\\s(col_0ps) col_0ps\r\\s(fit_col_0ps) fit_col_0ps\r" ModifyGraph rgb(col_0ps)=(0,0,0) Legend/C/N=text0/J/F=0/S=3/H={0,0,5}/A=MC "\\s(col_40ps) col_40ps\r\\s(fit_col_40ps) fit_col_40ps\r" ModifyGraph rgb(col_40ps)=(0,0,0) ShowInfo Display/K=0 col_40ps MPF2_DontShowHelpMessage = 0 Edit/K=0 'col_40ps';DelayUpdate Edit/K=0 'f35';DelayUpdate Edit/K=0 'f35';DelayUpdate NewImage/K=0 f35 ModifyImage f35 ctab={*,*,Rainbow,0} ModifyImage f35 ctab= {*,*,PlanetEarth,0} Edit/K=0 'f35';DelayUpdate Display/K=0 col_0ps Print FitMySpectrum () NaN FitMySpectrum() Print FitMySpectrum() NaN FitMySpectrum() Print FitMySpectrum() NaN Error in WMSetScrapData : OpenClipboard. Windows error code = 5. Print Print Routine() The number is 14 NaN Print Routine() The number is 14 NaN Print Routine() 14 NaN Print Routine() The number is NaN Print Routine() hello NaN Print Routine() 1000 NaN Print Routine() The number is 14 NaN Print Routine() 14 The number is NaN Print FitMySpectrum() NaN FitMySpectrum() FitMySpectrum() Error in WMSetScrapData : OpenClipboard. Windows error code = 5. Print FirstStr("ABC", "BCD") ABC Print FirstStr("A", "B") A Print FirstStr("C", "B") B Error in WMSetScrapData : OpenClipboard. Windows error code = 5. Error in WMSetScrapData : OpenClipboard. Windows error code = 5. Error in WMSetScrapData : OpenClipboard. Windows error code = 5. Make test1 = {1, 2, 3}, test2 = {2, 3, 4} CreateRatioOfWaves(test1, test2, "ratio") Edit test1, test2, ratio Edit/K=0 'ratio';DelayUpdate Make test1 = {1, 2, 3}, test2 = {2, 3, 4} CreateRatioOfWaves(test1, test2, "ratio") Edit test1, test2, ratio Make test1 = {1, 2, 3}, test2 = {2, 3, 4} CreateRatioOfWaves(test1, test2, "ratio") Edit/K=0 'ratio';DelayUpdate Edit/K=0 'test1';DelayUpdate Make test1 = {1, 2, 3}, test2 = {2, 3, 4} CreateRatioOfWaves(test1, test2, "ratio") Edit test1, test2, ratio Make test5 = {1, 2, 3}, test6 = {2, 3, 4} CreateRatioWaves(test5, test6, "rational") Edit test5, test6, rational Edit test1, test2, ratio CurveFit/NTHR=0/TBOX=792 line col_40ps /D fit_col_40ps= W_coef[0]+W_coef[1]*x W_coef={1031.4,-305.86} V_chisq= 3.36317e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40;V_q= 1;V_Rab= -0.981848; V_Pr= -0.45109;V_r2= 0.203483; W_sigma={242,96.9} Coefficient values one standard deviation a =1031.4 242 b =-305.86 96.9 RemoveFromGraph fit_col_40ps Make/D/N=5/O W_coef W_coef[0] = {20,30,40,50,60} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0] Make/D/N=4/O W_coef W_coef[0] = {20,30,40,50} FuncFit/NTHR=0/TBOX=792 FitMySpectrum W_coef col_40ps /D Fit converged properly fit_col_40ps= FitMySpectrum(W_coef,x) W_coef={19.903,30.066,43.868,49.82} V_chisq= 7.48064e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={9.53e+08,7.28e+08,3.46e+08,3.32e+09} Coefficient values one standard deviation p_0 =19.903 9.53e+008 p_1 =30.066 7.28e+008 p_2 =43.868 3.46e+008 p_3 =49.82 3.32e+009 Make/D/N=4/O W_coef W_coef[0] = {1.92,2514,0.0447,0.6} FuncFit/NTHR=0/TBOX=792 FitMySpectrum W_coef col_40ps /D Fit converged properly fit_col_40ps= FitMySpectrum(W_coef,x) W_coef={1.9624,479.85,0.091156,0.28429} V_chisq= 188839;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00855,17.5,0.00963,0.0239} Coefficient values one standard deviation p_0 =1.9624 0.00855 p_1 =479.85 17.5 p_2 =0.091156 0.00963 p_3 =0.28429 0.0239 ModifyGraph mode(col_40ps)=2 ModifyGraph mode(col_40ps)=3 ModifyGraph rgb(col_40ps)=(63232,0,28928),rgb(fit_col_40ps)=(0,0,0) ModifyGraph rgb=(63232,0,28928) ModifyGraph mode=0 ModifyGraph rgb(fit_col_40ps)=(0,0,0) Make/D/N=4/O W_coef W_coef[0] = {1.92,2514,0.0447,0.6} FuncFit/NTHR=0/TBOX=792 FitMySpectrum W_coef col_40ps /D Fit converged properly fit_col_40ps= FitMySpectrum(W_coef,x) W_coef={1.9624,479.85,0.091154,0.2843} V_chisq= 188840;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00855,17.5,0.00963,0.0239} Coefficient values one standard deviation p_0 =1.9624 0.00855 p_1 =479.85 17.5 p_2 =0.091154 0.00963 p_3 =0.2843 0.0239 Make/D/N=4/O W_coef W_coef[0] = {2.1,2514,0.0447,0.6} FuncFit/NTHR=0/TBOX=792 FitMySpectrum W_coef col_40ps /D Fit converged properly fit_col_40ps= FitMySpectrum(W_coef,x) W_coef={1.9665,478.8,0.097328,0.27437} V_chisq= 188832;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00907,17.3,0.00996,0.0241} Coefficient values one standard deviation p_0 =1.9665 0.00907 p_1 =478.8 17.3 p_2 =0.097328 0.00996 p_3 =0.27437 0.0241 Make/D/N=4/O W_coef W_coef[0] = {2.5,2514,0.0447,0.6} Make/D/N=4/O W_coef W_coef[0] = {1.96,2514,0.0447,0.6} FuncFit/NTHR=0/TBOX=792 FitMySpectrum W_coef col_40ps /D Fit converged properly fit_col_40ps= FitMySpectrum(W_coef,x) W_coef={1.9625,479.82,0.091378,0.28394} V_chisq= 188817;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00857,17.4,0.00964,0.0239} Coefficient values one standard deviation p_0 =1.9625 0.00857 p_1 =479.82 17.4 p_2 =0.091378 0.00964 p_3 =0.28394 0.0239 ** Notebook gave error: Expected name of a notebook window FitMySpectrum (col_40ps,x) WARNING: P or X used outside of a wave assignment loop. For details execute: DisplayHelpTopic "P or X used outside of a wave assignment loop" Or execute SetIgorOption FuncOptimize, CatchIllegalPandX= 3 and recompile to find and fix the error. FitMySpectrum (col_40ps, x) FitMySpectrum (col_40ps, x) Display/K=0 fit_col_40ps AppendToGraph root:'1ps(2)':col_40ps FitMySpectrum (col_40ps, x) RemoveFromGraph fit_col_40ps FitMySpectrum (col_40ps, x) FitMySpectrum (col_40ps, x) Print FitMySpectrum (col_40ps, x) 0.102695 Make/D/N=4/O W_coef W_coef[0] = {1.96,2514,0.0447,0.6} FuncFit/NTHR=0/TBOX=792 FitMySpectrum W_coef col_40ps /D Fit converged properly fit_col_40ps= FitMySpectrum(W_coef,x) W_coef={1.9625,479.82,0.091378,0.28394} V_chisq= 188817;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00857,17.4,0.00964,0.0239} Coefficient values one standard deviation p_0 =1.9625 0.00857 p_1 =479.82 17.4 p_2 =0.091378 0.00964 p_3 =0.28394 0.0239 ModifyGraph rgb(fit_col_40ps)=(0,0,0) DisplayHelpTopic "StatsChiTest" DisplayHelpTopic "GammP" DisplayHelpTopic "GammP" DisplayHelpTopic "ExpGaussFit" Error in WMSetScrapData : OpenClipboard. Windows error code = 5. **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: col_40ps[0],col_40ps[1],col_40ps[2],col_40ps[3],col_40ps[4],col_40ps[5],col_40ps[6],col_40ps[7],col_40ps[8],col_40ps[9],col_40ps[10],col_40ps[11],col_40ps[12],col_40ps[13],col_40ps[14],col_40ps[15],col_40ps[16],col_40ps[17],col_40ps[18],col_40ps[19],col_40ps[20],col_40ps[21],col_40ps[22],col_40ps[23],col_40ps[24],col_40ps[25],col_40ps[26],col_40ps[27],col_40ps[28],col_40ps[29],col_40ps[30],col_40ps[31],col_40ps[32],col_40ps[33],col_40ps[34],col_40ps[35],col_40ps[36],col_40ps[37],col_40ps[38] Edit/K=0 'col_40ps';DelayUpdate Display/K=0 col_40ps **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: col_40ps[0],col_40ps[1],col_40ps[2],col_40ps[3],col_40ps[4],col_40ps[5],col_40ps[6],col_40ps[7],col_40ps[8],col_40ps[9],col_40ps[10],col_40ps[11],col_40ps[12],col_40ps[13],col_40ps[14],col_40ps[15],col_40ps[16],col_40ps[17],col_40ps[18],col_40ps[19],col_40ps[20],col_40ps[21],col_40ps[22],col_40ps[23],col_40ps[24],col_40ps[25],col_40ps[26],col_40ps[27],col_40ps[28],col_40ps[29],col_40ps[30],col_40ps[31],col_40ps[32],col_40ps[33],col_40ps[34],col_40ps[35],col_40ps[36],col_40ps[37],col_40ps[38] BUG: In CoefficientsTab::setInitialGuessesFromWave, number of points in coefficients wave does not match the number of rows in the Coefficients List BUG: In CoefficientsTab::setInitialGuessesFromWave, number of points in coefficients wave does not match the number of rows in the Coefficients List **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: col_40ps[0],col_40ps[1],col_40ps[2],col_40ps[3],col_40ps[4],col_40ps[5],col_40ps[6],col_40ps[7],col_40ps[8],col_40ps[9],col_40ps[10],col_40ps[11],col_40ps[12],col_40ps[13],col_40ps[14],col_40ps[15],col_40ps[16],col_40ps[17],col_40ps[18],col_40ps[19],col_40ps[20],col_40ps[21],col_40ps[22],col_40ps[23],col_40ps[24],col_40ps[25],col_40ps[26],col_40ps[27],col_40ps[28],col_40ps[29],col_40ps[30],col_40ps[31],col_40ps[32],col_40ps[33],col_40ps[34],col_40ps[35],col_40ps[36],col_40ps[37],col_40ps[38] BUG: In CoefficientsTab::setInitialGuessesFromWave, number of points in coefficients wave does not match the number of rows in the Coefficients List FuncFit/NTHR=0/TBOX=792 FitTwoPeaks W_coef col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(W_coef,x) W_coef={1.9285,223.55,0.0051782,0.73273} V_chisq= 1.70336e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={1.64e+03,3.7e+05,5.45e+03,0.0866} Coefficient values one standard deviation K0 =1.9285 1.64e+003 K1 =223.55 3.7e+005 K2 =0.0051782 5.45e+003 K3 =0.73273 0.0866 FuncFit/NTHR=0/TBOX=792 FitTwoPeaks W_coef col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(W_coef,x) W_coef={1.928,223.99,0.0068444,0.73538} V_chisq= 1.70327e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={160,3.58e+04,533,0.0878} Coefficient values one standard deviation K0 =1.928 160 K1 =223.99 3.58e+004 K2 =0.0068444 533 K3 =0.73538 0.0878 make/N=8/D/O wcoeff // this is the coefficient wave Edit/K=0 'W_coef';DelayUpdate Edit/K=0 'wcoeff';DelayUpdate **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: wcoeff[8] **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: wcoeff[8] DeletePoints 8,1, wcoeff FuncFit FitTwoPeaks, wcoeff, col_40ps 9 iterations with no decrease in chi square y= FitTwoPeaks(wcoeff,x) wcoeff={-8.7468,385.02,0.23171,0.54789,-0.97225,97.193,-0.28557,0.16178} V_chisq= 7.48356e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={6.01e+11,2.05e+15,6.85e+11,1.22e+08,3.05e+11,8.77e+14,5.98e+10,1.23e+06} Coefficient values one standard deviation K0 =-8.7468 6.01e+011 K1 =385.02 2.05e+015 K2 =0.23171 6.85e+011 K3 =0.54789 1.22e+008 K4 =-0.97225 3.05e+011 K5 =97.193 8.77e+014 K6 =-0.28557 5.98e+010 K7 =0.16178 1.23e+006 Display/K=0 col_40ps AppendToGraph root:'1ps(2)':fit_col_40ps FuncFit FitTwoPeaks, wcoeff, col_40ps/D 9 iterations with no decrease in chi square fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={-8.7468,385.02,0.23171,0.54789,-0.97225,97.193,-0.28557,0.16178} V_chisq= 7.48356e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={1.12e+12,9.73e+14,2.84e+11,1.35e+08,6.57e+10,2.65e+14,1.88e+11,1.3e+06} Coefficient values one standard deviation K0 =-8.7468 1.12e+012 K1 =385.02 9.73e+014 K2 =0.23171 2.84e+011 K3 =0.54789 1.35e+008 K4 =-0.97225 6.57e+010 K5 =97.193 2.65e+014 K6 =-0.28557 1.88e+011 K7 =0.16178 1.3e+006 Edit/K=0 'fit_col_40ps';DelayUpdate Display/K=0 fit_col_40ps ** Notebook gave error: Expected name of a notebook window ** Notebook gave error: Expected name of a notebook window Display/K=0 col_40ps FuncFit FitTwoPeaks, wcoeff, col_40ps 40 iterations with no convergence y= FitTwoPeaks(wcoeff,x) wcoeff={1.4001,-258.17,0.3746,0.059558,2.4199,629.62,0.1861,0.13744} V_chisq= 331182;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={4.06e+06,1.72e+04,2.55e+07,3.77e+07,4.18e+06,7.43e+03,3.42e+06,2.67e+07} Coefficient values one standard deviation K0 =1.4001 4.06e+006 K1 =-258.17 1.72e+004 K2 =0.3746 2.55e+007 K3 =0.059558 3.77e+007 K4 =2.4199 4.18e+006 K5 =629.62 7.43e+003 K6 =0.1861 3.42e+006 K7 =0.13744 2.67e+007 AppendToGraph root:'1ps(2)':fit_col_40ps Display/K=0 fit_col_40ps ModifyGraph muloffset(fit_col_40ps)={0,5000000} ModifyGraph muloffset(fit_col_40ps)={0,50000} ModifyGraph muloffset(fit_col_40ps)={0,500000} Edit/K=0 'wcoeff';DelayUpdate make/N=8/D/O wcoeff // this is the coefficient wave wcoeff = {1.9,900,0.045,0.27,2.2,700,0.158,0.046} // provide initial guesses for coefficients ... read the manual to see how to do this FuncFit FitTwoPeaks, wcoeff, col_40ps /D 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.0253,23647,0.084584,0.37263,1.9207,-2751.2,0.032543,0.043754} V_chisq= 202906;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={4.63e+05,1.01e+03,5.2e+05,6.37e+07,8.74e+05,8.58e+03,1.54e+06,5.4e+08} Coefficient values one standard deviation K0 =2.0253 4.63e+005 K1 =23647 1.01e+003 K2 =0.084584 5.2e+005 K3 =0.37263 6.37e+007 K4 =1.9207 8.74e+005 K5 =-2751.2 8.58e+003 K6 =0.032543 1.54e+006 K7 =0.043754 5.4e+008 ModifyGraph rgb(fit_col_40ps#1)=(0,15872,65280) Display/K=0 col_40ps AppendToGraph root:'1ps(2)':fit_col_40ps Display/K=0 fit_col_40ps Edit/K=0 'wcoeff';DelayUpdate Display/K=0 col_40ps FuncFit/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1052,21636,0.075451,0.28272,1.9102,-3007.9,0.037936,0.039602} V_chisq= 80120.2;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={2.82e+05,826,2.19e+05,6.31e+07,7.28e+05,5.9e+03,1.48e+06,4.48e+08} Coefficient values one standard deviation K0 =2.1052 2.82e+005 K1 =21636 826 K2 =0.075451 2.19e+005 K3 =0.28272 6.31e+007 K4 =1.9102 7.28e+005 K5 =-3007.9 5.9e+003 K6 =0.037936 1.48e+006 K7 =0.039602 4.48e+008 wcoeff[0] = 1.92;wcoeff[1] = 900;wcoeff[2] = 0.045;wcoeff[4] = 2.2;wcoeff[6] = 0.158;wcoeff[7] = 0.046; FuncFit/H="10111001"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R Warning: These parameters may be linearly dependent: wcoeff[1],wcoeff[5] Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={1.92,9693.9,0.045,0.28272,2.2,-1577.1,0.0018775,0.046} V_chisq= 6.18999e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,1.53e+07,0,0,0,2.48e+06,58.2,0} Coefficient values one standard deviation K0 =1.92 0 K1 =9693.9 1.53e+007 K2 =0.045 0 K3 =0.28272 0 K4 =2.2 0 K5 =-1577.1 2.48e+006 K6 =0.0018775 58.2 K7 =0.046 0 SetAxis/A FuncFit/H="00000001"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1465,9321.1,0.092286,0.25778,2.1682,-1640.7,0.047761,0.046} V_chisq= 96270;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={2.39e+06,1.14e+03,3.43e+06,4.1e+07,2.08e+06,6.41e+03,2.28e+06,1.3e-75} Coefficient values one standard deviation K0 =2.1465 2.39e+006 K1 =9321.1 1.14e+003 K2 =0.092286 3.43e+006 K3 =0.25778 4.1e+007 K4 =2.1682 2.08e+006 K5 =-1640.7 6.41e+003 K6 =0.047761 2.28e+006 K7 =0.046 1.3e-075 wcoeff[0] = 2.10;wcoeff[1] = 8000; FuncFit/H="11000001"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1,8000,0.086105,0.22244,2.015,-1619.2,0.098459,0.046} V_chisq= 96462.8;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,0,0.00288,0.0335,0.0918,239,0.0371,0} Coefficient values one standard deviation K0 =2.1 0 K1 =8000 0 K2 =0.086105 0.00288 K3 =0.22244 0.0335 K4 =2.015 0.0918 K5 =-1619.2 239 K6 =0.098459 0.0371 K7 =0.046 0 wcoeff[0] = 1.9; FuncFit/H="11000001"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={1.9,8000,0.058937,0.25965,1.468,-1365.6,0.17409,0.046} V_chisq= 598054;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={1.29e+06,3.43e+07,3.69e+05,6.46e+03,2.91e+06,1.55e+04,5.52e+06,3.76e-155} Coefficient values one standard deviation K0 =1.9 1.29e+006 K1 =8000 3.43e+007 K2 =0.058937 3.69e+005 K3 =0.25965 6.46e+003 K4 =1.468 2.91e+006 K5 =-1365.6 1.55e+004 K6 =0.17409 5.52e+006 K7 =0.046 3.76e-155 FuncFit/H="10000001"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={1.9,8004.6,0.061267,0.25966,1.4283,-1364.8,0.18101,0.046} V_chisq= 569141;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,2.47e+08,0.0215,0.0338,0.264,4.37e+07,0.0532,0} Coefficient values one standard deviation K0 =1.9 0 K1 =8004.6 2.47e+008 K2 =0.061267 0.0215 K3 =0.25966 0.0338 K4 =1.4283 0.264 K5 =-1364.8 4.37e+007 K6 =0.18101 0.0532 K7 =0.046 0 wcoeff[4] = 7500; wcoeff[4] = 2.2;wcoeff[5] = 7000; FuncFit/H="10111011"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R Warning: These parameters may be linearly dependent: wcoeff[1],wcoeff[5] Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={1.9,-15755,0.061267,0.25966,2.2,2791,0.18101,0.046} V_chisq= 6.94143e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,6.75e+03,0,0,0,1.2e+03,0,0} Coefficient values one standard deviation K0 =1.9 0 K1 =-15755 6.75e+003 K2 =0.061267 0 K3 =0.25966 0 K4 =2.2 0 K5 =2791 1.2e+003 K6 =0.18101 0 K7 =0.046 0 wcoeff[0] = 2.1;wcoeff[1] = 8000;wcoeff[5] = 7000; FuncFit/H="11111111"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 9 iterations with no decrease in chi square fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1,8000,0.061267,0.25966,2.2,7000,0.18101,0.046} V_chisq= 8.72945e+018;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={4.13e+91,0,0,0,0,0,0,0} Coefficient values one standard deviation K0 =2.1 4.13e+091 K1 =8000 0 K2 =0.061267 0 K3 =0.25966 0 K4 =2.2 0 K5 =7000 0 K6 =0.18101 0 K7 =0.046 0 FuncFit/H="10000000"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 9 iterations with no decrease in chi square fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1,-15437,0.074957,0.21514,1.6133,3127.4,0.18258,0.042602} V_chisq= 1.9816e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,5.62e+08,0.052,0.0693,0.596,1.11e+08,0.286,0.108} Coefficient values one standard deviation K0 =2.1 0 K1 =-15437 5.62e+008 K2 =0.074957 0.052 K3 =0.21514 0.0693 K4 =1.6133 0.596 K5 =3127.4 1.11e+008 K6 =0.18258 0.286 K7 =0.042602 0.108 FuncFit/H="10000000"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1,-16011,0.080928,0.21622,1.2301,3016.5,0.26257,0.039988} V_chisq= 123375;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={558,3.63e+06,4.18e+07,2.22e+06,3.01e+03,1.46e+07,2.69e+08,2.26e-153} Coefficient values one standard deviation K0 =2.1 558 K1 =-16011 3.63e+006 K2 =0.080928 4.18e+007 K3 =0.21622 2.22e+006 K4 =1.2301 3.01e+003 K5 =3016.5 1.46e+007 K6 =0.26257 2.69e+008 K7 =0.039988 2.26e-153 FuncFit/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1514,-16784,0.079948,0.19221,1.0541,2879.4,0.2645,0.032449} V_chisq= 49811.8;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={2.29e+06,391,3.89e+06,3.45e+07,2.05e+06,2.31e+03,1.67e+07,2.67e+08} Coefficient values one standard deviation K0 =2.1514 2.29e+006 K1 =-16784 391 K2 =0.079948 3.89e+006 K3 =0.19221 3.45e+007 K4 =1.0541 2.05e+006 K5 =2879.4 2.31e+003 K6 =0.2645 1.67e+007 K7 =0.032449 2.67e+008 make/N=8/D/O wcoeff // this is the coefficient wave wcoeff = {2.10,16000,0.08,0.24,2.3,2800,0.2645,0.035} // provide initial guesses for coefficients ... read the manual to see how to do this FuncFit FitTwoPeaks, wcoeff, col_40ps /D 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.2082,-3429.2,0.09973,0.30856,1.7857,393.44,0.27625,0.035401} V_chisq= 3.42914e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={4.89e+06,3.77e+10,1.5e+07,4.19e+14,4.82e+06,3.28e+11,3.81e+07,3.65e+15} Coefficient values one standard deviation K0 =2.2082 4.89e+006 K1 =-3429.2 3.77e+010 K2 =0.09973 1.5e+007 K3 =0.30856 4.19e+014 K4 =1.7857 4.82e+006 K5 =393.44 3.28e+011 K6 =0.27625 3.81e+007 K7 =0.035401 3.65e+015 SetAxis/A SetAxis/A FuncFit/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.6645,-3429.2,0.15045,0.30856,1.8485,393.44,0.2842,0.035401} V_chisq= 583280;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={9.91e+06,1.05e+09,3.32e+07,1.17e+13,9.78e+06,9.15e+09,7.85e+07,1.02e+14} Coefficient values one standard deviation K0 =2.6645 9.91e+006 K1 =-3429.2 1.05e+009 K2 =0.15045 3.32e+007 K3 =0.30856 1.17e+013 K4 =1.8485 9.78e+006 K5 =393.44 9.15e+009 K6 =0.2842 7.85e+007 K7 =0.035401 1.02e+014 FuncFit/X=1/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.8091,-3429.2,0.16744,0.30856,1.8636,393.44,0.28608,0.035401} V_chisq= 428370;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={8.62e+06,1.78e+08,3.2e+07,1.98e+12,8.53e+06,1.55e+09,6.89e+07,1.73e+13} Coefficient values one standard deviation K0 =2.8091 8.62e+006 K1 =-3429.2 1.78e+008 K2 =0.16744 3.2e+007 K3 =0.30856 1.98e+012 K4 =1.8636 8.53e+006 K5 =393.44 1.55e+009 K6 =0.28608 6.89e+007 K7 =0.035401 1.73e+013 FuncFit/X=1/NTHR=0/TBOX=792 FitTwoPeaks W_coef col_40ps /D /R Fit converged properly fit_col_40ps= FitTwoPeaks(W_coef,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(W_coef,x) W_coef={1.9284,223.97,0.005504,0.73589} V_chisq= 1.70326e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={141,3.17e+04,475,0.0877} Coefficient values one standard deviation K0 =1.9284 141 K1 =223.97 3.17e+004 K2 =0.005504 475 K3 =0.73589 0.0877 FuncFit/X=1/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={3.0155,-3429.2,0.18957,0.30856,1.8853,393.44,0.28875,0.035401} V_chisq= 342976;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={7.16e+06,1.07e+07,3.06e+07,1.19e+11,7.1e+06,9.31e+07,5.8e+07,1.04e+12} Coefficient values one standard deviation K0 =3.0155 7.16e+006 K1 =-3429.2 1.07e+007 K2 =0.18957 3.06e+007 K3 =0.30856 1.19e+011 K4 =1.8853 7.1e+006 K5 =393.44 9.31e+007 K6 =0.28875 5.8e+007 K7 =0.035401 1.04e+012 wcoeff[0] = 2.15;wcoeff[1] = 16784;wcoeff[2] = 0.0799;wcoeff[3] = 0.192;wcoeff[4] = 1.054;wcoeff[5] = 2880;wcoeff[6] = 0.2645; wcoeff[7] = 0.0324; FuncFit/X=1/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D /R Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) Res_col_40ps= col_40ps[p] - FitTwoPeaks(wcoeff,x) wcoeff={2.1485,-13.777,0.075815,0.18932,1.2249,45.404,0.23246,0.029978} V_chisq= 46644.1;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00918,NaN,0.00327,0.0138,0.212,NaN,0.0297,0.00168} Coefficient values one standard deviation K0 =2.1485 0.00918 K1 =-13.777 -1.#J K2 =0.075815 0.00327 K3 =0.18932 0.0138 K4 =1.2249 0.212 K5 =45.404 -1.#J K6 =0.23246 0.0297 K7 =0.029978 0.00168 wcoeff[1] = 13.77708107758; FuncFit/NTHR=0/TBOX=984 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.1487,0.21688,0.075897,0.189,1.227,43.241,0.23228,0.029994} V_chisq= 46631.2;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00942,2.1e+05,0.00336,0.014,0.212,3.33e+04,0.0302,0.00184} Coefficient values one standard deviation K0 =2.1487 0.00942 K1 =0.21688 2.1e+005 K2 =0.075897 0.00336 K3 =0.189 0.014 K4 =1.227 0.212 K5 =43.241 3.33e+004 K6 =0.23228 0.0302 K7 =0.029994 0.00184 RemoveFromGraph fit_col_40ps#1 ShowInfo wcoeff[0] = 2.2487384014818; FuncFit/NTHR=0/TBOX=984 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.1502,-59.928,0.076311,0.18702,1.2562,53.226,0.22894,0.030069} V_chisq= 46595.2;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.0097,2.68e+03,0.00327,0.0135,0.18,430,0.0263,0.00172} Coefficient values one standard deviation K0 =2.1502 0.0097 K1 =-59.928 2.68e+003 K2 =0.076311 0.00327 K3 =0.18702 0.0135 K4 =1.2562 0.18 K5 =53.226 430 K6 =0.22894 0.0263 K7 =0.030069 0.00172 wcoeff[0] = 2.2502016333308;wcoeff[4] = 1.9562402058416; FuncFit/H="10001000"/NTHR=0/TBOX=984 FitTwoPeaks wcoeff col_40ps /D 9 iterations with no decrease in chi square fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.2502,-193.55,0.076799,0.18765,1.9562,31.537,0.097246,0.030394} V_chisq= 7.42048e+006;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,5.04e+09,47.2,29.2,0,8.17e+08,21.6,13.6} Coefficient values one standard deviation K0 =2.2502 0 K1 =-193.55 5.04e+009 K2 =0.076799 47.2 K3 =0.18765 29.2 K4 =1.9562 0 K5 =31.537 8.17e+008 K6 =0.097246 21.6 K7 =0.030394 13.6 FuncFit/NTHR=0/TBOX=984 FitTwoPeaks wcoeff col_40ps /D 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.3102,-227.3,0.59181,0.25622,1.6569,27.421,0.10291,0.029681} V_chisq= 192771;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={6.53e+05,3.76e+04,1.7e+06,2.84e+07,9.55e+05,3.28e+05,6.15e+06,2.87e+08} Coefficient values one standard deviation K0 =2.3102 6.53e+005 K1 =-227.3 3.76e+004 K2 =0.59181 1.7e+006 K3 =0.25622 2.84e+007 K4 =1.6569 9.55e+005 K5 =27.421 3.28e+005 K6 =0.10291 6.15e+006 K7 =0.029681 2.87e+008 wcoeff[0] = 2.15102174746038;wcoeff[1] = 46;wcoeff[2] = 0.076;wcoeff[3] = 0.187;wcoeff[4] = 1.265;wcoeff[5] = 35.99;wcoeff[6] = 0.27; wcoeff[7] = 0.0299; FuncFit/NTHR=0/TBOX=984 FitTwoPeaks wcoeff col_40ps /D 40 iterations with no convergence fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.1583,402.21,0.094431,0.19515,1.117,-30.945,0.29427,0.041801} V_chisq= 87109;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={4.31e+06,690,7.06e+06,7.62e+05,3.96e+06,3.71e+03,3.17e+07,1.39e+08} Coefficient values one standard deviation K0 =2.1583 4.31e+006 K1 =402.21 690 K2 =0.094431 7.06e+006 K3 =0.19515 7.62e+005 K4 =1.117 3.96e+006 K5 =-30.945 3.71e+003 K6 =0.29427 3.17e+007 K7 =0.041801 1.39e+008 wcoeff[1] = 46.20718373201;wcoeff[2] = 0.0764431050994561;wcoeff[3] = 0.187;wcoeff[4] = 1.265;wcoeff[5] = 36;wcoeff[6] = 0.227; wcoeff[7] = 0.0299; FuncFit/NTHR=0/TBOX=984 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.1503,47.792,0.076229,0.18649,1.269,35.854,0.22698,0.029998} V_chisq= 46582.9;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00976,8.84e+05,0.00338,0.0132,0.168,1.42e+05,0.0249,0.00171} Coefficient values one standard deviation K0 =2.1503 0.00976 K1 =47.792 8.84e+005 K2 =0.076229 0.00338 K3 =0.18649 0.0132 K4 =1.269 0.168 K5 =35.854 1.42e+005 K6 =0.22698 0.0249 K7 =0.029998 0.00171 FuncFit/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.15,47.793,0.076148,0.18671,1.2687,35.822,0.22692,0.029978} V_chisq= 46581.1;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00962,1.02e+06,0.0033,0.0133,0.169,1.64e+05,0.025,0.00169} Coefficient values one standard deviation K0 =2.15 0.00962 K1 =47.793 1.02e+006 K2 =0.076148 0.0033 K3 =0.18671 0.0133 K4 =1.2687 0.169 K5 =35.822 1.64e+005 K6 =0.22692 0.025 K7 =0.029978 0.00169 wcoeff[1] = 800; FuncFit/H="10001000"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.15,424.46,0.07612,0.18668,1.2687,-24.643,0.22685,0.02996} V_chisq= 46580.9;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,3.72e+06,0.00248,0.00834,0,5.97e+05,0.00613,0.00154} Coefficient values one standard deviation K0 =2.15 0 K1 =424.46 3.72e+006 K2 =0.07612 0.00248 K3 =0.18668 0.00834 K4 =1.2687 0 K5 =-24.643 5.97e+005 K6 =0.22685 0.00613 K7 =0.02996 0.00154 wcoeff[1] = 800.1717934; FuncFit/H="11001000"/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.15,800.17,0.076117,0.18666,1.2687,-84.942,0.22683,0.029956} V_chisq= 46580.9;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0,0,0.00245,0.00804,0,5.53,0.006,0.00151} Coefficient values one standard deviation K0 =2.15 0 K1 =800.17 0 K2 =0.076117 0.00245 K3 =0.18666 0.00804 K4 =1.2687 0 K5 =-84.942 5.53 K6 =0.22683 0.006 K7 =0.029956 0.00151 FuncFit/NTHR=0/TBOX=792 FitTwoPeaks wcoeff col_40ps /D Fit converged properly fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.1499,800.41,0.076092,0.18679,1.2686,-84.904,0.22683,0.029956} V_chisq= 46580.6;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00935,7.78e+06,0.00382,0.0132,0.169,1.25e+06,0.0258,0.00203} Coefficient values one standard deviation K0 =2.1499 0.00935 K1 =800.41 7.78e+006 K2 =0.076092 0.00382 K3 =0.18679 0.0132 K4 =1.2686 0.169 K5 =-84.904 1.25e+006 K6 =0.22683 0.0258 K7 =0.029956 0.00203 ! 100fs(1)^v!0%aD=V_Flagp<0<0#a\tP^^f340%a).{Gz???= ףp=?@@7@&1;@V-7@@n[=@pt@@x&B@Gzh@Q$@Q^@(\5p@zGa@Q@(\@zu@hfff&@@VN@Pn~@9v>y@(\u@bw@S㥛@t@(\B6p@j@zGc@Xd;O\@K7A*U@X9vM@@5^I,C@Q7@`|?(@L7A @P +¿@I  A`@$ $.v+ज़ @* 1J+'l,ףp=J&@-_&rh}.@C40@ /$)@@n@M&$e/P ףp]@Q@L/@43333@p= W@@Qr@ffff&D@Q2@(@̡Es@ |@Vw@(\s@Gzp@Ri@$Cf@/$k`@4^I Y@Q^R@ rhAI@+B@Gz 9@K*@K7"@@(@@5^I@Mb0@d;O |?5~`( @Wd;Om&1 rh sD@ףp=D@(1ND@p/D@KA@v@@Gzf@Gz@r@GzT@*\uݏ@̻@(\@(\O@\c@Q@k@T㥛DY@M{@Mbw@X9s@!rh)p@ljk@QKe@no`@Zd;UZ@xS@ V-N@QDJ@p9A@0Z@@X-oB@SM:@E3@@lY1@`ffff6@Mbx4@M5@MbX4@P㥛4@PlQ0@K7A @E@V.@K7!@ ף3@Qċ@zG"@zG@Q޲@2333@`"@(\B~@jtM{@ףp= v@s@V-Co@i@p= d@`@SAZ@QS@ ScO@X㥛H@8^I @@`|?;@~jtCA@l9@?5^q:@jt7@Ss5@p= 3@ Z6@zGI3@p|?7@&1t5@ʡE@@ ~jPC@zGE@|?5^E@@`"KG@EM@zGo@hffff@GẐ@Q@Q@p= ׈@̊@\W@ Qx@ ףpp@6A`%€@Zd}@y@(\ v@Qq@~jtl@MbXyh@h|?b@Q\@|?5V@x/Q@XncM@htK@S{D@XI A@CL=@p= ׫>@@v=@".8@Cl4@(8@4@(\R/@ ~j2@&13@`X9,G@A`fG@(\#I@J@ClGO@pt"R@Qoo@,\J@@@GzT@p= W@Gz{@@ ףp@(\]@Rd@~j@|?5}@ףp=y@Gz;v@(܅r@b")n@< ףpg@J +a@zG]@䥛 >V@ QNR@X9FL@Cl7D@@O>@Gz:@+n<@Pnk6@I +.@0ZT1@p&10@P +1@7@x4@@v2@PԀ1@V-7@-?@p= קB@ED@@`"{F@(\.N@m@ ףp=@Hz=@Q^@ffff|@r= ף7@Gz@\虇@QEi@R@`"W@J +|@ףp=w@n6t@rhp@RIk@,e@ r-a@$~jZ@I +T@X9J@"~C@A`ЎB@ r8@p/%3@"~ 3@R;,@ M2.@ \&@A`!@Mb(@x&'@ʡ%@a)@@Zd@xjtH@ʡEI@L@@ +K@@l9M@+7S@(\p@(\“@@@zG!?@Q@FzЍ@QN@֣p=V@QEi@HznĂ@V-:@|?r}@㥛Ġ0y@S㥛Ġv@X9>r@x&m@=h@Zd;Ha@S]@x&1VZ@~jT@V-BP@ht@N@X-E@pE@p= ףC@Q@@K7i:@0vO:@rh9@СE7@`X9;@Qs8@|?57@@O6@ 1B@`X9 D@ptB@0^I ^B@+َA@t"G@p= ׍i@܄@z@< ף͏@֣p=@*\@zGᮈ@QE͆@Hzny@zGǂ@t̀@ 0}@}?5^:y@QCv@d;O r@NbX9pn@8vi@Mb@|?5^ `@43333aY@d;O/S@jtsM@83333H@Zd;C@vB@A`"C@G.A@`y=@"~=@P<@`I 7@`"<@Cl;@"~J>@(\<@6@p5@K7)6@MbX:@ʡE?@0CH@(\k@zGY@ԣp=s@J@2333͍@Q@@Gz@Q޲@p= c'@!@ |@nx@Qet@+Yq@̬k@e@֣p= ף0@R@Gz$@"~}@>5^z@ +v@A`"r@Sm@Ctg@zGb@ʡEu\@T-U@+ZL@8vE@П/݄:@Pz0@uV? @%C@zw!`jt$ rh xF@$u Zd"&1+l'jtH-GzC@vF@83333WF@v[N@~j4P@x&1V@Pz n@Q@p= @z^@Q֎@֣p= V@ ףp=`@p= c@̌d@zG[@VmU@@`ТQ|@Y9x@!rht@$xq@v*l@e@Da@/$[@~jU@(\eQ@xH@8A`B@/$B@ @@]@@MbXA;@vB5@4@S㥛|4@(\2@K7i6@p 3@0C1@`I {,@Gz"E@@`"G@0\@K7A;@pffffn?@xClCA@ClN@СE+^@t= ףs@zG!@R+T@(\5<@Q@Q3@zG@G:J@z@< ף0.@xi@z{@Ow@%Cks@ʡo@> ףpj@&1e@4^I `@x&1&X@(\R@ rI@V-B@V@@P7A`4@@d;O,@ $/@|?5#@ C< @|?5^@zG@nZ @@-?$@I +@@C @Mbx@V<@hffffA@0rhU?@SB@`I D@V-N@pffffo@@ ףpc@G@(\5@Q@֣p= @(\*@g@YS@ ףp"@0ڂ@Sct}@ʡy@cX9u@S%q@-l@C|f@ rb@/ݾ_@@ ףpV@/LR@83333K@pH@X㥛B@On:@l5@ @/@@3333;1@~jt2@&12@(\1@C2@ʡ%@ ʡ+@@^I (@ʡU.@p= ף8@= ף8@QC8@-8@Mb,D@@ ףpwl@Ti@2333sV@و@^@Z(@> ףp@(@(\OJ@Y@!@z-{@= ףew@{Gts@$p@f;Oi@ +d@p= ףq`@|?5^Y@OnR@ʡJ@PzD@Pz_;@"~+@I +*@= ף!@(\@K7 ?Zd;?Mbp@T㥛d@Q@~j@ʡ >@أp= +@@@Ԡ8@x ;@Q5@ज़ B@GzRF@x/G@I +cK@03333SP@V-xX@Qrs@@ ףp@ffff!@(\ې@> ףy@Q2@\(@Qچ@YC@QE@O~@\z@K7fv@lss@(\uWq@Q l@SCf@T㥛b@~jt%\@$ V@ rP@H`"M@0BK@ ~jB@85^I@@@SC?@Q7@ V-Z7@p= 3@0^2@+6@S㥛L<@`;O_5@ʡE3@jt0@ rh<@PnB@OnA@v{E@Q5K@HlU@ ףp=Ks@׈@(\6@GzTߐ@> ףK@(\l@L@QEх@(I@p= ԁ@ʡE6@$jz@#~v@-ss@K7A5o@r= ףh@Zdc@ph|i\@x&sV@x&1Q@(~j\N@@A`H@@ ףpu=@p4@|?5^B2@T㥛*@K7a@ x&#@@bX9@x@/D@C+@M@Cl@Mb@`ffff6$@ /$3@VU3@A`6@|?5^*D@p= M@@ ףp:q@@ ףp@@Q@ffff"@Q_@Gz.@@4333@ ףp@Sc}@Q*z@e;O v@~jtor@x&1l@rh|f@Ɨb@[@I +1U@$?N@">D@(\•@@Zd;2@l@~jtQ?Qx6A`e9vzGV&1?Cl? ףp= @h|S㥛l1@@O67@h|'?@SQ@@&1LD@tR@Gzs@(\}@GzTΐ@4333@r= #@Q@@R@p= /@ ףp@ ףp@4^I|@Lkx@W-u@p= ׅq@8A`Qk@nUe@(\Ra@QZY@GzR@(\I@ Q>D@Mbp<@P7A`=2@ 1z @|?5^@V-@wo@(\ClM? @'1\@K7A@/$?V(\YA@(\#F@nI@rhL@|?5V@0$pa@Qw@Qq@Hz@< ףؑ@p= U@֣p= @fffff@Qx؆@G:@zG!@x&@ʡE6{@Kcw@K7gt@ rhp@ʡEj@ҹf@ ria@K7{]@0ZT@ rhP@H5^IN@Xd;OI@QE@@`"@@8OA@Q?@`㥛(>@ʡ>@(\<@jt\@@ QF>@n>@/d?@/9@MbXD@/$D@F@hh|I@K7AS@$C`@Gsx@(\@Q{@2333s3@r= #@(\@h@Ry@ Qx@\@@K7A(8@@n4@0v/2@ʡEk5@ rh52@`"ۡ4@(\-@ʡE1@&1+@ ?:@v<@n>@Q@@vM@?5^Z@zGt@,\@Hzϑ@zG!@Q^@Gz@zG@ffff&@ ףp@2333Q@&1,@Gz@ ףpw@Mt@wbp@Gzj@$e@I +`@̡EY@QfS@0L@0\(G@zGmD@?@v4@ rh-8@&13@p(1@&1l2@`= ף (@S.@|?5n(@v*@+@)\/@Zd;/-@t4@x&;@SC@"~ L@83333X@ Q'v@83333ъ@Hz"@ @G@> ףp܋@zG@Hzn@ Qx^@\@Zd;~@ʡE6z@;Ov@S㥛r@|?5n@-g@T㥛Ĩa@|?5H\@X9ȈT@hffff4Q@p= דH@ʡE&C@(\ A@02@ rx @@v%@Mbh$@] @rh@ʡES@x&q @ҍ@?Pn?Zd;P(5@ףp=2>@P +>>@MbX5D@`"yL@K7Y@Gzct@(\@ @Q@Qۍ@23333@zGf@G:@hfff&@QEF@|?5*}@Vx@ObXu@A`q@Sn@xh@K7b@nj\@ʡEU@|?5P@X9vK@-'E@(C@@Gz4@ʡE;0@@5^I2@p= 3)@p= C@S@T㥛@VM@1z@Vm@?5^@xV?xG@@(\3D@`d;O1G@`ffffN@PY@Mbe@̝|@83333@z;@GzT̒@G@QI@p= ףp@(\µ@Y@(@Zd;_V@+Y{@6w@i|?r@Q-p@:vGj@Mbd@Gz^@Hz[@IU@\(P@01J@/$mH@+<@Q6@Q7@Pn 5@E)@(\o.@|?560@S㥫.@Cl5@Zd4@+4@n1@P"0@M:@Qy@@|?5^@@@ ףpK@Hl/\@zGw@(\@(\5ۑ@2333sI@ ףp}@R>@zG@QxX@(\7@G:́@Zd~@&1,z@~j1w@Onks@ʡPp@Onk@8A`e@x&1 `@< ףpW@K7R@~jJ@8^I E@83333B@V]<@PI 4@Q2@On"/@@V-B'@@"^@SE@@3333@n?Cl43333? CC@E@`d;OF@Zd7G@p= ףK@0X@Gzu@(\@p= Ǒ@Gא@(\B@(\@> ףp;@ ףp@*\µ@Hzn@w}@V-6y@a"[\v@MbXs@Clm@~jti@Rc@ht^@P+Y@~j:U@Q@ rhN@-#H@xGB@MA@xGz@@On7@Q 6@`|?E2@`"3@@ ףp2@+2@&1D1@jt1@x&Y6@Gz5@ Zd;7=@(~jPA@"B@-J@83333^@ Qx@أp= @2333s@(?@Rk@Fz@RO@z@4333܃@\h@S%*}@~y@K +u@U-q@$m@6A`h@K7ATd@ʡ?]@VV@R@x/L@E@Zd;@@p2@"~4@PQ3@T㥛d@Mb?X96@Clg?)\@&1L@Mb0@V@K7@Q_K@`X9lN@|&1VP@hHT@rh[@ ףp@@p= @ffff&x@r= cރ@2333@"y}@:Ox@ʡfu@ʡr@p= 0l@nf@~jta@dffff_@Xd;OgW@ʡEQ@`I I@MbXF@@O=@MbXI4@`?5^%@`a(@@5^I&@|?5 @K7@x @Mb?'1\@%?Zd;?&1?/ݨN@PnO@v@x@@P +@@A`@@ rB@@ ףp1E@ףp=FL@hffffS@X9va@Gzy@Lz@p= -@Hz@֣p=@Z(@(\@ ףp @Qފ@QE@~@4z@z_u@MbX9q@MOn@ffffffh@rh d@`"s^@,AZ@SaV@th|S@+M@8^I H@QC@K7ATA@Zd@@t8@ -3@@l5@ rh)6@ S1@pZ3@Mb ,@,@ +@QLH@ClK@vO@ 18R@(\"Z@$Cf@@r= ףؐ@Q@@V@(\t@Qk @*\@֣p=@p= @< ף0@~jV@֣p=_}@Gzz@K7v@Q)r@Qn@th@tc@nZ^@x/;Y@(\T@ʡE#P@0ZG@Xd;OUA@Mb <@t<@@Z,5@P5^I48@ C{5@GzF9@MJ7@K?:@MbXA8@@`"8@Cl6@(\@@ rF@H`"M@(Q@0Z|[@MbXm@hfff @Q@Qʼn@(\5*@(\ϩ@Q͔@Qʑ@(\K@ Qxh@ ףp@~jt!@7A`%@G2@Cly@v/u@A`"Wr@\d;Ol@ng@RRc@Cl^@䥛 (W@8^I bR@8^I O@MbG@ 1A@Zd;<@`d;O52@R&@y/@ED(@K7Q)@`X9X&@C&@S@PbX9?ClH@/N@VQ@h|? X@~jtb@ ZPs@t= #ߌ@zG@\H@Q>@(\՞@= ףv@GzJ@Qe@Q@,@V-$@"9e@z@|?5^l@E}@y&1~y@p= ףPu@Fr@o@Ci@v;d@(\`@,琉]@p= ׏V@MbT@K7ApQ@xL@S㥯F@QD@-@@ Q<@nh9@v75@@^I 7@T㥛/@{GAp=  $ " Se/Pnr@`zC@QXD@Q I@QF@GzR@N@ףp=C@KF@ʡEB@`ffffrH@Уp= B@v=@̔=@MbX9:@S㥛6@Q%7@0Z2@/$.3@x&1X/@`"۩!@S$@@x&1@Mb@VˡEs ףp= @-OX9A`HzK7@@9v@ r(G?&1|'1- Q.`ʹ2(\)L7A@Hz>4@\h2@R *@Q9@ \@@Qп(\?6^IL @㥛0"Ԙh|Kज़ "K7A % V-"$x&1~jt- rHV-)\K7A`'"~$v(h|o-= ף, ףp) Z//$f.51(\4MbX1Gz0Q/@ ףp+@㥛0+@\.@ Gz/@Cl.@x/@x(@QG*()I9zG:Q#@)\@ʡ B!@@?5^!@@X9 @@㥛0!@ ףp=$@C@|?5^J @ज़ "@"~'@@ ףp+@t&+@@l&@ ~j|$@t'@/T%@@l (@S#@@7A`%@K7&@@/@$#.@np,@@ly/@ rh}*@`(,(@/$#@@%@K7 ?p= ѿ@1@li @@-!)\E+I3@Q@)\U$(\&@Q?@ףp= ~j4@hԿH`"տZd;o@K7Y @@^I @Gz@A@(\@l@5^IL@w?CK @/$@L@η @x?E%@@A`P!@%@ktX @ +@@$@~j@@X9h@MbX @jtX%@Mb $@0ܿGz?ηzg!zg @Q;@ffff$@,' )\5)Gz/@xV?!@A`@&V"ʡE^I V-Clv!`X98#`㥛Đ!ClK7 Gz{G!Zd;ObX9@C ffff& 5^I9v"y̡E迀7A` @ffff$"&aYսY)col_0ps0%a){Gz????= ףp=?ClH@/N@VQ@h|? X@~jtb@ ZPs@t= #ߌ@zG@\H@Q>@(\՞@= ףv@GzJ@Qe@Q@,@V-$@"9e@z@|?5^l@E}@y&1~y@p= ףPu@Fr@o@Ci@v;d@(\`@,琉]@p= ׏V@MbT@K7ApQ@xL@S㥯F@QD@-@@ Q<@nh9@v75@@^I 7@T㥛/@ 1ps(2))^v!%aD=V_FlagV_sigat9n@V_sigbXQz9X@V_chisqTž@V_q?V_RabخKkV_Pr4ܿV_r2x9 ?V_numNaNsV_numINFsV_npntsD@V_nterms @V_nheldV_startRowV_endRowD@V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkS_nameGraph4p<O0<&a\ՀP^^f35%a).{Gz???= ףp=?D@/ rpC@ClE@htE@x&mJ@jtD@033333D@03333!h@(@(\u@أp= v@(\@0333@(\@$@nI@Sc!@S#@8v@/@C{@/ݤv@.rr@ ףp=j@lc@rh^@WV@S9M@QH@VD@~jB@@3333K<@x&9<@ QJ@@ʡu>@/5@PbX99@T㥛8@ rH9@K7A5@ r4@ज़ 4@ + @@rh@p= @*~j@`㥛4@c@dffff~@p= W?@zGr@Q@7@(\@Cl@O.@@ rh9@㥛`ń@8v@4333s@Zd;;{@tv@"~jq@Si@vb@MbX@MP@~jC@@bX96@(\o@[@? пC @-x&1?5^Y'/ݤ@l zG!+C On0@03@"~2@Mb07@ \<@СEI@Qk@֣p=y@zǚ@zG6@Hz@Gzs@@x/@n@ rhW@ r@MbXo@@Ā@)|@p= WKx@2Zs@^(k@֣p= c@ܣp= a\@ rU@vL@ ~jtC@MbX>@@ +8@@~j,.@Cl&@@A`@"@Gz(@d;O @"Y@~j @@bX94@$HzzG?E0@V1@S㥳5@S;@ /$<@ClA@Q d@zGao@< ףʊ@Q@Q:@xGa@Q@:v@(@K7AX1@x6@ /@@5^I;@8 ףpCh@(@< ף @Hz@(\؉@G͉@zG։@MbX @x&1-@|?5^:ه@}?5^x@.$@SR@B`Т{@`"[v@&18q@K7i@,c@SMX@P㥛ĮQ@(1G@CTC@`;O;@ r6@Cl#@`a'@)\U@x#@/ݤ @ rh"@OnB%@@l(@?5^Y"@ rh$@Cl;@ज़ 3x&1@ +f(tjtp= 3@Hzb@L@PkG@!@(\¤@я@Q@x/&@@`|?U:@&1\C@Qf@Fz.v@4333.@(\V@\(@p= #8@@/C@@ʡD@|?5^:?@㥛`}@NbX9@|?u.@/ݤ{@ ףpu@2Zq@n k@43333b@Ky[@4^I T@xGO@ClB@E <@x&0@A`В(@GzT@㥛@)\µ@ r@Mbp@QE@jtS Q޿n?Q6@`I O@@0$A@zG-C@ Gz?@@A`J@Qh@Fz.@Q@hffff@أp= @p= W@< ףp݌@lI@ʡV@|?5^:@|?5k@Cl@R@(\E}@w@2Zr@K7n@+f@Gz`@QZ@@@OB@&1J@أp= =j@*@< ף\@ Q@p= ףnj@_@Qx@/@xR@^I @_I BZ@Cl%@VV@xy@xzu@bX9q@ʡE k@(\d@0Ι]@,ZT@|?5^~O@"~rF@Xd;OIB@X"A@|?5^29@pX93@0Z2@0g2@ Zd;ߏ1@V-@`|?,@Ƌ'@ @9v@+Y@Cl#SPbX9ȿ@v @Zd;_@@O=@(\e@G@z@Qf@p= @z@p= ף։@bX9@0R@@5^M@}?5^@NbX9@Sg@8A`e{@zv@Gzq@*h@V-a@nW@@lO@PC@0O7@`"۩&@Vm/$#"~& /$) 3333.`ffff4Mb 3V-6 r7P +6I +5`")8Q9@ S<@ph|7=@OnE@0\B@&1H@أp= Un@n= #@(\u@S@ףp=@(ܚ@(\@/$@Z$ň@S@ r&@Mb @@&C|@(1v@(\¡r@^(m@ve@|?5^a@PGY@ +KR@nK@ nE@xjtA@S>@СE:@ r<@x&4@ʡE5@p2@~j,9@Pn6@`X9+@ w,@jt3@ףp=8@/>@S㥓=@/$}B@@`"[?@ V-A@Qg@(\@Hz.#@@zGt@(\B͋@Qd@l_@xj@rhmh@ rz@$@MbQ@ 0C{@jtv@Zd5r@N7A`l@MbXd@ܣp= A]@~jU@PbX9HO@Hz_G@0^I ^@@`;@ h3@x&2@?5^3@`9vn1@@$1@zGY2@`t4$@K72@@ ףp5@ףp=3@,@Mb~j@p= @ph|w9@@zWB@P㥛O@8 ףpm@Nk@Pk#@43333@Q@Q8t@Q@Dl @xD@ 0B@ 5@DlG@Q85@tz@8A`eRv@K7r@Zd;ak@zG*d@ܣp= \@8vR@襛 J@@@@l4@{#@fffff/D@ ףp} $ ףp"y(\-g Pn 0 ʡ:@ ʡm;@ ~jx@@X9vjD@&1LJ@nV@dffffq@2333@Q5@zG,@@(\̍@2@/$݊@PnH@rh@!rh$@.$@.p@n@|@Myv@Hzir@V-+k@|?5^d@̡Eg]@4A`U@|?5"M@nE@P-;@K7A1@+F1@zG+@ 2@03333#3@@v/@ SS%@Qe@@On*@rh'@-g,@zG'@`t:@ Zd;߃@@p= B@"~6D@`ffff6E@"~R@Qp@(\BԄ@(r@T봍@}@(@ ףp=@$F@O.r@rh@_I B@@X96@I k@V-z@Gyv@_q@.$#l@b"Re@Q^@zGoV@jtP@X9F@Zd;B@pG:@@^I 2@$ 2@Ko2@@A`0.@V0@C$2@jtP0@n+@ Zt(@*@ \H)@":@/$A@-D@`I I@ʡEN@ȡE-V@Gzmq@Fz.@Q@(@أp= @p= W_@Q@/$j@Zd@@7E@Mb:@A`R@> ף3~@@5^sx@ls@/$,o@Blh@^(b@/$Z@jtT@x&P@lMH@ 1E@Zd;;A@G^A@Cl9@-:@@A`5@8@jt:@+95@`d;O]+@S㥛-@v,@㥛 ?`"@ rh@vR3@A`B?@ 1M@xGk@h@|Ga4@(\)@Gz@u@(\@MbX@&1Ո@ +Ȇ@7@Cl籁@zǃ@Scz@Mb v@ʡEp@ h@jtea@x&X@Zd;MQ@MG@+i;@Cl%@`Q%@v@Gzt |?5^! ףp}%v%V.`X9H!|?5-~j+PbX9d2/$II@V-H@ȡEJ@4^I `P@$CP@X㥛ĈV@Qr@p= WP@Gzm@< ףpʏ@Q@G@zGЊ@Dl@Z$m@Sc߆@Sۏ@v@"9C@~?5^:{@T㥛Dw@n6s@~jtn@fffffg@2Zaa@zG\@QU@xQ@KJ@xL@PbX9F@- F@SE@(\@D@ rD@p= A@`(B@ rhMA@ r C@zG1C@8^I C@ClcO@ +R@S㥁T@S@pU@03333Y@ףp=Qr@ffffօ@4333f@Qԏ@PP@G)@23333@x/R@x@ 0n@I k@MbX@-/@ʡE6D}@X9x@Mbs@Mbo@xg@43333c@]@\(>X@@5^I0T@X94R@CHO@jtDL@A`VI@K7A|J@/F@01zF@nF@X9vG@tVF@P㥛4D@p= ףD@-D@K7?MbX?vJ!@ C{&@"~*"@k5@xGk@֣p=G@|Gax@Gz-@Gz@\O@zGἉ@Cl@Z$@ х@ +V@Q@"v}@FT/y@Dl{s@~jn@f;O9g@p;_@"V@ \L@أp= [A@p/8@x*@dX9忀nP#@zw Zd;)?5^)'@bX9t&(\#+i$`㥛 "`9v&@7!I +K7!Dl;@`")(@ C0@`8@$D@GzZl@p= W4@(\@hffff]@ףp=Ս@< ף̋@zG-@lO@Zd;5@|?@rh-Ђ@v/@#~@~@(\y@t@M.o@Fg@fffffa@hffff`X@x?5^P@H +C@X9Ȇ9@ʡE.0@|?5v1@K71)@" @?33333?Zd;l)Dl?'1L7A |?5Z@z@#~ @/$/@4@@ ףp7@+G@03333o@G@< ף@Ӎ@dffff%@ԣp=p@Q@M@Z$ @2@shރ@bX9@? ף}@ffff,z@Hu@+Xp@r= ףi@h|?b@GzZ@$\P@P7A`J@<=@0^I 1@p= /0@|?%#@l@Q?Ƌ@.?lGz@X9@Xףp=J`ffff.@@淪/@%4@Ko9@jthE@@ ףp O@8 ףpm@(\Bn@G: @GzǏ@< ףp@Pk9@Q @&C@8ч@ r&@5^IL}@l@;v>~@I Oz@:v>7u@V-q@(\;j@K7d@V]@ht"T@ףp=K@OnC@c6@PI 4@I +*@'@'@l!@l@M"@ʡ@@K7@`;O"@z@}?5^G%@@A`$@Gz6@Q8@03333F@o@2333@p= W@Qҍ@Q @@\(v@M5@ʡj@+Y΄@@@$}@Pncx@h|2s@ʡEn@^I g@.O`@v\U@XX9TN@X9:D@ʡ2@K7A@@hffff"Q& \H)"~j#V-#V-*E++پ/R.-`I  !Mb +?zGQ"@X9.@Mb<@(\l@Gz"@@zG@(\@dfff桉@23333@Mb@8S@rhm@㥛`k@ }@(\B{@Rw@vt@m@23333f@K7]@D5^I6U@KP@ґC@rhL:@@`"K'@t!@Cl?nK7A @n@5^I,x&Qp= Q,S* 1:$@ +3@P +7@P9v8@ʡA@SG@ʡEVR@Gzq@G@-@\(@Gzi@\@(\z@X9v@ʡN@|?5޽@rh-@Cl珁@7^I}@˽y@t@K7ANp@Gzh@B`"Hb@SZ@S{S@QL@ʡE>@zGy6@ʡE*@ON@MؿM"@@`"?Rk@7+x&1SU"- h|(\F@$gE@~jtI@(\dM@$I@ףp=T@Hzr@&\u@4333@p= ףَ@Q.@Hz.@Hzk@X9v߈@Zd;I@rhm@ @$C!@˝@ltz@xw@8A`s@~jtm@.$g@K7zb@x&1\@dX9ZW@4A`@8ZA@vvD@ G@(\K@PbX9dV@p= ׆r@ ףp@|GaZ@r@(\@< ף@(\E@Cl$@x椇@ r貅@S!@v@'1$}@I ky@Lt@|?5^p@nʫi@B`"d@.k`@Zd;ߥW@/$Q@$;J@D@"~6@@P5^I$=@K7q8@2@S7@&11@0Z4@|?51@`"۹6@0A`X5@ph|3@016@MbD@ QE@E@x/9I@Q5N@0NV@dffffr@(ܥ@Hz.@أp=А@< ףp@Gz@Q@/$*@Zd;@rhm@?5^@ҳ@L~@vz@vu@xr@Vl@J +g@&1a@ \@-W@P㥛N@8 ףp I@ rC@=@"f?@MbX=@K7A7@S8@p= 6@`9v8@0阮5@0^I 7@V-2@0@03333@@&1C@ ND@ȡEI@ज़ K@ȡE\@Gzs@$@p= @(@Gz@?@fffff>@M/@ʡ@wÅ@!rhѲ@/ݸ@+N}@E}y@4333u@E0q@zGj@xc@p= ׅ^@htW@(\"P@/$L@ ~jhG@~jB@0CC<@0\;@Pp;@M8@Clg5@&15@PbX9,0@"~J0@jt.@pV1@Clk1@H@(COL@MbL@GzDR@ףp= V@htL]@ԣp= >u@(\ @GzԘ@*\uf@Qv@z@2@0$V@x&1@+Y҅@+@/V@ +@V-:y@"yt@Cp@:v=l@ʡERe@V`@V-#Y@(1T@Q!R@ r4L@إ H@?5^E@ptE@ rhC@8A`B@t&D@ rhA@(CA@h|?U@@0$=@P-@@#<@`;Ow$@xn3@zG"@Mb?@QD@K7R@(\%s@֣p=@̌ː@(@@(\ @(\@MbX@&1Ն@⥛Ġ@㥛`O@ObX9~@&1,z@ ףpXw@jtr@L7A`m@ re@K7_@Gz`W@VQ@V-aJ@x&1PB@@l!8@ +F)@@3333@@C+@&1 @p= w%@A`"@} @ rH@@A`P@ʡEv @vo@ rh *@E<1@I +?5@ज़ :@0A`C@ ~jY@,u@Nk@أp=n@z@ Q{@\[@Gz"@Cl|@xІ@T㥛DĄ@@(\~@Clg\{@Zdw@C s@LbX9Do@V㥛2h@ta@V-/[@ज़ nU@QN@|?5^D@ʡ5@x9@S}2@@5^I2@p= -@)\U*@`-o,@ -W&@Q[#@@~j?|?5^@K7A@K7 @/$@ClW$@(@ r;@K7QU@(\t@ffffv@ ףp=@|G)@P@dfff拊@fffff@v4@Pn@ +@+@Onb}@Ox@`"["u@zGafq@Qk@ld@`"`@X㥛U@0vN@QOD@"n;@Ko2@`*0@Dl?`" ?9v @ԘV-\(@1:;O)\5GzD3@MbX6@ 128@ Zd;=@`d;OB@ER@QLs@GzP@@(\BP@Q@_@̉@v!@nC@J +d@|?5I@Q}@!rhy@M>v@Fmq@@`"Cl@"~jf@$4b@h;O\@A`HU@ȡEN@A`C@p= ףB@`ffff@@@A`6@p:8@`I c3@ 2@0Q>1@(\3@I +1@P +3@Q%@ F"@ʡE3@S2@`"!:@S㥛<@h|?D@P7A`uN@8^I r]@\(Ox@zGaى@ӑ@Q@(\@p= #@(\9@Dl@&1A@h|0@i|@I +x}@jty@4333u@Qp@Clj@vyf@na@+V@N@pF@ ~j@@n4@PX90@@Zd;!@G@V-?Zd;_ Cl\(῀ rh Zd;Cl+!K ET (@Zd6@0\5@Ɨ@@P-/K@@`"Y@< ףpu@(\@Qx@Rk@(\@Q@Gzև@&Cp@&1@^I l@~j<~@1Z,z@tZv@/ݤr@xn@lg@.杻b@Z@/$S@(SO@xJH@`;O:@Mb,@ .@L7A@E!@rh!@VM*@(\B)@X96 @?5^ @"?`(ȿX9v?L7A`/4@(\8@`";@pA@VE@ȡEU@Qs@Q@P@`@Q@Pky@zG@v@0@rhm@~jt~@gffffJy@x馡v@(\Gr@,李n@h@rh|c@R`@\9vX@C2R@"~M@nF@HbX9p@@p&19@Cl?1@x.1@ज़ H4@Cl/@I +@`7A`-@@5^I| @&1&@@Z@rh&@`d;O-)@ ~jA@w@@?E@ph|L@nbP@ph|\@p= ףw@Z>@z@@L@^@\Ê@Q?@Dlr@0@*NS@أp=|@+/y@ +u@I or@nIn@X9"i@Mbc@bX9M`@lSW@,$T@p= R@+&K@/$G@ZdD@rh8B@P7A`B@X㥛\B@ʡE=@`I  @@@5^I<@l9@`;O77@xq5@Cl2@PbX9D2@`"=@"~F@"JK@&1"S@(\]@H +n@p= #@efffj@zGA@GzTѡ@2333Q@Qƛ@[(@nJ>@-S@|?5!@i|Ԋ@Cl?@n @F@R9}@xx@Gt@/$Yq@z&1l@Xd;Oh@Zd;Ld@23333]`@Y@pVU@E*P@X9:N@ ^I@8^I JE@hX9xD@V-YB@ C=@ʡe=@E%6@A`B2@ Zd;+@A`jtSX9Zd;o$h|3Qk7i4@\Gp= #Lffff@(\<G:D+Hph|C@9v%Q)t'S㥓2 1J'`ffff.h|' rh"l!$Q&@jtwv鿀q(\ Ž K7 @^I  @@V-@vn?)\µ B`"L7A``= ף"@ /$ @!rhQ@Zd;@p?ʡE?p= W q= (GzTp= C6,3333S'= ף'Q1~jZd{(@@A`@X9ȶ@bX9t@w/8Oƿz?Q^@K7A @K7࿀n@ @@^I b@Se @@Ck@d;O@|?5ؿ{Ga@(\@@p= @(\?$@vfffff?ףp=xV$@@ +!K7꿀&@\Gz ףp@Gz?Qk7@/$@= ף/@A` @E(\ݿCl{E@rhm! η VcX94Zd; vx @sEףp=}?5^:tV|?5 9v o(\?n?p= #@/$-@`0@pV4@l,@K1@{Ga+@Q~ @z.@@\`@@\H@(\G@Q?@33333/@ 9@/$5@@O/@[)@G0@@^I R(@ X9%@/ݔ)@@O+@R @`㥛0'@@$@S@@@ffff&@MB@+9@@X9@nj@ @ʡ@O@@&@ʡ%@@Z@w?Q@y&1 @P1E-&12`I 1S*@ ףp}(Q@G :@33337p= Bffff5 ;I +G/)\'@SC-Q#4pʁ1 0E*`%MbX rhQ#@7A`# Gz @l @罹 /"(\bGz+V-2 ?5^IK7@@X9HSx&1A`.&aY7)col_40ps%a){Gz????ffffff?0 rpC@ClE@htE@x&mJ@jtD@033333D@03333!h@(@(\u@أp= v@(\@0333@(\@$@nI@Sc!@S#@8v@/@C{@/ݤv@.rr@ ףp=j@lc@rh^@WV@S9M@QH@VD@~jB@@3333K<@x&9<@ QJ@@ʡu>@/5@PbX99@T㥛8@ rH9@K7A5@ r4@ज़ 4@mY`"agkW_coef%a????1B?mk@`Zv?]r?>0&aպW_sigma%a????2'%?"g]Ak hDo?ŇY?sգ? 5 3A~Cg^? jo@/`? P&aոfit_col_40ps%asaw????ffffff?#a3*h7@\x-6@>yT4@,8'3@ON2@r8Q1@gus0@bd/@5Ds.@Z%8-@cWǘS,@;3+@ +@b&KǺ,@_ol.@o^0@q2@'pA5@I: :@$C?@g%pC@ri H@A&WM@wIyR@N%V@>V[@aqa@Ad@Yhh@@:m@ ?,q@{s@YW &w@)w0DBz@EJGv}@k@VV@@ӧXj̅@`یj@ŋ'g@GɔnyB@ k@>' a@9v@\{6@a@qA@/랖ݍ@w@]!m"@p@*2A@?RU@g2O@օ5L@Jާ@@]YӃ@3:g@A :@ܙ~&@'@nڿZ:@jZ@iyDt@]c@p҈@Wq\@F+TO@#rP. @B z@A@53eͱ@Vl@A@̩@ը7/@z@ƭu@4Pu@2"MЄ@}2/N&@#_6y@MtGʂ@}#Qjm@0m@ À@L%@7~@UJrh}@z_~|@s@U{@Ր 6z@J{"y@#rRx@w@+3R&v@Z`Od.a@C-^`@p_@<^@ad~b]@v0E\@$5[@t$0Z@Wzv6Y@]BwGX@'/bW@}GV@U@T@V3,T@f3UsS@W9R@15*R@OtvQ@/oP@zDP@HǿiO@,0*UN@b=LM@-_;ML@ɂ} XK@@NL7lJ@^HI@ ҮH@i4L:lG@4G@r~kLNF@`DܑE@eD@,D@"^)C@ ~B@r@ TAB@u0jA@CFA@^s@@hN]?@G_0>@H=@` <@h3Y;@Q ;@by%:@q _G9@I so8@Cs8 7@iL\6@6@;ߊP5@3Oї4@0o03@53@*xŌ2@Q1@+yI1@S~0@60@>/@i}s`-@¿,@*p+@#6|*@ άI)@#9S;(@2#(@ %'@fJ&@߇hv%@?ȩ$@|nun#@ٜ##@rj"@32}Զ!@? !@cL6b @fit_col_40ps= FitTwoPeaks(wcoeff,x) wcoeff={2.1499,800.41,0.076092,0.18679,1.2686,-84.904,0.22683,0.029956} V_chisq= 46580.6;V_npnts= 41;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 40; W_sigma={0.00935,7.78e+06,0.00382,0.0132,0.169,1.25e+06,0.0258,0.00203} Coefficient values one standard deviation K0 =2.1499 0.00935 K1 =800.41 7.78e+006 K2 =0.076092 0.00382 K3 =0.18679 0.0132 K4 =1.2686 0.169 K5 =-84.904 1.25e+006 K6 =0.22683 0.0258 K7 =0.029956 0.00203 pp&aպwcoeff%a????4a[YX2@F@//ѽz?d4A?{ k'L?4dO9U7 X&?:Ǭ?u$a)Res_col_40ps%a){Gz????ffffff?5aa5@>@@@tTGxC@K,@kLPqR&Q@@ _$>A@@+/@ )) 55P@"A:㣿B oy?(mq"9e162ڋ& HKs3+?w Թ0@l!@yAT%@!@:oߚ$@78(@ 10ps(3)^v!$a/`/$a\ՐP^f36$a)${Gz?$??= ףp=?r@6S5@n 7@Zd;?@V-BA@hffffF@ X9J@Qb`@%y@< ףp*@Gz@(\5@Q@Q@Gх@wd@Hz?@v݁@~?5^K@%Cy@@5^5u@Gziq@Gzj@V-Hc@Cl\@$CMS@C|K@K7C@03333[?@x<@ ^7@`(t4@`"i.@t.0@ x&,@}?5^%@ Gz&@`t-@Zd0@`9v.@V]0@ʡU'@S%?R@ƛ @Gz1@n2@ +N?@0\[@u@9@> ףp@p= W@p= ףl@\ą@Q@Mb@> ף'@lb@9v,@(\n{@@5^mv@d;O q@X9v k@Sd@?5^[@&1nQ@K7AH@MbA@P㥛(5@pV2@MbX'@@㥛@#@Gz@QE@QE@6^I ?!@M@^I B@S@Cl"@`"#@@v?4@`(8@ r8C@ףp=I@QR@Pc@̈x@Hz@Q%@zGa@zG@Q2@GzTم@/$@ ףp}j@.$@Q:@sh|iz@|?5މu@(\Bp@ rk@Eb@h|?sZ@pR@kF@Q5A@ 5@n2@Gz)@ Q)@`;O&@`"-@ "*@K7i@jt!@ w(@ƛ(@ rh1)@ClG(@ rx"@ClO<@~jtA@HlD@xGG@h;OM@|?5^V@`(i@@ ףpI~@(\@23333Շ@zGa[@zG@x@> ף@Clg@(\@v@1Z@ʡ|@(ܘw@8v>%r@&l@R#e@6^I `@Zd;U@"~M@ rG@HԌF@/C@xA@ ~jt=@v:@+=@M<@0<@&1<@(\9@K7A<@`-?9@-79@ףp=9@x&*@Zd;_.@Q2@t6@ʡE?@p;OI@ףp=_@Gzt@@*\2@(\B@Hz@ ףpJ@(\g@C @(߄@C@d@p= ׫{@Hz.w@X9Hq@ʡzl@Mbc@nh]@pT@ QnJ@+ B@K7A(:@0Z4@ 2@@O)@S +@ /$(@Dl @S@I +w#@ rh@I +@(\O@X9V"@V=&@K7? rhS+(@`= ף,@nX:@Cl7F@`(v`@0\w@Gzy@Q~@Q@ ףp=@Hz.ƅ@\h@C얄@Z@Mȁ@t ~@7A`y@Vs@Gzo@$~jh@V-aa@GzY@СE1L@V--A@Zd;3@`㥛&@= ף?SϿ@\OV-@(\E=I +@㥛Ġ rhMb?&1?v?`d;O}#&1 Mb@!Gz'@ʡE0@Zd[L@(\d@Qo|@(\@Fz@ffff涆@֣p= ?@Rk@p= @/ݤ-@م@Cls@Cl~@V-y@C du@~jto@/$Wf@n`@p= ףV@hX9 I@?5^ <@/'@ףp=J@l1@^I "Ec(ʡE,/4%"~z$ Z*@7A`%Mb+v20g4x&1 6 j2@Z$+S'X9ֿn2@@33333H@ףp=c@hffffBz@Gz@GzN@L݆@Gzt@ ףp҇@R+@cX94|@GzT@Dl]@ @aX9z@-o}u@nJgp@t_g@~j_@V-KU@x&EI@C9@I +@p=  .G2 Zd;ߗ3@l13Pd;O57(\ 5 Cs8:(\6P7A`6"6V5jtK9zSS㥻@?5^)3@ȟ/@B@@罹J@(\c@(\y@ Q@H@Rk@R믆@(\u@R+@cX94օ@Ä@l@Cl@&1{@,Nv@C 0r@|G+k@nb@/]@A`P@0H@M"<@/݌2@~j$!@@Cl[@ʁ@ /$1$@`n#@0#@@@K@Pn2@5^IL@~j4@|?5^Z@/$&@ ʡ'@= ף@.@~j=@ h=@Mb`G@jd@@ ףpyz@Q`@@*\uU@Gz@Q8w@GzT@/ݤ9@Q^?@$C@bX9@g|?|@2ڻw@/ݤ)r@xk@Clb@ Q\@$eR@8^I I@On@@ rhy;@ʡEc/@`V>)@K7A!@$#@@^I r%@Cl&@p= 7@ X9&$@Rk@MbX@;OW@x)@ףp=?ʡ0@On9@T㥛7@Gzt<@(CA@I +'M@ Qd@0\|@\(@^(j@r= #@> ףp@zy@֣p=J@/ݤ@p= x@:vW@MbX @p= {@x0w@Hz.}r@Cn@x&1f@MbXW]@jt T@`;OL@xGZF@|?5^=@PI ;@P"Q2@ v*@SK$@MbX)%@|?)@@~j@ 6(@̌'@ज़ @$@ ʡe+@X9V)@jt&@|?52F@Mb8E@@ ףp!I@&1LM@|?5^FN@MbV@p= ףBh@Q}@hffffi@Q@(\B@P@Q8@\h_@C쨇@@@NbX9@vq@,=@@P㥛Ę:@(\g5@Pz5@Gz 0@ Zd;.@n82@`X9@0@@bX9$/@`fffff6@PnK1@}?5^,@ҭ*@QH*@?v?$?v2@h;OcB@pX9HO@̶g@Gzp@p= ףه@(\@2333M@ Qֈ@p= #ˈ@R+@l)@֣p=J@Cƒ@PnO@ʡEJ}@L7Aw@6A`e,s@Zdm@V-f@@5^I[@ Zd;#O@VmD@L9@ rh!"@I +@rhm rh꿀jtOn2~j\QXt@-O #&1&@Gz Zd;75@K7>@(\@@/$@@MbXC@ V-BN@ףp=f@(\}@Q^@fffff@Q2@(\P@p= #]@\h@Mbؘ@(\6@:v@l@U-@Zd;6z@,'u@QKq@V-'h@lc@$~j[@lS@ȡEH@x&1B@PI >@@l5@P +N4@03@PP5@/5@x4@x4@`I  1@ V-:2@ 3@K74@QS1@p= @)\@@ ףp]@@z.@(\=@+ٮK@Hzc@Q@< ףpʆ@r= ף@(ܩ@@GzB@QŌ@ClgE@Hz1@M@/$ @~j@+YZy@C t@/n@|?5^h@Zd;J`@T㥛*U@tL@KC@4@v_.@Zd;?@R?"пrh (?Qp=  xrh- @@C@ ףp@|?5Կ C<@C@@X9vC@xGD@M@ rhS@03333 j@(\f@(\@Gz|@> ף5@\(@LÊ@Gầ@/ݤ@QЇ@$C @/$@d;O@|?5{@>5^+w@ .r@̲k@ c@$C[@(\T@MN@+"D@Zd;?@ rh 7@MbH/@0^I Z1@`-0@(\r-@n-@`㥛,@jt1@|?5^"0@9.@@"@l+@ʡE'@`(1@ 5@xV>@@A`оH@ptV@Gzvi@`(.@(\ @֣p= @(ܧ@ ףp=@zGa͊@B@Cl{#@ @/ݦ@MbX@+ο~@xz@&1,u@QJp@Mbh@bX9a@`I W@Hz7Q@K7G@ʡYB@I +_5@`jt.@ rh*@K7+@0O0@`9v2@`ns/@ V-$@V-%@x0@P5^I1@ ^I "(@ ^I (@̀C@(1*F@I@jtM@tʷQ@P +Z@ףp=l@Z@(\V@@(܇@(\@Q@֣p=J@/$r@Gr@/$@v@:v|@ 0}@wx@p= #s@+n@V-g@~?5^j`@< ףpX@ףp=Q@ ~jL@(\D@nFC@PbX9p@@+?@xVZA@p= /A@ rh @@@5^I>@0A`0>@+=@ȟ/ݜ@@Clk=@ Q>@|?58@Q@@襛 D@V-I@HzN@xVnY@zGp@Q*@@> ףp@^@@zGa1@ @MbɊ@G@Clo@$C|@S?@J +|@\w@(\uq@v/Cj@.Qd@$~j\@0$S@@lIJ@x&1LC@Mb6@`= ף)@@`"+@%@x+@Qu)@n0 @}?5^@Qx#@ rh+@I K-@(\@Z@6@0^I B>@MbXmA@03333G@ʡEO@[Z@p= לp@̜@(\t@(\£@> ף@Q@> ףI@GzTC@R@p= @X9$@Mb@x@VR{@Hz. w@Mr@Zd;Oj@a@@5^I^[@4^I R@-WM@V-F@0^I >@@la<@Zd;2@+1@K7(@jtH+@%@@zw(@(\O+@Cl)@"Y+@ C%@`|?%@`;O?=@A`ВC@/$ F@|?5^:J@n~R@xQ\@p= q@QG@(\@(\̎@ffff洎@(\h@ ףp@R+1@1@\h@/@$Cn@Cl珁@~j<|@p= Ww@Q8q@n= ף*k@V-e@Mbr]@(\V@SP@V-AI@C@p= 5@@A`5@p= ף1@@v2@pd;O5@ज़ 6@x~7@`d;Om9@p= 8@ Gzd7@t7@@㥛İ/@/ݘB@MbH@ptJ@@`"L@(\#R@H`"\@أp= tr@Gz@\(Ս@23333@Ύ@(\@֣p=ύ@zG!h@/]@ @bX9Ά@N@j@4333l}@"x@x&s@A`5p@ rhg@X9G`@\(W@K7AQ@xVbJ@pVG@MbXD@(\=@ Q;@@5^I>@ ףp="<@M;@MbX>@K7?@(\j>@|?5;@C<@Уp= ;@\d;OQ@8A`T@ZdT@V-U@(\\@dX94d@hffffOr@(\@@zGY@@(\ٌ@p= #@ Š@Y9@(\@v/@$ȃ@Gz@0$S}@Oy@"ys@p@th|i@rh!d@(\_@KX@V@8OT@QQ@K7A6Q@xM@|?5 M@H&P@rhN@@5^IN@@lL@GzRK@T㥛LK@ʡEL@X9 L@K75@E@@zGED@ףp=ZJ@|?5^Q@MbX]@p= ףr@ ףp=h@Rk@QI@(\M@p= ףl@֣p=ً@> ף@9v>ˈ@ ףp}@:v-@NbX9#@zGb@vL|@E}zv@$q@.$k@I +e@GzF^@lttU@nP@X(F@0Z|?@W6@P 2@`㥛P+@(\?.@n0)@ʡE@ʡE@R@"N*@`v(@"^!@Q"@ʡ@`t+@ptl7@GzF@V3R@jt(^@Qr@Q@zGa@^(ȏ@(\B@43333ɋ@p= #Պ@(\5n@v@> ףA@/$@NbX9h@zGI{@I \w@Gs@Sn@h@Zd;Ob@(\X@ r(O@8ONF@Zd;g<@p)@@t@t"@/$'@Q@{G@Q@t6@SſZd[@@-g@^I ?p= W?|?5^I@PbX9N@K7AzS@Gz[@fffffya@"~n@(@أp= x@֣p=ʱ@|G@Q@Qh@4333sN@9C@x槑@(\@Mb@Mb@S@Hzn@V-|@ 0Yy@vu@nJor@L7A`n@X9Ȣi@Qwe@x&1a@T-m]@t/Y@x&1JV@(\S@0ZrQ@|?5P@(\N@h;OCK@ClJ@X9:J@ʡ}E@~jE@ʡC@/$ज़ &@ +F(n#(\R%@9v&̌Q@Q!Rk,@= ף3@Q%@R $@jt$\hV-俀Gz@T㥛@! T㥛 I"l)SOn @ZzG(Q&/$"l%= ף l$ rh$@ ףp' "V ףp=*$@\H$t%/$ +Q8X㥛Etx&/p= 3Q@p= ?$`*hffff?3333ʡ?-@~jt?@^I @5^I X9~?5^@^I "@C@/@jtX@`;O? \?\h@|?5^@ 5^I?j➮A?kE?-H?0/̪M? rG$sQ?pETT?NmFX? qQ\?b`?Df2c?-4g?|6X17k?2o?\S%r?y&u?釯y?0%}?X?BN4?fH>?iS?_?|Tg?ع9T?!f뱘?zߏ?\ 93?@ ?8n?N$M?="?i?G89?k?ҋH?܄I?N%ɏ?,斂u?)w+)?$?i?U}?p-?? ^p? ?Z?Qe?t_A?[?{%?Pϧ?F;/$?AN?Gg?f?&2?ު ?b?b@1@gc!@]"@elF$@Pa&@ )@ݪX+@ycD.@ׁԽϙ0@֦+512@S3@X5@ pyy7@J9@ pW<@deF>@K'Z@@x*HB@NI,C@E@PDlbG@Nt #VI@lK@>gΨM@+P@q'FKQ@UzJ=ͦR@1;{T@P@3U@оWCW@vf&kX@| Z@H\@a^@}t`@Ia@ X8b@u/ 3;"d@ҽ^ye@fef@KҼQ]h@i@"#5R~@$$-@#2@E@+ѹ@mu@ĥPZ@_$3@WzL@QW@tن@aWQć@泈@|C3@j1J@xt@&`n@x@è@tptW@=Y@^ߐ@תPhf@XY2@_KYv@(Яf@X|@w%7@'kʚ@z#@$$@+4@MA ,@M$DOdA@8Ɨ@X:fJ@6m^̘@^$M@G̙@ਇ J@+ԣVŚ@'^>@*@S)@aw@;j @v@?5_Yߝ@-jE@9~@έ=@ *e@zp@2cE' @ \3@Փ Z@ڇ@gXMOg@Ơ@>k@8UvQ@DUY"@<@U%V@Hb[m@-삡@@LG]ը@ 9@=tNsǡ@nԡ@e)Cr@8nN@iE@;Nk@9!ھ@lQ웢@dTp!@=F@l#~@լ@Of@jO0@{89@ܢ,@lp@K@ڡ@mI{С@T +ơ@h@щ@n@@t@!萄@:mu@&ѵe@;ZrU@ D@|4,m3@ͼ!@pf@2x)@*MV@~1נ@Và@ @m\|@H@b[s@k _@ΌKXJ@[5@D籓 @߈ @1y9@OmŸ@R@ŽfYm@B@3 @vZ@Wm0ž@tjt@hfjm@yB@@+ e@C J@=.Ý@@Zo@U{E@3Y^@V.e,@kȜ@8d@6?v@ kHM@L(~$@"@ϯoxӛ@=@Z4@][@G3@>ݫG @ʱ @ N@ƨ p)@$>p@SQJ@E#@5d{@ؙ@Z?cs@E[ @g@ B@ڕ@-k@&j"՘@t g@ݼ(8@)Yī9i@wE@4J"@Wlh@&'ܗ@XF@b@_ϖ@A0mt@>R@OA0@ht@i@jo˖@;L5@>+@劼WRh@WٰG@,.'@W&W@V׉@caƕ@XK@GM@ls)h@!H@)@K @f@" ͔@ ,Ғ@{2k@@os@X։U@7e7@=Ա@^V3@{@NÓ@˙G@䓩@ az'm@XP@:N(m4@z>@Z@o)@ң(Œ@F@@&t@ZAY@VG]>@ #@~x}S @X/]@Fԑ@}k_庑@mA @WY@[Mm@bdT@XKt ;@q|"@Lb @^`3@:א@֏@@8E@8#v@/T$^@L3HF@s.@K@\@bЏ@ c@wZs@C% F@es@Wp@v Y @fFj<@4:d@z^8@Y6XP @Ox[@UN@l@udMU^@3@6 @?ތ@+q̴@n[M@ Wa@֋b^7@|'&@Z@_.pC@S|Ӕ@?h{l@+D@y@6]@D\CΊ@;-@E#@^, Y@ײ3@r0Y @a@D[+@W@Y‹Kv@Vl-Q@jhE,@2@z@tξ@vM@gC?v@wQy4S@/@p#j| @2m@ \RƇ@7)飇@ Ms@[K/_@ ;=@{<@LՍ@`h؆@W;¶@N@0 t@:HS@~G5q3@'@¾,@>E(҅@Z@vt@Vt@„ݺT@Ul5@@N@):C@l hل@e^@_º˜@E<ֲ~@!1`@{<=)C@un%@D=A@ < @΃@'%@zm@x/=@l5B1g@GO@]@<[@Q{@uLD@`H@=F-UW@Ph)@D8~@|: ~@/[#~@ib{u~@CI~@ ^~@訔}@FuKb}@Nj}@0n}@,C}@eAFD}@^F|@|@E Ѩ|@Wq|@ גG|@eDY|@4[{@I#{@d{@{{@ǝS{@+{@ADtE{@vaΟz@*z@r`ʎz@)hz@1M^Az@\sJNz@:@y@=piy@Xbɩy@^_y@M|+-_y@0:y@ >jy@>Yx@K}x@ ,Wx@J7Hex@7݌ʧ`x@钩f=x@Zx@bqۼw@ Uw@J_w@Irw@Ylw@DIw@Ziʧ(w@‰Bw@v@ARv@@#v@;$v@HZ_gV`v@ٷ?v@Hv@! u@Uku@ϊtu@bu@+95u@=\`u@ \Au@-#`"u@kxu@m"Wt@yt@W0t@t@s"lt@w]Nt@U}0t@,TTt@wYs@~F{s@M6s@Cs@@s@j98fs@)Is@Q-s@s@B_r@Mlr@r@2Мr@kjpr@Wlmr@>AʏRr@7r@HKr@i6r@Uq@Uq@ӡSq@³ q@Hq@.gq@(8_4Nq@y,04q@_qq@q@7s'p@]p@p@$p@;a\p@0Cpp@jLXp@GCx@p@p(p@Ai9p@m7o@6(o@Xo@9 0ho@:o@.Z o@`n@5gۤn@}Rn@$`Yn@H'-n@1bn@}?m@0Zm@m@w]Tm@P8S[)m@3l@zޓl@~6al@ޅ€l@ 5Wl@͒-l@a@!Z%a@[ a@Nޅ́`@Q`@S~9`@ę˩`@ =`@y"Zy`@=Va`@[vZuI`@^@s.^@0UX]@`º]@rk]@bSd]@kXE{9]@Tܪ ]@Y3\@Tߒf\@^L\@f\@Vzz=\@CO\@01`[@W[@*35[@e/ q[@I[@."[@e(Z@zLZ@!:1Z@9IOZ@̽^Z@F58Z@ Z@Y@-U2Y@QY@ƅPC{Y@VY@DR/1Y@4tu Y@JX@C~X@ΉX@쿤{X@jkWX@^Pw4X@W.X@t W@_i6W@J/W@` W@Z3cW@>~AW@B|W@a V@ttuV@ʝ1V@,_V@nS.yV@0YXV@7V@//cV@ɾ.U@e)U@q% SU@feU@0xU@ΨXU@ iG9U@+ !U@0%T@CyT@2JT@gѠT@jھT@dT@GT@6[)T@$ * T@׏S@S@0r-S@"BS@ uE{S@ReK_S@  CS@Ce&S@ԯ@ S@bʔKR@`R@si?R@xuR@.HӁR@/fR@]LR@dF-Y1R@R@;:uQ@ݣ=Q@K +Q@?Q@mxQ@lBzQ@y=]aQ@wiHQ@=˵.Q@ӬAQ@l QP@lMP@A('~P@!P@^ٰP@}vP@uLdjP@_vRP@`N:P@x#P@} P@ 112O@(YfO@]AoO@s]O@G@Ѻ/O@9IqDO@ĖVN@ C!N@@qm{N@]M NN@UF#"N@}ǬM@3x2M@֙ßM@lごtM@>"IM@9\M@6H~L@h!+IL@p QL@vL@$ML@G _#L@K@6K@xK@%K@=m YK@!dI@+.a?I@9YOI@I H@#0TH@cT'H@Yl.H@>9ieH@扡AH@0%}H@j6TG@B^G@͛ЛG@T* G@pG@݋NG@Ahˈ,G@29q G@g)F@hF@$żBF@"XF@UdF@؝DF@&P#F@{LTF@޹zT=E@#UE@vE@<7E@Q-dE@vނEE@-&E@܍E@bqD@kD@t 9D@v=D@]^pD@?.TRD@0kl4D@?D@7C@Q+ZGC@|C@(zCC@&4xC@yjC@㉴MC@ j1C@;iC@B@KiB@EB@m3:@B@U B@6J6qB@/ b#VB@arh;B@z B@l]@gB@W A@='A@,JhA@p\f1A@YA@A{{CjA@~-$QA@V8A@;A@4FA@@9t@@ڏ@@t^>@@IG|أ@@a~@@xs@@LbP}[@@SvC@@@Y+@@vO\@@kE?@'C:?@ Ա4?@.n?@f@?@zi?@6>@^>@{CSH>@b6_>@oWy3>@VN_r>@=@/@%=@# ބ=@TY=@9 /=@ޓ\=@"4<@ 7%<@G3S<@2nn&\<@ڏ$e3<@pI <@e`)a'Z'Zfit_col_0ps(asaw????= ףp=?Y1p9j :Nӥ:l;;;]>)I?1ʵ?=@R@@QDyDDDμDDDlDGEEC Ev)EE1EwE;E/ E EETE^EDbD*D/DnDi|D]DgDDD}D7*D)D~D0D;RDDn8DܕDrD݂DD.DlفD[|D1:uDLnDgDaDZDzTD{yNDHDBDu=D8D2D-D(D($DDDYD_D<D7 DODՃD(C|CCC+CCCtCCC(nCm CѳCC|̩CCEVCCΛCgCC?CCC/C ~CwCpCTiCTcC\CߩVCјPCJC$DCh?CH9C4C/CS*C%C(!CC-CCC= CCHCR!CB BZ$B$B BBBBBFcBaBӪB~BNB7B2BChBrBѢBvoBZBcBSBzɀBsKzB8sBXlBeBh-_BXBRBLByFB_AB;B>6B,p1Bpl,B'B"B6B0BeB-B B BB6B~rBAwA AmALRA;,*a'Z'Z)Res_col_0ps(a){Gz????= ףp=?Z H@x)N@>Z%Q@E/s,PV@/tU@E[1v7I #M@;F*R?_D=ֹC@@BB"@@11x>@ $D@w$A@PqD@ N}A@@-#U;@$=@@۽G'@tz*0xQ2P802Pg:,@XlUF`ǍzF_eBh> k0F)|9B*z#v? ƂpH>,r>d҃T486IrM9l-5e1$nҫ0< G St(P ~ p'a'Z'ZBkg_col_0ps(a Xj????= ףp=?[iHp*a'Z'Zblepswave(a????\ư>`*a'Z'ZPeak 0 Coefseps(a????]ư>ư>ư>ư>+H'a'Z'ZMPF2_CoefsBackup_0(a????^*`'a'Z'ZMPF2_CoefsBackup_1(a????_)\?@z?UUU! w@Q?H*a'Z'ZM_Covar(a????`5HJ>I!>g}f +ҾI!>es)>_|t 'SҾg}f_|t࿿K_@p? +Ҿ 'SҾp?5u'!?}h'a'Z'ZW_sigma(a????a|=R2X?;^?b# r@:Jv?ԚHp.a'Z'ZW_sigma_0(a????b`0,a'Z'ZW_sigma_1(a????c|=R2X?;^?b# r@:Jv? MPF_SetFolder_2^v!P,a4D=MPF2ConstraintsShowing?negativePeaksdisplayPeaksFullWidth?panelPositionMPF2_UserCursorsMPF2OptionsShowing?XPointRangeBeginXPointRangeEndD@XPointRangeReversedAutoFindNoiseLevel(\4@AutoFindSmoothFactor@AutoFindTrimFraction?MPF2_FitCurvePoints갪`@MPF2_FitDateYkAMPF2_FitPointsD@MPF2_FitChiSq(;b_F@YWvNameroot:'1ps(2)':col_40psXWvNameGraphNameMultipeakFit_Set2MPF2WeightWaveNameMPF2MaskWaveNameeinterPeakConstraintsFuncListStringaintsSavedFunctionTypess!Constant;ExpModGauss;ExpModGauss; zH.aZZBaseline CoefsP,a????|f@8D ,aZxHoldStringsP,a????}.a1101:h,aZնZ W_AutoPeakInfoP,a????~(?@== ~D=C #= #= ף= ף=4T*aZZՅfit_col_40psP,a0ӈ????ffffff?S@%@@y(@@Ao A^A $A`5A(MA nAAA`B=\;BB BCh[CfC]CCDs+Ds>DPLDVD[D*^DD ^Dg\DlZDpXDUDSDeRDАPD6ODMDULD KDDJDHDZ$GD3EDBDW@D6Y=D9D$6D01DI-DdE(D"D0D12DDx DDrC MCuCC CZ1CCH!CӕC CCnC\CKC eƝ`-aZZPeak 0 CoefsepsP,a????ư>ư>ư>ư>`+aZZPeak 1 CoefsepsP,a????ư>ư>ư>ư>`!H+aZZMPF2_CoefsBackup_0P,a????|s3@! `+aZZMPF2_CoefsBackup_1P,a????Q?,C?جC@HzG?`,aZZMPF2_CoefsBackup_2P,a????@@z?,bC@Q?wp,aZZQM_CovarP,a ????E@/#o8ef?׭K]?-Ym廿/#o8eA%c@@/wxEg p_U֐@N8@f?/wx|b?|mL!L?BY(0O!g׭K]?Eg |mL!L?^C? !zn뿲#T-Yp_U֐@BY !zny&s@3߿@m廿N8@(0O!g#T3߿@S@xm?/aZZ W_sigmaP,a ????79@\ $f@4 ?]?6 ,I@Ι? `/aZZPeak 0 CoefsP,a????Q?,C?ccn@HzG?j `1aZZPeak 1 CoefsP,a????7@-kt9?Ϛq&{@y??  P2aZZPeak 0P,aڣ=Z????ffffff?ɮa?>xE_>`ҩg>|6">s1>EK> X>h%>_n>0mZ>$w>la>*k>ij7>>\@X>F>:b.?x$xLM.?)`V ?]BUq?o?uA?iV#h?4א!?sw%?&*?J1]/?oS82?sج6?m1S;?I/f@?X3 ڨC?E:G?h&L?ˉVP?[ T?uDW?olm\?A=8m`? d?:g?A0.%l? [p?Lrs?Є 0w?q:Q{??g?GŚz:-?ؐ ?Vq?*͑?bح˔?y?B?-bE?";+s?p?5j(2?xC*?Uέ?*=?u [?d?3N\{?CY{n{?,?ڥk?P?/Եm?mE豆@ Uφ@OGD@W8N@E:d@ @FL@tX@,:b@%i@"+n@8/ q@(bNpr@ϲ/q@Tn@_j@Әc@Zn[@$Q@[XeF@MXN9@X4+@H%<@Ε @'`@,n@{WQӆ@GSd@I._@Ph3)@ T{@|qc@}J@1@x(@& g/@=Op@$uȅ@!@@[u@Gsu@t[TY@[3<@@FV @@V2@YܿɄ@/򱮬@ɩmk@ hr@F=E:U@-m9| 8@o @n@ë@D$Ã@"ݓ@(@n,l@$P@+.Sl3@<@2p@iނ@~@IRإ@剂@ PMn@i@fR@Q6@7/s@Mz/@x@׈5ʁ@lA@Ď>@` z@\@_@+xJcE@J+@hV@-@1݀@A!_Ā@φr@פahˑ@i!ɹx@{u_@FULG@)(d.@a@ A@`@M@ cj@Xā/;@7H @w7W~@ZN/~@[li̼~@.omQ~@]Ω#~@#}@ D}@/}@F! n}@V1B}@ }@J|@gЈ|@㳐|@bJ'Ng|@>4M<|@'^|@KQ {@P=μ{@)ϒ{@vi{@H>?{@N{@qkKz@k,z@w`@okq`@xX`@?`@?,'`@֢ɷ`@V_@a y_@'ml_@2}3\_@N3,-_@go^@.- ^@յf^@8r^@5D;C^@9d^@v]@oF]@7B]@a]@$5]@EB ]@8Q\@()%\@ o*\@$Z\@HR/\@ D\@H ~[@) R[@e[@8\[@5MK3[@]o [@L,Z@yZ@Z@?gZ@$=?Z@BHZ@\ -aY@q&{X@'ͼX@GmYX@$rX@VMX@NrO(X@" ZXX@ M`W@SaN;W@l MW@+sW@2bPW@ͮ[,W@zİ W@հOV@(ݨ"V@)c|V@bgfV@wV]V@9y;V@V@qZU@\5,U@ϑȕU@Jg&U@xtU@<SU@>iM3U@&pU@.T@9u=T@SmT@β(T@r~tuT@jVT@IP$8T@yRT@LS@gyS@fdZžS@8S@:v((S@E]%0eS@B>HS@+, +S@wS@-R@R@s“|R@R@FyR@;wcR@e{GR@xX>+R@WoR@i<;Q@9Q@vM[޾Q@aQ@-KQ@nQ@@YTQ@oBZ:Q@i- Q@Cp~Q@S5SP@kdP@L;P@3P@VOP@u ѶmP@lTP@TG@JnMnG@5@6JG@|:"'G@MuCsG@1=ئF@|F@c~F@VE`UzF@IxLXF@&x6F@b1mF@ }&gE@+E@!E@/IE@QRoE@<4Q/OE@I.E@>aC@M,CC@&C@/ C@YB@0OBB@|~3ƳB@i8uB@EO{B@Q S_B@ߦCB@'B@{\^ B@x A@əA@ ߺA@PӍA@JoXA@7SjA@gSSrPA@;6A@7+A@r2CA@vO@@@@D2Av@@ Lx*@@yn@@yj@@;7]*Q@@u8@@oQV@@Q|@@uo?@{n/?@fI8~?@~N?@=#?@Is_>@`,,>@:[,>@zRd>@DXN6>@vx>@t=@iWj=@j=@m HT=@p!'=@pee_<@ r<@m9<@x<@1 M<@>"<@̓L;@!~;@1{ڣ;@6z;@MgP;@ha ';@:@ S:@q:@QV$:@=[:@Hr4:@حT :@F3H9@Ml9@܍9@ `o9@IMtI9@sɧ+#9@|)j8@F8@hy8@G8@Og8@)B8@>o8@|J7@K7@$拰7@@έ7@߉i7@+ 9E7@adX"7@4LQ6@7.g6@G6@y6@mKXEu6@8bÙDS6@Vw16@GA6@ v5@ˎiA5@^ ?5@*0n5@]j5@abJ5@-Us&*5@e  5@@%'@4@mG~4@\b4@߹ϋ4@- l4@T#zM4@ /4@ńz4@993@^o3@li3@ 3@/G_z3@@3;d\3@_?3@ k"3@=s3@YJ2@R2@.ݏ2@8ACE2@M~%w2@"O0[2@se?2@f #2@ƺM2@] ]1@W1@T,h1@#R1@͐e1@rjf1@Ӵ‹L1@ZLZ21@,g>Q1@{;o0@Fi0@TzP 0@*h0@/vl0@eL0@aRf0@Í}M0@40@XE0@c0@ҥwB/@`w /@vu w/@|G/@2 /@d .@ļ?.@[|¹.@w-8z].@@Ӵ/.@Q .@y^-@b|*4-@VڭNz-@M-@>O!-@Q?4,@z5\,@"Ɲ,@8(rr,@%`G,@I B,@F+@V+@.~Ϡ+@t"s+@+" m@J+@_ +@*@*@o*@I~*@ U*@; .*@bv*@oF)@]7)@%()@' ٴ=j)@7yC)@ H)@!{(@4(@(@R,J(@]Ka(@ʢ<(@g7(@='@>B'@5'@C _'@1;c'@JWRjV@'@z>7"'@.Q#&@"@!@!@$!@DO!@r=t}!@`b!@8TUH!@$J%{.!@:w!@u'f @.n_ @WDX @TF @iS诔 @1{ @.}b @4I @}6(1 @1 @3KE @r@?@39 p@lq@@N@I"@LO"@XF#@\zt#@uc[$@FK$@,PZK}%@[;d&@%*&@/J'@HM'@(@7)@5$9)@_fG*@{H+@D4p5,@ޢh,@[*|-@pA.@1Yg /@9/@~T0@̞0@jk~-1@8U1@-2@+n32@rYM2@oPt3@k3@do4@m44@*k t5@e5@K6@|7@t7@n18@13f8@]9@d)x9@w:@6;@Ő}$;@R<@'*=@q=@z&>@I0;?@o?@l7lV@@wSr<@@pA@xA@z>A@AB@̊E\B@0ˇrC@>Z}C@`C@XYD@Z5 %D@õY=E@dbh E@}(F@>F@mpG@G@U`UH@M?͖H@aNQNI@C-ܝI@3MY|$J@F1J@.pQ7K@nBK@v?SL@J6%L@Q}xM@F N@[SN@r?O@EO@XL0qvk@R Jl@F Ul@ޭْl@' ?l@ * Dm@LI-m@im@ 4n@V6>n@VVown@:Ժ$o@Nyuo@fPo@RLM p@d2p@ [p@vY&#p@ Yk0p@Ey2p@0o'p@z, #q@e}Jq@1KPrq@XKq@,fq@FRVq@òr@-7r@>_4 _r@$ fer@zڬr@6r@`J r@0\~a s@cFs@))ls@LHs@tٷs@2s@ NKRt@>6't@XKt@tHBpt@_et@rKwCt@[*t@(t@7+"u@rDu@GDgu@/Wu@ku@[#}u@6,u@D=`@v@!gś.v@e@Nv@9&nv@]Zv@{k(v@v@R6v@ (w@f-C#w@0 ?w@kC<\w@L xw@F:iw@Mw@w@^w@_(Ww@F\x@C-x@(Ex@j\e\x@B^sx@UFx@j%x@a7izx@8odDx@TUx@= 1x@Qy@y@I )y@[:6ZJ;y@Ǹ Ly@La\y@Yzg ly@6{y@=|y@wy@뻤y@U֋dy@ 1fbqy@Ry@BLy@̇y@vC^ty@Էw"fy@@y@Nez@եrz@U z@euz@uz@4jHz@X%!z@h]$z@:j&z@ֹ(z@ղj+*z@q*z@*z@jS/*z@H(z@YѦ&z@b%pWk$z@&7!z@X4_z@ez@,5z@'+<z@\z@ jz@1uQy@ y@Ƨy@?Jy@(y@z|hy@iJ֐ y@y@ځy@oJUy@{z쏊y@A{2|y@kXM?my@^]y@My@Dkc@ Pc@ c@=]b@/#b@VHb@HTBb@*Ea@0|Pa@8;-Ha@~Y a@2-`@˼c`@`P`@J $`@g_@`8_@n^@_+GM^@73]@Oi3f]@?mwH\@gqt\@_J0\@I/[@JA7[@D#ԜZ@2[_Z@]2{Y@ѻŜWY@95O$Y@bs4bX@WX@ W@"횒@W@!,W@6ik3^V@INkV@:U V@vbԭU@bPU@PT@V62T@y{݂@T@DbS@'VhS@g9S@@`R@q_R@f5.=R@?LQ@oxIQ@ IQ@B P@ԍh$P@]:I`P@0wP@fg<]O@йoN@"d^nN@1M@ߑ{QM@tR L@. D@|FC@& EoC@$kF C@⏧B@4FB@L2\+!A@ԇA@z+A@M@@GUfv@@e@->>@kX=@^<@JsZ<@l;@1P&;@RG:@{oA9@PDUl9@+QY8@v>R8@WQ07@3C7@46@i'j>6@5@%eݴC5@]4@YdQ4@͜t3@7#ni3@uڊ2@~xۉ2@gmX2@p1@EJ1@f5U0@$eې\0@q90@uI c |/@r!.@|h.@$xLR-@* 1,@i+@sI+@Fr*@*@Ƨ?a)@)B*(@gua,(@ ז'@Od|'@ uDu&@[ %@y$`%@rx$@$ۃV$@PyC#@)DX#@AoE"@3Ge"@ }vn!@O}!@!d !@e_ @EP4l4 @K~0@kI@B @a>@#2@h@O/\ @mlɯ[@aH2є@c@x]@hG.tN@^@y\@+#i^??Υ?F U?ѳ֦?g w*?)K7q?\ŷ?oОm?2K? ? g? (N?NXA?bRi?RDjj?Aw?P?6D?jԑ͉?蒾A%?֬)#?wPx?n?3? {C80?OU>??f?Wm?wtK??ʠ@?H??3Vz-? ?[?=V?Mi?Mܞ?⴮?q0iS?۸?0x ǫ?E ݪ?O?^?wxHK?1"~?@iz?|U?bk=? aۊ?xP+ۣ?B"3?i5=??^uH2Z? rڸƠ?y`8?:1r\?9&Q?]N?7$U?Hc?&y?j=藙?j3W?p?y`u?eVW?KG?6ߔ?x[.v-?o^$?AboGؒ?CpX7?i?[:?|?Brq?$lɏ?X?aӲگ?%?.?nIˊ?b+P?Q$H?">-?d@]?3PƓ?/х?%?va^? 㮃?>?[`?)J?p-(?+˓?eSb?ߤ?~?}?Xu(|?"ru{?W1Xz?aoSz?jt-y?Rx?Sw?;fv?'nu?]ǝ0u?}ثxt?R.s?N)s?{z1ur?5&q?A*9q?Ak p?Srp?7ΐNo?[)n?49_l%l?-Puk?8*H k?!b j?pDZc=i?2j)ah?Փ0Jg?%f?C,e?| y:e?f zd?$Ac?U7"c? G{b?M΂ a?

a?uHx `?`?_?{ڐC^?{+i\?&@t\?Otf [?!Z?넞=Y?BD7aX?:r>OW?;]V?+"PU?y}8U?2\P~T?B/S?7^fS? wR?s+ Q?~E8:Q?'P?%bR(P?,=K O?.M?bL?ȋdK?* K?%|6zJ? "g?3I??{(?=? ["9?!F8?aq7? 66?5?g_5?be4?E3?V+3?܂_2?Jz:J1?Ã#1?Es0?uI/?u.?wG-?1K>],?&v}+?`f*?a)?4KL )?}g1(?yh]'?m&?Y0/%?ȐH2aZZW_sigma_0P,a????79@(`02aZZW_sigma_1P,a????\ $f@`1aZZW_sigma_2P,a????4 ?]?6 ,I@Ι? MPF_SetFolder_3^v!P/a D=MPF2ConstraintsShowing?negativePeaksdisplayPeaksFullWidthpanelPositionMPF2_UserCursorsMPF2OptionsShowingXPointRangeBeginXPointRangeEndD@XPointRangeReversedAutoFindNoiseLevel$!@AutoFindSmoothFactor@AutoFindTrimFraction?MPF2_FitCurvePoints갪`@MPF2_FitDatezAMPF2_FitPointsD@MPF2_FitChiSq Q5R3ʶ@YWvNameroot:'1ps(2)':col_40psXWvNameGraphNameMultipeakFit_Set3MPF2WeightWaveNameMPF2MaskWaveNameeinterPeakConstraintsFuncListStringaintsSavedFunctionTypess!Constant;ExpModGauss;ExpModGauss;MPF2_Results_DataWavesTitle@\f01\K(52428,1,1)Data Wave:\f00\K(0,0,0) root:'1ps(2)':col_40psMPF2_Results_DateTitleitle@Multi-peak fit completed 11:30 PM 8/17/2017 Multi-peak Fit Set 3yH1a׻Ֆ׻Baseline CoefsP/a????wF4@iA 0aj׻Փ׻HoldStringsP/a????0a0:hp/av׻Փ׻ W_AutoPeakInfoP/a????(?@== ~D=C #= #= ף= ף=X`p0a׻Ֆ׻Peak 0 CoefsP/a?????*?P ="MFX=\PF>mα%>vGa9>BM>PUx`>njeDr>z>6?%X>>\b?N>\7Z>&3 >N[>xG>Po ?.?UKy(?LT7?ME?$YS? C(a?xx"o?4`{?}/4?QIej?au"?A:[?k9"??rD?xQ?K(?i.?BM?l,?7oi@@vT@ >y_@sS@]m볢%@KkjE|-@( 4P 3@F4N:@(>6L9A@HBF@C cfL@EQ@^O>V@v\Q[@4N3`@#c@1YƁg@ݐC*k@U ho@}:Lk0r@=Lt@}]B>w@C{y@{@KzRQ~@M@섉?_@V,tH[@ES=@w٥)@/n@R27@y@-V@y)@8!E@tL:LK@y=@Y%@AF0@[)h@nXz@2@HV^~@,3-@~$MA@X9|@6@yi`A@V{$@@ @_fD@+7@SE2@¶"+P@ 7`s@)@7# h@+E@0]@йs@?86‰~@M J}@KBu}@y&|@lk|@ļ0{@!j{@|z@1ۗAsz@wy@#Ky@\9y@xQqÝx@_MK-x@w ȃ^w@~!Sw@gv@s hv@{`_v@> u@v-Ru@**t@1c!@M`"@`Կ#@$K`%@C%|'@@V(@|5^ƭ*@:+!Q,@yn.@lj4y0@Hrv!1@3@%]4@!+5@P7@aL8@*׮:@}-\*e<@F}G>@5 gZ"@@v7-A@OGB@)BoC@ D D@OtE@AG@qH@y̓J@k SZ'K@2B'S@b)H,T@19:U@`nBSV@ UquW@\䂢X@kY@wQ[@Ze\@7h]@NC_@zCB`@WI`@#a@ɽb@GHc@Ud@d@MZe@- Ef@/B\zg@nD?]h@A`VEi@6x0j@ k@;l@3m@߼sm@+䐎n@ o@nd9|yp@pWp@[,eyq@Yq@[{r@r@\?#~s@KGs@1+æt@ JFYt@F;6B~u@u@/̛xv@͆v@yVlw@Fn"Qw@QB̎Yx@Jgsx@,e r@AG|r@/Iq@+ ~q@.!p@¼:Pp@Op@fo@_;n@G j'm@}Q@J84P@UN@*-!M@ DٖK@|J@LƋH@ qKXG@a'V F@LBD@䠣C@X$B@@qA@|Tm@@b>@ N =@|-Q;@*P3a׻Ո׻Peak 2P/aXZ???? ף@T3a׻Ֆ׻Յfit_col_40psP/a0ӈ????ffffff?AAFAAxTA*0A@AuA*B BBX1#BW2B9CBL;XBpB\B BB CCC7CCGD@'DRDDjWDbDfD6fD*jcD\_D\D5tYDnVDTDRDJPD ODNDLDkKDID[HDFD |DD~!BDs?Dl'@~r aApvk<@Kom,)@b@.U@>@]a′8 pC.gYS?Et2@@/3vǿ@V7'h ^(31Idbfj&ÿ63Fؕ)SQ@=LXN@wsM?Zb>?lCHs?XzbBA`iP m 6a׻Ֆ׻Bkg_col_40psP/a$ij????ffffff?t6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6At6A@5a׻Ֆ׻MPF2_ConstraintsBackupP/a????5aZH6a׻Ֆ׻blepswaveP/a????ư>`4a׻Ֆ׻Peak 0 CoefsepsP/a????ư>ư>ư>ư>`5a׻Ֆ׻Peak 1 CoefsepsP/a????ư>ư>ư>ư>c`3a׻Մ׻Peak 2 CoefsepsP/a????ư>ư>ư>ư>LH3a׻Ֆ׻MPF2_CoefsBackup_0P/a????m`3a׻Ֆ׻MPF2_CoefsBackup_1P/a?????@z?E=d @Q?L`5a׻Ֆ׻MPF2_CoefsBackup_2P/a????@@z?,bC@Q?`p6a׻Մ׻MPF2_CoefsBackup_3P/a???? @Q?=3a׻Ֆ׻QM_CovarP/a ????_\@@|*6}?@̄Rx?[bs nhʿ =4ls@ 4E?|*6}?SEB>:>d2Tnx ޻np&͡p;?L7)?@̄Rx?:>eO?>-鿈q YI!+wmp?L5S$?[bd2Tn-鿫$)=AS͕7@qSSLQ@VX{Kr-@q l-9"9Ss nhʿx q S͕7@g5c`?hBwx?\%BT?($ O&{ ޻np&YI!qSSLQ@hBwx?LQĔ?@綽eq?vpT*4|s=4͡p+wVX{Kr-@\%BT?@綽eq?G1\N?.JqS;Lsls@;?mp?q l($vpT*4.Jqә@7u:6@ 4E?L7)?L5S$?-9"9S O&{|sS;Ls7u:6@VFj??4a׻Ֆ׻ W_sigmaP/a ????0 `@)!`?Pdrc?ր@&.?/p:? bU+?őa@Cy?rHP4a׻Ֆ׻W_sigma_0P/a????0 `@r`05a׻Ֆ׻W_sigma_1P/a????)!`?Pdrc?ր@&.?`6a׻Ֆ׻W_sigma_2P/a????/p:? bU+?őa@Cy?0~ 04axػxػ4MPF2_ResultsListWaveP/a????2aPeak 0Peak 1ExpModGaussExpModGauss1.98212.2357(Not Available)(Not Available)713.5495.52(Not Available)(Not Available)205.35224.38+/- 122.55+/- 61.2380.2212NaN(Not Available)(Not Available)1.93152.1953+/- 0.0019689+/- 0.142412609.6508.75+/- 538.81+/- 143.330.0739240.41434+/- 0.0057226+/- 0.0716780.213030.042439+/- 0.045278+/- 0.157031.93152.1953+/- 0.0019689+/- 0.142410.0313930.17595+/- 0.0024302+/- 0.0304392609.6508.75+/- 538.81+/- 143.330.213030.042439+/- 0.045278+/- 0.15703 "(.=LQWfu{(/7CNTZgrz$h03axػxػMPF2_ResultsListTitlesP/a????4a\K(39321,39321,39321)\k(39321,39321,39321) \Zr075\W517\MPeak TypeLocationAmplitudeAreaFWHMGauss LocGauss HeightGauss FWHMExp TauGaussX0GaussWidthHeightExpTau8AIIRRVVZZccooyy MPF_SetFolder_4^v!4a D=MPF2ConstraintsShowing?negativePeaksdisplayPeaksFullWidth?panelPositionMPF2_UserCursorsMPF2OptionsShowing?XPointRangeBeginXPointRangeEndD@XPointRangeReversedAutoFindNoiseLevel$!@AutoFindSmoothFactor@AutoFindTrimFraction?MPF2_FitCurvePoints갪`@MPF2_FitDateDP{AMPF2_FitPointsD@MPF2_FitChiSq!-ʶ@YWvNameroot:'1ps(2)':col_40psXWvNameGraphNameMultipeakFit_Set4MPF2WeightWaveNameMPF2MaskWaveNameeinterPeakConstraintsFuncListStringaintsSavedFunctionTypess!Constant;ExpModGauss;ExpModGauss;MPF2_Results_DataWavesTitle@\f01\K(52428,1,1)Data Wave:\f00\K(0,0,0) root:'1ps(2)':col_40psMPF2_Results_DateTitleitle@Multi-peak fit completed 11:32 PM 8/17/2017 Multi-peak Fit Set 4mH7aػػBaseline Coefs4a????O4@A P9a׻ղػHoldStrings4a????08a0y+hP8a׻ػ W_AutoPeakInfo4a????(?@== ~D=C #= #= ף= ף=`p7aػػPeak 0 Coefs4a????@?H?VQ$Z@'8?`p9aػػPeak 1 Coefs4a????}l@ Hg}?>x"@ m`h?  6a׻ՈػconstraintsTextWave4a????8aMINK0:;MAXK0:;MINK0:;MAXK0:;MINK1:;MAXK1:;MINK2:;MAXK2:;MINK3:;MAXK3:;MINK0:;MAXK0:;MINK1:;MAXK1:;MINK2:;MAXK2:;MINK3:;MAXK3:;F~ { 7aػػPeak 04aڣ=Z????ffffff?KPOD2'=H.=^s˸=%mM=mO#=S~=.얈s=9 Ⱦ1=*==F[{u=HI>.|n>(|>9ǔt>B!>]")>_^h1>}%Ő9>ݦ)B>5^I>~`1R>X5Y>р. b>8+Oi>6#q>8iHx> ύ84>ֲ>D0>3,eۖ>\W>D|>VAR>sR|sL>I󭰻>}!m>hʁ>=XN>dC^>pɞLz>SBu%>MQV>&aJ>L-A>:J?/s-G?ET{ ?1t??T|&9 ?F &?2,?"wx2?Me8?>acע??*2vD?MfJ?[vP?̓CU?Z[?a?1$f?Y?Ul?Ƃ{Qr? | *w?<9}?YUVc?>u?k:e?\j; ?:|?YA?S.R?ݬ`[k?ս5k?x>}A??0jCn?Hֽ?*x-??S4?sI"C2?S4#?Ny߃?+:?apb?_31?L?g74?O?px? HG??t̉]D`@/@E1l@ & @'zj@P %ĥ@m@E?:@.@J>@:;!@ %}$@@b'@YG*@Lp_r>.@oK&#1@e_3@G>Ԝ5@.zt֗8@pU;@6p>@# @dHA@$7EEC@m"pE@ވG@ZH(YJ@DFM@O P@vhQ@`S@}g8U@2 0W@=<(HY@OdyR[@W]@= #,`@-50{a@u Pb@`lĝKd@ Ϛe@QUW]g@j h@@|j@y3xkl@6n@YLp@E4+p@DLTq@ or@7s@*1t@fu@;v@@tx@H"x6 y@kz@Q{@%j|@ڐ}@g~@LE9@f[t@q|@^c@j-`@YeEV́@nzw5@Θ@g@ziAR@C-@ g@CC@܈@7)?oɄ@b@$ҟ:@Dxk@F@Ě&@t8߅@aH@@21:'@bM6@)|d0A@XPH@XL)K@F J@ F@6M?@6*5@$$(@գ|<@*g@3`@sW݅@k$xŅ@@4琅@lt@aAV@;I8@G@ˡ G@D&ׄ@i@ʱ(@Syp@U(oM@*@;@ w@@0b2@dmNw@ oS@ΌU/@ @(9@iDĂ@U@Ghe~@&H[@lk98@yp@Mбs@ 'Ё@^CgZٮ@7 @P 7xk@_6J@ )@_r@w@iL ǀ@Zܦ@3C醀@1g@w*,z@H_y@fy@~_{y@,=LVey@R4y@n%y@Sx@QIhx@'=ux@Fx@;lzx@Ve4w@%>Gw@Ow@t`w@m3w@^-w@ցv@iݮv@ hkLv@WXv@ $-v@kԋv@&jEu@&`[4Pu@Ӭu@V[u@E Q2u@^9 u@b2t@!Lt@RJt@{Uit@2Bt@)5t@+E s@cs@J]us@~s@B@n]s@GOd<8s@6vQs@ur@wQQr@/:r@[- hr@(^r@<;r@?.ތr@q@h;qKq@dVq@{q@T3Zmq@+Kq@^nn*q@^ q@ۀp@±*{p@6>p@=^@p@`hp@aHp@Mߓ)p@UWH p@#vo@O^o@'=6]o@!o@}|6n@$#qn@^u$on@5n@m@x:zm@v2Sm@qOm@ ,Nm@ml@RM l@Upl@`M:l@C|Al@-Fk@*gޘk@"r4ck@@/k@re j@%U(7j@M!ȓj@IEB^`j@98.j@nfci@.#i@iXi@i}/gi@?fd6i@i@Osh@Ū3h@avh@߳"HGh@KdO;h@$ g@1Ilg@+ig@ }(bg@>5g@&;g@DZmf@sf@ȹf@YYf@/@.f@%f@ pe@tx;,e@\eR@J$N/R@i3dhQ@63NFQ@_(tQ@knQ@;?oQ@ﻛeNQ@<(-Q@O'* Q@%lP@ʛLP@vbP@#P@!jP@ SZKP@k|N,P@Y(f P@3NTO@&B]>"O@iebO@h&O@j,IN@vLN@|sN@9{9N@xmM@ M@cK턠M@# SM@dfM@ L@_K%L@EՖuL@ j>L@clj*L@&RK@ݦK@agK@.o 63K@J@TKJ@lUJ@,ydJ@ (1J@>̑I@2bHI@jYI@(xDjI@-U:I@S%, I@_H@YʩH@KkzH@:gKH@ wH@-[UmG@OY'vG@BגG@jJeG@]8G@# G@3cF@R?ҳF@/7F@ԁ\F@*1F@yZF@ E@O1t E@^E@`E@~6E@3E@YgD@LD@ ȕD@>nD@]AGD@ D@BfC@.me C@ޥC@t +C@R̀aC@obB@vo?B@B@Ԩ9A@ 0A@TGA@fRA@cݛ(qA@j'DOA@^Fh.A@ɷ6%h A@f@@%@@*@@܋@@'l@@aU-L@@%ӡ;-@@+v)@@7?@~Osno?@ |d?@C#@SN$>@b10v>@;>@2>@@!=@`ǎ=@rfV=@ྨ=@,Q<@N;<@)D$w<@7FMx@<@4 <@7k\Y;@Fr;@z|3i;@ 05;@C;@B8Y:@0X:@ f=f:@{3:@&6v:@#u9@\9@锖ۻl9@?_;9@Ѯn 9@V$T8@j╫8@-b3|8@I+M8@*~8@D;+7@\y-07@Z~7@rCg7@+4\P:7@t 7@ïk6@Jy6@ۉ6@^6@A&N36@6@V35@]LĠ5@熥5@%iVa5@rM"~85@HA$л5@XG4@'sp!4@_?8H4@o4@/QzH4@~[!4@g3@z3@@d3@V㖈3@fU"c3@q=3@*^E3@)22@Z2@狨2@b#̇2@L@ 4d2@~q@2@OJ 2@4&1@}1@b4261@_E :11@mr1@4NP1@a7mg/1@cߥ1@g0@oT^0@@0@Bs 0@qFm0@jM0@5N i.0@?T0@;U/@^kɼ/@kf/@Ǧ*/@;.@uc,`.@yhx.@^E =.@.@S%-@(-@r#X-@Pd>-@Ec,@2DZQ,@G7y,@bBԳB,@`+? ,@6k_+@p+@i~k+@+7+@ +@+H+*@4*@گ$kh*@by=5*@FZ*@ec)@'͟)@1,n)@V=)@dpSA )@ax:#(@-a(@, }(@|N(@IJ"@ (@^B'@c7c'@mE'@Uh'@>&<'@b5`'@1N&@A7 &@X~&@21`&@S975&@} &@9%@h15%@]bh%@ /c%@&b :%@8J=D%@[B$@_+$@sǘ$@< R8q$@I$@*/"$@AJFO#@9<@#@E<ү#@#@r\{d#@ O;?#@s D#@d;D>"@y("@8l"@@~h%"@ZzIe"@5B"@4#"@+U!@K9!@Ae6!@9x!@P's!@5^u-R!@dȟ0!@!@[- @- @РO @"VlE @xn @meN @&}M/ @Ƽ0 @aI@;HO @m]@i@[},@ W @3@~6z@n@@ZC@J P@ނ@L;FZ@ !@oT@[4?̾ۥ? : 7aػػPeak 14aڣ=Z????ffffff?I&H@eTF@&;@Xp@(C @/$P>@?$>M@ɿt@t Ѡ@[C_jXQ@a1E @3c @l @B @G} @3Zr @{h @ i=@.[c@#@EuQ@j@߮@&@0,o@Ѽ` @ @la@k3ϭ@*ol?@l-l@D_m@:c @ q@)g6N@ba2=@{%/KD@n`R@2,Rv@?*@e|@"D=@{hH@}UhY@;>Y@=y%8 @[ @v!!@ݱk!@vmAeD!@,Gxn"@!"@vc#@$:#@sƙc$@\,$@/rn%@3 %@u &@v#F'@ |䇩'@(?(@S(@$Xv)@Oyo*@gZ*@iia+@Y ,@/,@*,k-@B+(!.@ϏB.@$@e&/@+0@mmB0@)L0@cZ_X1@f}:1@>+2@#JЅ12@f3@&@w3@Yq/3@<\`4@dx4@͡R`Q5@Kk25@X L6@! 6@OMP7@my7@&c^8@q48@ILv9@X:@sv$:@ff.;@3X;@ Ea<@`v<@̲=@vA>@t_>@FG?@#@@Xr u@@;^@@@X(A@A@M"A@++AB@<ˡB@L+C@ݶIgC@y34XC@/z4D@HD@E@t)psE@1 ȥE@]QF@F@' 6G@lMG@A$ƣ!H@ hH@jI@əI@}1J@W1J@K@nK@NO-L@XTIL@|\+M@J~M@vEN@ؾN@M1fO@OO@r"h6GP@jNP@iP@ KQ.Q@>xC}Q@eP BQ@JNR@UipR@KR@srS@it/f$mS@SS@ЭT@h[sT@u?T@KN(U@nރU@sx(U@>V@TOV@v@eV@4WQ_W@1ZW@J&X@̊X@WX@?WY@=Y@U:)Z@CL>FZ@z;Z@VZk[@V)$[@5H\@׸\@G*]@=yp]@2R^@r^@t@2ht@iL_t@Qt@qXt@Tbu@&]Hv@aw@x?b-w@cUw@կ}w@_vw@ w@ow@4y]ޥx@̾Bx@t.ix@bx@ px@zvx@# y@nlM&y@&QwBKy@Xdoy@v =y@R@y@OYy@s 7lFy@" F"z@׷ϊDz@/Xz 5gz@b z@Jбz@H+z@kTz@ \a {@ ,{@w L{@`f+k{@Ѕ*r{@U{@{@Ǔt {@ rD|@4\D|@8`9|@߼5U|@jUp|@jM|@Ц!|@ `̾|@w+|@>zV|@_}@dtp }@zLv7}@*N}@6 ?=d}@Cy}@-Bǎ}@N<}@r%}@Ҍ?}@-M}@LM|}@36~@kP~@!"~@2~@y*B~@GX_P~@l'_~@S`l~@Pb9y~@%G2~@~@O/;~@"Gק~@_pر~@(=~@%E~@&z1~@;C܌~@~v~@uk~@D>A~@=~@aCD<~@`E~@]F~@.~@u=~@'3u&~@< ~@!`~@we~@9~@'\n~@'~@G~@FM~@ѹj~@~@~@ho~@Ũ~@xQ0~@u~@uBh}~@Gp~@)O3c~@'/7U~@HťF~@27~@YŴ'~@9/z~@U?~@R9/}@2}@1'i}@Yǎ}@}@}@Qi}@3Z׿k}@W%#U}@6?}@(}@W}@Q[|@(N|@w|@="|@*;R|@Zr{|@x ^qB`|@'@E|@$U)|@l0/ |@L{@E {@{@D@f-{@{y{@Wl[{@);{@zKk{@(6zz@ 5%z@7nz@8PXz@Poxz@2mWz@4z@?,gz@}ώˍy@ $H_y@[ިy@vl= y@?xR`y@m~I@s@0Cs@ is@݀7\?s@Is@Wqr@PXr@xM_r@Dkr@NbAr@oEr@3ghq@SPq@P}q@`nq@adnRDq@Z~Tq@#0Igp@p,{p@`S")Ȝp@BSsp@ĀIp@:f p@8o@fo@LHo@I0n@'kRn@m2pRn@7W^n@G>Mm@l_m@MII m@-ھl@H2nl@zMpl@9k@`Xk@Z m2k@p-j@Q֖j@ fIj@f&Wi@(5i@~dci@ȩi@:a, h@}Hh@[6h@A 'g@koag@Ukf Yg@}l)g@>f@Cff@];8f@6>=e.e@%9e@^ de@./e@ d@7@Td@ZU)Pd@uN d@Z(c@?O&c@R5aEc@c@l/Eb@tb@XAb@1rb@Bma@vDa@IFa@_ a@i`@ȭL`@0I{T`@c 3`@x_@s|H_@t 4^@_jb^@ae$]@ǁ]@l*]@\@ї5(8\@Dv[@wa[@\GXZ@~SZ@cޔ(Z@_0TY@4-*]Y@)+X@FhX@)vr)4X@QW@.sW@"ٯW@nf:V@@FSZV@v0+U@!_oU@YKU@T@̿T@nET@iCNLS@X"S@HS@eR@(q̥R@M$SUR@FR@޼'Q@ICGkQ@oawQ@}&SbP@HP@q(AP@VVO@ȫ cO@f^$N@5LN@tmM@\=M@OEL@?4L@鵳K@pRx?4K@ cJ@ַ:J@"?I@'IHI@WFűH@8J\H@%ݯG@Ƙؠ=xG@@zG@+"cF@3R-F@) e&E@ۂGYE@d裮gD@mmD@$_(D@S/C@ƽscC@uC@VޥB@@IB@IA@CnA@K&;A@6+@@OM9@@61;@@Nd?@՚.?@#X>@n=@V=@<@(<@k;@";@&3w:@g9@$zb9@R,8@XpW8@@B?ؼ7@\mV7@Gih6@) ]6@Vj5@xm5@ 644@ a4@\ Q4@=3@ԅϮ;3@ b2@fi2@?2@i=1@mR ;1@0@O@|0@}0@:/@+r.@O$.@I%@x-@,ȼ3,@X4`n*,@8 %+@aj*@}ZM*@0B)@t)@$(@5'@n'@߱Ƴ&@|_d]&@wq%@OV%@- )$@|RC[$@nYH#@g i#@$S&"@x/0\"@^B?"@&nʚ~!@JO9!@䃸 @ Gh @D @gC@ ̏@\s@!& @amX@S+xmҧ@Dzw@j;%Q@O@M @&Al@M!{ M@,;@af/m@\@԰҉@{!]@Rx@AH,@*@~XA璦@{k@o; @GUPC @pp @V| @7I)b @ṞU @8S @v0@91Q@0;?@.vdD @*q@[3p@S?FD@eR@uH%@j]@J=^{@I@bXX@ U@F@`@ƚQ@Dͭ1@K>?e?Z ?s ?+/ӡ3?5/m?͐&?#? bM8?G?pE?_޾j-?`{k!?=1k"?USJ??Ǔ?$u?." ?!m.u?=1?T[.m?|';?Ms?2E?g!?gt*?KaM?P+v?^ &{?dfA?~:?kc>Q?Y??XB-?_ʕ}?z#v?ClE 5?$?ß?=ae?[\L?>ɜGE?H6?!4?'ʼn?}J3?`Ep?pv i?p?B"_?u<ڊ?ܛ`?k5?r"k?q?A?/90? (R}?)8?<%?C-?Hecp{?vHEiF?ɬ ׯ?$j?ay͵?6e?&&?r?1?Vth4 ?a?܏7?EcCX?㼓:?7!?HxH?k7?k$Y?8+ ?8?Th:?y|?9>?/J?#K/?v?LUM?|sƑ?!Kh#o?oaӿ?3u`Ѿ?P ֽ?]9P? jk?Ly<Y?tT!7?Kg`?䐸?H7yǷ?G?*G?vחЏ? 1޴?+Q2?K U?y?Vs@M?3W᝵? EԹ"?ؾJo? 鶛 ?'88 ?v}?쉹) ?#?sU/?LH=L?Ѩo?M1?NL,̧?JAP:?B? $;? YMѤ?X \)"?I O%x?D?Ӣ?nthH4??_?xt?Uiџ?/Iž?`$?aؿ? ǿʛ?4dݚ?䩜%?gy&?4&?`C?߽s?^Ҹ?4V&?ψ7,?PPv?y07%Ɠ??-ӍPw?Cؑ?Aܸ>?w^7?}ved7?[@B?P?e< ?Įt?? 뷥/?SL?>7Op?E0U,j?]͆?8?JF?, ]Z;?y;ك?D:9,?E[=?!Rt?9E?Jn?Zc"?5?B ~?n8}?z|?BBh{?87T z?2,*:y?-[x? w?ɔہ\v? u?=+u?ot?,x"s?+R| s?cr?]q?r'si#q?._p?f o?䦓an?Βhm?κl?˙Ck?Cxj?e#i?Qh?޴`h?٭;g?kf?淣e?|ɿ{d?=m'd?Jօsc?z"b?y5b?`{a?!P'`?`H`?dv6l_?zDԌ|R^?bB]?p:;\?B>[?IZ?y]Y?1yX?|W?F"8V?KS2U?︽M6U? DhpLwT?gaS? S?F0:IaR?;Q?f'Q?M7P?)iGyO?b8N?|Q1ulM?')L?4K?ӛJ?uyc.I?OsH?G?P G?t :F?5ǹpE?dK/ {D?dpC?'l=8>C?漏B? x#dA?XMDA? 9a׻׻Peak 24aXZ????Z? æ'@,`LB@[\@Y^%5w@ a)w@OS@Ń@vݓe߃@_>"@N:@+@ jF7E@ ѥF^@$*w@8;㏄@ \6[p@E/@$ل@S@l<6@Vgy @ 7@;eE4(O@\03f@ }@,k@!/@7L@}WIօ@p@@܏}@w4@};,@Z&@@y~|U@;@i@qpVH~@::呆@}WJ@J@6Ĕ@㲌ކ@݆4@?@Ix'@T\4'@װa9@>J@10[@^l@Vy,|@@]Uќ@c@(@鬧ʇ@TWه@@ |/@Ypj@<@k>@Jp+@î&¤7@8C@DO@#Fwa[@æf@.B@\q@M$<|@؍@"m,@ėc(@Cey@:5u@,@Wobl@ gň@L J ͈@XԈ@keROۈ@1@ȡ%6@`%@gy@@@^@b2|q@>ށ@'8f @@ss(.@w@@s@R9@Q@B>@B~@6|@H@H@6|@B~@B>@Q@R9@@s@w@ss(.@@'8f @>ށ@b2|q@^@@@gy@`%@ȡ%6@1@keROۈ@XԈ@L J ͈@ gň@Wobl@,@:5u@Cey@ėc(@"m,@؍@M$<|@.B@\q@æf@#Fwa[@DO@8C@î&¤7@Jp+@k>@<@Ypj@ |/@@TWه@鬧ʇ@(@c@]Uќ@@Vy,|@^l@10[@>J@װa9@T\4'@Ix'@?@݆4@㲌ކ@6Ĕ@J@}WJ@::呆@qpVH~@;@i@y~|U@Z&@@};,@w4@܏}@p@@}WIօ@7L@!/@,k@ }@\03f@;eE4(O@ 7@Vgy @l<6@S@$ل@E/@ \6[p@8;㏄@$*w@ ѥF^@ jF7E@+@N:@_>"@vݓe߃@Ń@OS@ a)w@Y^%5w@[\@,`LB@ æ'@TP:aػػՅfit_col_40ps4a0ӈ????ffffff?5AԹAotADAJzAQAAA5Bm BB7#B[2BCB@XB^pBBB BCCCJCC[HD'D DDWDbD(fD:fDzmcDu_D\DtYDVDTDLRDKPD|ODNDLDdiKDID5YHDrFD=yDDHBD2p?Dh5D1D,D'DDž"DDAADAD D`DCJCC™CC8CCCC~CCqCw_C4\MCqm2@#"*@`>/@ 47jT@qi&@5K`~N&'@fhAPq&<@N;)@eb뿀߄~. j @W}@@"ҐP? ũmv>I?J2@@xǍ@*AcO.#п~V>$nG+(z^  JGSrǷ夁itBµZPxs4@܈HA9i@q?*V@C?ޗT?[iSeYh§P . 8aػػBkg_col_40ps4a$ij????ffffff?~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A~A@09a׻ػMPF2_ConstraintsBackup4a????9aPHp:aػػblepswave4a????ư>t`9a׻ػPeak 0 Coefseps4a????ư>ư>ư>ư>s`7a׻ػPeak 1 Coefseps4a????ư>ư>ư>ư>mXP7a׻׻Peak 2 Coefseps4a????ư>ư>ư>H07a׻ػMPF2_CoefsBackup_04a????Gs+7@`7a׻ػMPF2_CoefsBackup_14a?????@z?E=d @Q?`8a׻ػMPF2_CoefsBackup_24a????@@z?,bC@Q?g X9a׻׻MPF2_CoefsBackup_34a???? @@z?.e@9aػػQM_Covar4a ????qm@@yd ?}?ℲZax?Ȣ ʿ0/A^b⿑hN pD<‚@{lsn?yd ?}?rT:>i&ŕu>"p#c鿱?׽&q_:= W?v9)?ℲZax?i&ŕu>Z>sO?鿞3@ M8:!" 9 OA?$?Ȣ"p#csO?鿞AEu 7@`eɂQ@2&-@EE(GoS ʿ?3@ Eu 7@h4`?$0x?~T?9$07c?V!ր@s]c.?hX"s?1ї[?/a@[aIYxR?4H:aػػW_sigma_04a????Γ@ԃ`P7c?V!ր@s]c.?`>aػػW_sigma_24a????hX"s?1ї[?/a@[aIYxR?X;a׻׻W_sigma_34a????ݖ?e?̸aػՈػMPF2_ResultsListTitles4a????=a\K(39321,39321,39321)\k(39321,39321,39321) \Zr075\W517\MPeak TypeLocationAmplitudeAreaFWHMGauss LocGauss HeightGauss FWHMExp TauGaussX0GaussWidthHeightExpTau8AIIRRVVZZccooyy MPF_SetFolder_5^v!D _B`BgBBeBBBB.BERB]BBMC,KbC7CC{Dm2D|lPDgDMvD%}D~D3zD4tD8lDlcD)\DUDNDIDED.BD?D"=DBBB`BEBRB#BuBCBBxBoBB B͖BYBRHB_By;{B.vB qBSlB=gBcB_Bc[BXBTBzcQBENBOKBHBdEB ICB@B>B?eJ`a hPeak 0 Coefsepsư>ư>ư>M`` hPeak 1 Coefsepsư>ư>ư>Ha hMPF2_CoefsBackup_00/=n=e=:a=x=6b5ĵ=ᨒ`= N3#=WT=o0=[ =BO===I5C6=%EA=g/Ƶ=O>oG4$f>'♗>ܠ?9!>L3mx>k̿#>]*> aNټ;1>76> e-!>>u0TC> H,J>:a5Q>,!SV> Pם]>>:ac>onSi>(mp>0fju>%q${>kǗpg,>i]S돇>p7>_൓>m#Vo>8b>8X>`+WU>Bb3[>M|[9>.h>;ck!>L=!>/e>8>J%> ]>BgnX>_@,>M >Bdž>I=> 'C? ~}Sr?C/DG ?Iq|@? ?"X=?3!?6S %?,*?&%x0?! u4?d09?I>?-{!C?ŒLG?gFڅsL?QԥjQ?f^n?U?(Y?*AIy_?CD:c?ܭ$\e+g?`. l?&:p?!tt?"Tɥx?q2}?Uaaρ?'Ofl\?~ל?[p?H A?:tzÕ?: ?辱Ȟ?4\C?8p?MwO?F:?:(ұ?l?ʺb?g?k?yuqk?I6?˜?ml:y?7Y?+AbP?vZ? ?o/x?\k?x`n?Oΰ?W?yE p>?c?`ra$?-?ʇ?P?2%h@@Mz@8g@l粋@dP @Ǽr@}y//@=B^@Ez@ ~@F>G|@$@#)/k!:!@|>#@kw%@Ļ'@s*@+-@GNEa0@#2@%:v4@Mc%6@fP &k8@&mcrA:@$cd=@y+:@@2A@YKyC@cXIE@H=G@6V$UI@gIK@%rM@9DP@2SQ@}2QeS@@ T@qAEV@NL"X@N$Y@D1U[@K+L]@}&Ƒ_@a@[Lb@bAc@Jd@AI0f@g@Mȧi@oj@<(l@jm@h*vyo@ $p@q@Smkr@Az\s@Q'Tt@A|ZPu@#Rv@BWYw@e2:ex@I&ty@vӇz@| j*{@\;G@|@M0J}@I~@%>=@w@#bt)&@@-'D@ ;҂@~1`@#LK @{v@o@v`@5 @ {G@5< @2󆆇@([&>@+kKt@7B@c+K4T@NZ:@71$@wb@C(}q@JE<@9$@t9@},@s@Wᵌ@@,@'|u`@_ِ@@\&\T@\|f@w>t@k:T@OIYM@`щ@x*L@g`@C,@g,x@ ňkl@X9Z"^@2`M@@yI:@a/%@Ϊ @2vf@[Vٍ@yצ@nR@ߧ~@nW]@%)fT;@u]@Xޞ@nyYΌ@yWXA@ra`6l@?CY@yg1@MF @ l>@tԶ@Wm@}\c@1t _8@r@G@1&G@|򺫗@#c@9P-9@ @0@ky]@f@iVfMd@f"u:@˘"q@O@[VN\鼈@c l@ j@, A@ n)@7K@}cLJ@٢ٞ@lv@p|O@1&g'@`>V@IKNن@lJ@P@Oe@k8'i?@]}@r0@4kd΅@_$@R焅@f()J`@#JK;@ dv@_8e@7Є@cʬ@FԘ@V̢f@aC@xvg!@y2΃"@g"-3݃@*E@( @\Nx@26_(W@~~y:6@_:@DR@P`YԂ@:bK@'Ք@'22u@aU@6@Q@?M@`ݺ"ځ@ @@ @*O 2@Ra@Cog)D@aB&@(m, @Ό@ջπ@:@t@mz@GfU_^@HpB@'&@#6P @v@q@H s@RA>@#[ @;6~@޸~@QFk~@Q&v7~@x@np_dvx@*Vtw@߀w@Aw@ sw@8"Kw@BZy#w@њv@׎mv@ v@OJrv@%牚av@:v@r!v@%rFu@;.u@'w.u@J%:u@*[u@ۅ@7u@T u@iɔ>t@2vt@Rp 1t@-Ct@Qbt@钢_?t@8t@As@fs@׶s@4lFs@;ƛss@\Rs@ĉ|1s@g9s@nor@5r@X.yr@( r@ qr@LQr@Ms2r@A6hkwr@YJq@q@_E澷q@q@Y{q@]q@b+@E@q@^"q@&oٸq@1p@0&p@4Yp@ قIp@Ňvp@*qZp@Ttn>p@]:-#p@p@跕o@5㖢o@Յlo@77o@#Ro@1FEn@XWӘn@4Edn@"0n@rm@>іm@1^ȗm@*8Cdem@PqsW3m@Gm@qO;l@?X,l@F:upnl@?\>l@ l@x,k@`3k@Ik@!Pk@B"k@Rj@**j@Ej@Jkj@WN>j@j@vP0V@+c0 V@b,ͧU@j_U@ЭyUU@ʋvU@LRU@ :-U@yP U@T@hyjpQ@m3%sQ@VQ@Jlj8Q@7/Q@P@RGP@xibP@OէP@yP@Kk'NoP@mRSP@SY7P@|P@ {P@pSyO@ecXO@jfF^O@3))O@AN@)fN@vI N@Tz WN@! b#N@f+')M@RcM@utM@n(XM@Hb1&M@lʏL@2BL@/IL@R>aL@""P1L@^NOL@V6K@åNBK@=g_5sK@#wDK@H\ K@jJ@J@Jϔ虌J@ke_J@2A}2J@&J@͌廓I@ WI@ ,{XׁI@t#iVI@,޿D+I@fiI@*{H@m]H@'H@3a9WH@ڬ_`.H@4H@|MG@KxdG@ҟRG@{9d;cG@Z϶i;G@ mG@p2F@AF@9F@l+=xF@4QF@F+F@U^9F@ zD@!A *wD@7ZQTD@D1D@==5RD@q\*C@d*&B@!>xlCB@.A@ A@ӗȫA@ ;A@&MoA@dcfRA@R9{4A@TA@͚:@@R@@Ǣ@@Gz@@(⿇@@ P㉚k@@O@@i L3@@h[H@@k?@P?@y$;?@kyW?@%"?@dX">@pRy>@"2+>@L랃5P>@|M>@sR=@)d=@>̓=@ɳ\vQ=@Sy۠=@f@ <@0ȼ<@`ً<@5>[<@2*<@z;@$]3\;@aV;@Om;@_tS>;@W;@W|:@:@o:@,tY:@0d,:@+6a:@Xh5@9@ǧ9@+P|9@g P9@ᎊ%9@[{,K8@gV?8@8@D|8@ ПWR8@(8@xA7@%7@U(V7@~7@]7@DBw-67@k˧7@je6@ae6@p6@`-s6@p|L6@~~`&6@qwC6@k5@Uf㓶5@['^5@l5@8fH5@>)$5@w*5@xh4@44@v%4@GOr4@ JO4@#9(-4@! 4@uk3@մ?_3@ 3@ 3@Uinb3@olA3@a4E 3@_3@{Pַ2@[ 32@7)2@[2@~s`2@3|(A2@i"2@6n32@V|1@ E1@%7`ͧ1@,1@! |k1@̒7N1@ Nl01@-+'R{1@ X h0@*@31S*@F}6&*@N<+)@[79)@G;)@21[v)@xK)@41)@'ȡ'(@ŧ.A(@r(@X^v(@{baBL(@g[}#(@ĄUc'@0铏'@E`V'@&'@ݎX'@0'@.|Uv '@E<&@[, F&@&@c!%n&@SLEG&@ۦ!&@N%@^eT#@I"@uw"@ц["@&v"@8%:{"@m&{O\"@FR ="@Fd"@FV%!@΀!@7;t!@kӣ!@[Nʅ!@:g!@kQJ!@v=,!@LZ!@#n @Ic @+ @YP @ɥm{N @H5d @QLH @L, @+m  @\@P0e@Қ@pjeI@LX @F25@a@ڤ@٨mv@j_B@7Ag @ )@@7v@UhXD@ ܃@I(@)ׯ@R~@*8zN@bG@!nPg@xiؾ@ !|@I`@pYj2@y3@IyI@F@  a h hPeak 1rT;> C?>6A>FC>H -F>_mI>棭, M>5sP>-\ٟR>\mU>lyW>\.5Z> ^>E%K=a>:zc>ybcf>ISh>=X l>?CWo>g8q>m!t>8d v>ο!y>Ī)|>>9>Y@C>8H>4d >6uz>!3T>>#qo>%dv>r:k8>~`DI>j*#>`oS>=Gr>q>dI>1u*>m׌>m>2DD>t%4>b6PX]>߄ODƶ>V` v>6|t>]ʿ>[5>>ݲ>H0>np>XYձ>V?>7mœ> ?B;>D75>'4P>fH>#I>o*> Yu~">k#`>Prr>C>Mzc>a>q >k>4[KJ3>1;>:m}>T*S>;Ox?fs%CV?vye?/?-1? 2?r17Fv4?no6?WH9?rx;?>ɾ%>?j6@?(T"B?FxNC?fwE?$KoG?yR$J?dQ,L?rcRO?a"Q?T VR?E~T?ǃfV?styX?ŻZ?P?1]?hb_?_Wv!ba?`e@&b?d?Y5̋f?P>/gh?sj?I;O&m?o? m?+ M0?5I?|#T?,Z1e?>ZiXP? W9!?R1B?{TO?UU?$p?E0?: z՝? ^ ?8_??}6?5ɥ?"z?OwK?ɡ=?ycS? yJ?j?ݑC?Kv?A?k?vj[?ɉp'? ?}9 ?Hy(?(S?4`?+2?~S??# t?tPք+?(g?? ?~Q;?TktI?Ɲ?J?D?? Y?~)?Fx?y{?9S\?7l?lJ=d?' ?p?wTY Y?c+%I?/^B?|X?KP?,.kG?W[.rm?/n?)^?-g0?{UX?9*?OE?Jy3?4% ?`q=?2k?\y\?s @._j@l%@MZAS@~z@u}( @)|K@^@f}@S) @Do֓ @^|) @c$@V/%@нhk(&@MEj+'@$C8(@;O)@p*@+@x=,@bJ.@'%c/@{ƿy^0@ʒhf1@8h1@(~t2@1qO3@C?4@|$4@p!G85@ P)V6@257@@8@HRy9@ϋaw:@ b~;@ܢ<@=@6<>@U?@g3f@@EY'A@#A@|kB@[kJC@TC@*EsD@y)E@iuE@5VF@p2hG@[11H@wpH@X;]7I@XOsJ@?n2=K@eeL@~i$KM@c5N@!;%O@ڷ P@[TgP@IbrQ@Q@{z R@R@lsS@RާS@a,N5T@kT@%/WU@pU@8 >V@;#W@>g=W@'wSX@7tX@F`Y@ j7Z@A1gZ@0]ۄ[@2.\@}z_\@B>LR]@Pz4^@foJ^@h!-._@[GJ%`@Nl`@H)`@76a@B&]a@Ba@9Mb@}cPb@(.8q c@E%hc@vG0c@Q\`&d@Btcd@Fxd@̊kEe@Ge@q᡿f@I sef@fjf@dW B%g@p@vQ}_p@Op@Fp@/p@p@Ȭp@K/q@rG.q@{OlHq@G"`q@j~lxq@b~ˎq@`TN q@ (6q@mЎ:q@9?q@L<;q@/n@O}m@}m@tRm@Z>CDm@]l@Vnl@/*!l@5$k@s.mk@S6k@5-j@+wj@ڻ'-Hj@i@m,i@ sqPVi@w i@Ԛh@eDdh@@Oh@1Qg@Lpg@,g@9Ef@ɱɴH~f@N-f@|9fe@wOe@ ~=e@jd@[_Оd@3@,Pd@*&d@ KyLc@W~fc@c@hb@EYb@I4a(4b@Qha@5p+~a@~jTUa@~; a@tY8 `@}*|`@we4`@3;=_@d<&=Q_@D!^@z{67>^@B"]@lԚ 1]@ d\@S)\@Ć[@vN([@ep񣨪Z@s .Z@˃Y@~"9Y@y7=X@*KX@IW@cW@SDtV@ӪݩV@ |{V@üU@;S@t^R@)w|R@uR@eQ@pfQ@2 Q@."tP@QEG^P@ko P@yMjO@! zN@5$N@rJM@y61yL@w.vQL@_;K@7\'K@ԧGJ@!J@i bp}I@"oH@ji\nH@KHG@xpwiG@~F@^Χ{nF@=hE@_ }E@dbxE@F}D@Sn$D@k)׷/C@ JC@i{޼ B@e;,xB@]fB@_A@yLA@.J@@@ @@ K3@@ e?@if?@͍FV>@˕ =@C=@*>f<@ ;@Ra.,;@P(:@h9@ieBn9@į8@IO#T8@ïpٍ7@/E7@Ƒe 6@բuC6@d5@3 K5@{A(4@gż]4@-3@yׅz3@z[ 3@$2@72@)V1@l1@ | 1@0@hJ0@-{/@J C(/@a x.@oq-@P["-@ ~_},@u+@[.=+@> 5;*@% *@lv;x)@xEy(@{%@틯[H%@ Յ$@xY$@18#@X9t#@Oa&#@7"@Kt-0"@7p!@-Tc!@=-ѧ!@ @yXA @߷@;(@|Բ c@6k@ @f @4`h@6~@=ˍn(@XӢ4@}JK @8?c@lΌ۹@L>jE@I>@!wv#4@L~* @$.@)xƑ@F5@IPT@Ő{CF@@,a@iy$@l@V'@a@R@) z@x @G0@3~@jS@}BD@1Qf% @6xԜ @J @Z9ش @UDF+ @U9"r @{P @8EH @_jI@.ǫ+@ۡ@"88E@,E@h 8@4@113@@ҺaU0@1h[@L@5@9s@Yt @v赣@D??@@/|@7!*@^熆?B?"n#?Fe w??WSs+?0|k??fRp)U?0? ,?P{.?2{??@? (~?˞?a~? _?4A?9)?]۬?7?ǧH?,QD_?O*? S?W}K,?v~u}?jGj?6#[ ?kc?%ڸ? |4L?7cW?G?+? ?i"m??58?0a ?w?dcq?w?d!tn?2?^$f?kF?"i?6ʘ`?h2x?pX\#?&Y?*K"?0K? K?R?m}?ӊh?b?\X?R0h?X06YA?E W?p8J?7?p?om) ?ݐ$N?(up?^?B?-M?N?(g?m5H-?]IT?eck? M?6|?sJR? h+?p#!b?;M

V?Ҏ??!h??}uP?~4?l|? s?,kO?%mҵk?o?jВL*o?4;?~Ck}?&b ?얓?l/Z'?poD?d?O? IR?fZ?Gq6?|Y-?;\?x6Y?oeI?2n?oچ?*"5`>?Iӗ?ok?CU?zv??l?!?!=~?u_?υi 9m?m ?B\Z? ]Ն?U:5 S?Ӆ?RW?BE ބ?41g?1? 3`?0iI?8P?w;?(..Ӂ?n? ?9Dũ?siJ?;(?~`&S&?yIu~?^  }?36}?J*`x|?Pp:{?㐰7{??^wz?S|4z?N#%py?cHx? <[Rx?d7@w? B.f@w?b|wv?ߚ~:v?u? @u?sft??Pt?gK s?3ks?zOr?܋(r?5)*j'r? +_q?YO&Zq?MQp?(Fmqp?8p?Mo?^qo?Z;Sn?O'm?W/l?Yl?~㗜k?"k?Thj?0G~i?CTi?\h? &7h?9[g?FV@&g?*N0f?H+ "f?'1;e?sndK(e?jMaData SetNameInitial GuessHold?Epsilon TPaNewGF_CoefControlListSelWave0a?????B NewGlobalFit_StoredSetups!0a LastSetupSavedoredSetups!aD=NewGF_RebuildCoefListNow?FitCurvePointsi@NewGF_MaxItersD@DoConstraintsDoWeightingDoMaskingDoCovarMatrix?DoCorelMatrix?MakeFitCurves?AppendResults?DoResiduals?DoLogSpacingDoQuietDoFitProgressGraph?NewGF_NewSetupNameNewGlobalFitSetup@٪@ paNewGF_DataSetListWavea????aOPaY WavesX WavesFunction# Coefs1@@aNewGF_MainCoefListWavea????PaPaCoefs- K0k `aNewGF_DataSetListSelWavea????QFH`aNewGF_MainCoefListSelWavea????0aRbackColorsZG@paPNewGF_LinkColorsa????Sվ\ڞ;$rsѪ#<[ԾN Sڷ`ᢋ6)nx@VŏI߰e规1.i}E̔D|j߳-2dްJWә?woخ(7_ٷR Os6<nSVڷ`I)x1@i߰eD.|ô}-Edްj?2wʹ(J_ٷWRo;7rѾ# O[վԾ\N $<H*hVDփq#鯜_Ilۓɽ۶3$!mN<z*ۖhV$҈m$HEm3q!_MyHҸT̬@aNewGF_CoefControlListWavea????aTpaData SetNameInitial GuessHold?EpsilonTaNewGF_CoefControlListSelWavea????UB WindowCoordinatesdSetups!agc aW_windowCoordinatesa????VaNewGlobalFitPanel37.552.25573.75533 # WM_WaveSelectorListetups! a *8d TXET????FittingFitting#pragma rtGlobals=3 // Use modern global access method and strict wave access. //Function FitMySpectrum(p, x) : FitFunc //WAVE p //fitting parameters //Variable p[0] = xo //Xoffset //Variable p[1] = A //amplitude //Variable p[2] = s // sigma parameter that determines the shape //Variable p[3] = T //exponential decay constant //Variable x //Variable w1, w2, w3, q // local variable // Body code //w1 = exp(0.5*(p[2]/p[3])^2-(x-p[0])/p[3]) //w2 = erfc(0.707*(p[2]/p[3]-(x-p[0])/p[2])) //w3 = 0.5*p[1]/p[3] //q = (w3*w1)*w2 //return q //End Function FitTwoPeaks(ww, xx) : FitFunc WAVE ww //fitting parameters variable xx //Variable ww[0] = xo //Xoffset //Variable ww[1] = Ao //amplitude //Variable ww[2] = so // sigma parameter that determines the width //Variable ww[3] = To //exponential decay constant //Variable ww[4] = x1 //Xoffset //Variable ww[5] = A1 //amplitude //Variable ww[6] = s1 // sigma parameter that determines the width //Variable ww[7] = T1 //exponential decay constant //Variable xx Variable w1=0, w2=0, w3=0, qq, ic // local variable // Body code for(ic=0;ic<2;ic+=1) w1 += exp(0.5*(ww[2+ic*4]/ww[3+ic*4])^2-(xx - ww[0+ic*4])/ww[3+ic*4]) w2 += erfc(0.707*(ww[2+ic*4]/ww[3+ic*4]-(xx - ww[0+ic*4])/ww[2+ic*4])) w3 += 0.5*ww[1+ic*4]/ww[3+ic*4] endfor qq = (w3*w1)*w2 return qq end ,// Platform=WindowsNT, IGORVersion=6.372, architecture=Intel, systemTextEncoding="Windows-1252", historyTextEncoding="Windows-1252", procwinTextEncoding="Windows-1252" Silent 101 // use | as bitwise or -- not comment. SetDataFolder root:'1ps(2)': DefaultFont "Arial" MultipeakFit_Set3() MoveWindow/P 57.75,119.75,557.25,414.5 MoveWindow/C 74.25,367.25,1004.25,497.75 String/G root:gWMSetNextTextFilesTextEncoding = "Windows-1252" // Text encoding for "Fitting". Used by Igor Pro 7. OpenProc/W=(25.5,300.5,513.75,549.5)/J=250407 "Fitting" Graph4() KillStrings/Z root:gWMSetNextTextFilesTextEncoding Window Graph4() : Graph PauseUpdate; Silent 1 // building window... String fldrSav0= GetDataFolder(1) SetDataFolder root:'1ps(2)': Display /W=(405,69.5,885,388.25) col_40ps,fit_col_40ps AppendToGraph/L=Res_Left Res_col_40ps SetDataFolder fldrSav0 ModifyGraph rgb(fit_col_40ps)=(0,0,65535) ModifyGraph lblPos(left)=54 ModifyGraph freePos(Res_Left)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(Res_Left)={0.8,1} Cursor/P A col_40ps 14 ShowInfo TextBox/C/N=CF_col_40ps/X=0.20/Y=16.37 "Fit Type: least squares fit\rFunction: FitTwoPeaks\rCoefficient values one standard deviation\r\tK0\t=2.1499 0.00935" AppendText "\tK1\t=800.41 7.78e+006\r\tK2\t=0.076092 0.00382\r\tK3\t=0.18679 0.0132\r\tK4\t=1.2686 0.169\r\tK5\t=-84.904 1.25e+006\r\tK6\t=0.22683 0.0258" AppendText "\tK7\t=0.029956 0.00203" EndMacro Window MultipeakFit_Set3() : Graph PauseUpdate; Silent 1 // building window... String fldrSav0= GetDataFolder(1) SetDataFolder root:Packages:MultiPeakFit2:MPF_SetFolder_3: Display /W=(389.25,80.75,783.75,289.25) ::::'1ps(2)':col_40ps,fit_col_40ps AppendToGraph/L=Res_left Res_col_40ps AppendToGraph Bkg_col_40ps AppendToGraph/L=Peaks_Left 'Peak 0','Peak 1' SetDataFolder fldrSav0 ModifyGraph rgb(fit_col_40ps)=(1,4,52428),rgb(Bkg_col_40ps)=(2,39321,1) ModifyGraph lblPosMode(Res_left)=1,lblPosMode(Peaks_Left)=1 ModifyGraph lblPos(left)=54 ModifyGraph freePos(Res_left)={0,kwFraction} ModifyGraph freePos(Peaks_Left)={0,kwFraction} ModifyGraph axisEnab(left)={0.25,0.75} ModifyGraph axisEnab(Res_left)={0.8,1} ModifyGraph axisEnab(Peaks_Left)={0,0.2} Tag/C/N=PeakTag0/F=0/B=1/A=MB/X=0.00/Y=1.00/L=0/P=1 'Peak 0', 1.9331863023273419, "\\Zr0800" Tag/C/N=PeakTag1/F=0/B=1/A=MB/X=0.00/Y=1.00/L=0/P=1 'Peak 1', 2.1976726231922239, "\\Zr0801" SetDrawLayer ProgBack SetDrawEnv xcoord= bottom,ycoord= prel,linefgc= (56797,56797,56797) DrawLine 1.93154155347398,0,1.93154155347398,1 SetDrawEnv xcoord= bottom,ycoord= prel,linefgc= (56797,56797,56797) DrawLine 2.19526056294463,0,2.19526056294463,1 SetDrawLayer UserFront SetWindow kwTopWin,hook(PopupWS_HostWindowHook)=PopupWSHostHook SetWindow kwTopWin,hook(MPF2_DataGraphHook)=MPF2_DataGraphHook SetWindow kwTopWin,userdata(MPF2_DataSetNumber)= "3" NewPanel/HOST=#/EXT=0/W=(0,411,375,411) /HIDE=1 as "Multi-peak Fit Set 3" ModifyPanel fixedSize=0 CheckBox MPF2_UserCursorsCheckbox,pos={10,4},size={107,14},proc=MPF2_CursorsCheckProc,title="Use Graph Cursors" CheckBox MPF2_UserCursorsCheckbox,value= 0 Button MPF2_HelpButton,pos={205,1},size={50,20},proc=MPF2_DoHelpButtonProc,title="Help" DefineGuide UGH0={FT,25},UGH1={UGH0,130},UGH3={FB,-23},UGH2={UGH3,-89} SetWindow kwTopWin,hook(MPF2_PanelKillHook)=MPF2_PanelKillHook SetWindow kwTopWin,hook(MPF2_PanelResizeHook)=MPF2_PanelResizeHook SetWindow kwTopWin,hook(MPF2_NotebookHook)=MPF2_NotebookHook SetWindow kwTopWin,userdata(MPF2_UPDATEPANELVERSION)= "2.22" SetWindow kwTopWin,userdata(MPF2_hostgraph)= "MultipeakFit_Set3" SetWindow kwTopWin,userdata(MPF2_DataSetNumber)= "3" NewPanel/W=(0,86,375,149)/FG=(,UGH0,,UGH1)/HOST=# ModifyPanel frameStyle=0, frameInset=0 GroupBox MPF2_LocatePeaksGroupBox,pos={8,2},size={359,61},title="Locate Peaks" GroupBox MPF2_LocatePeaksGroupBox,fStyle=1 Button MPF2_AutoLocatePeaksButton,pos={53,21},size={158,20},proc=MPF2_AutoLocatePeaksButtonProc,title="Auto-locate Peaks Now" Button MPF2_AutoLocatePeaksButton,fSize=10 CheckBox MPF2_NegativePeaksCheck,pos={90,44},size={94,14},title="Negative Peaks" CheckBox MPF2_NegativePeaksCheck,variable= root:Packages:MultiPeakFit2:MPF_SetFolder_3:negativePeaks CheckBox MPF2_DiscloseAutoPickParams,pos={14,45},size={16,14},proc=MPF2_DiscloseAutoPickCheckProc,title="" CheckBox MPF2_DiscloseAutoPickParams,value= 1,mode=2 SetVariable MPF2_SetAutoFindNoiseLevel,pos={28,65},size={119,16},bodyWidth=60,title="Noise level:" SetVariable MPF2_SetAutoFindNoiseLevel,limits={0,inf,1},value= root:Packages:MultiPeakFit2:MPF_SetFolder_3:AutoFindNoiseLevel SetVariable MPF2_SetAutoPeakSmoothFactor,pos={11,86},size={136,16},bodyWidth=60,title="Smooth Factor:" SetVariable MPF2_SetAutoPeakSmoothFactor,limits={0,inf,1},value= root:Packages:MultiPeakFit2:MPF_SetFolder_3:AutoFindSmoothFactor SetVariable MPF2_SetAutoPeakMinFraction,pos={22,107},size={125,16},bodyWidth=60,title="Min Fraction:" SetVariable MPF2_SetAutoPeakMinFraction,limits={0,inf,1},value= root:Packages:MultiPeakFit2:MPF_SetFolder_3:AutoFindTrimFraction Button MPF2_AutoPickEstimate,pos={157,83},size={85,20},proc=MPF2_EstimateAutoPickPButton,title="Estimate Now" Button MPF2_AutoPickEstimate,fSize=10 RenameWindow #,P0 SetActiveSubwindow ## NewPanel/W=(66,86,199,260)/FG=(FL,UGH1,FR,UGH2)/HOST=# ModifyPanel frameStyle=0, frameInset=0 CheckBox MPF2_DiscloseConstraints,pos={125,2},size={99,14},proc=MPF2_DiscloseConstraints,title="Apply Constraints" CheckBox MPF2_DiscloseConstraints,fSize=10,value= 1 ListBox MPF2_PeakList,pos={6,20},size={359,121},proc=HierarchicalListListProc ListBox MPF2_PeakList,userdata(MPF2_DataSetNumber)= "3" ListBox MPF2_PeakList,userdata(HierarchicalListInfo)= A"!!*'jBk;P0K0;P2K1E;sFD4Q_@;@Vp@;]Xm,>^/rzzzzzzzzzzzzzzz" Button MPF2_SelectMaskWave,userdata(popupWSInfo) += A"!!!!n:e!3I;e9cV@rtFRF)+icG%CXRzzzzzzzzzz!!!!n:e!3I9jr*Y=(-8`;e9cV@rtIaFD5?4zz" Button MPF2_SelectMaskWave,userdata(popupWSInfo) += A"zzzzzzzzzzzzzzzz5]Asgz5]-Q%zzz^[M4'z^[M4'z5O\\XQzzzzz" Button MPF2_SelectMaskWave,userdata(PopupWS_FullPath)= "_none_" Button MPF2_SelectMaskWave,userdata(PopupWS_SelectableStrings)= "_none_;" TitleBox MPF2_WeightWaveTitle,pos={8,114},size={69,13},title="Weight Wave:" TitleBox MPF2_WeightWaveTitle,fSize=10,frame=0 Button MPF2_SelectWeightWave,pos={75,109},size={179,20},proc=PopupWaveSelectorButtonProc,title="\\JR_none_ \\W623" Button MPF2_SelectWeightWave,userdata(popupWSInfo)= A"!!*'oF_l/6E+NHn7VQsO;e:&,,>E;sFD4Q_@;@Vp@;]Xm,>^/rzzzzzzzzzzzzzzz" Button MPF2_SelectWeightWave,userdata(popupWSInfo) += A"!!!!n:e!3I;e9cV@rtd`BkM+$=(-8`zzzzzzzzzz!!!!n:e!3I=(Q)YBQR #include