
Run calculations on your CPU or GPU using IgorCL

Peter Dedecker
peter.dedecker@hotmail.com

April 11, 2014

1 Introduction
IgorCL is an “external operation” for Igor Pro (www.wavemetrics.com) that allows you to perform cal-
culations on your computer’s CPU or GPU using OpenCL. OpenCL is a soware framework that aims at
providing a uniform way to perform computation on heterogeneous devices. e authoritative source on
OpenCL is the official website, http://www.khronos.org/opencl/, and particularly theOpenCL speciĕ-
cation (http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf). is XOP is intended for
advanced programmers only.

Using IgorCL is very different from writing plain Igor code, and requires a very thorough understanding
of programming. Ideally you should have experience with low-level languages such a C or C++. You will
probably not get much out of IgorCL unless you are a very advanced Igor programmer with knowledge of C.

e main goal of OpenCL is to run code across a wide range of devices. In today’s computers this is
usually the CPU, the main processor, and the GPU, the graphics processor or ‘video card’. Because your code
should run on a variety of devices, most of which Igor doesn’t know anything about, OpenCL code must
be written in OpenCL-C, a subset of the C programming language. OpenCL-C is very different from Igor
programming and requires a much more detailed understanding of how computers work.

2 Target audience
e biggest draw of OpenCL is usually the possibility to run calculations on the GPU. I have found that
my analysis needs do not lend themselves well to GPU processing. ere is a reason why CPUs are known
as ‘general-purpose’ processors. Hardware vendors have been very successful in painting general-purpose
GPU programming as a computational revolution, but conveniently forget to mention that these speedups
are only possible on a very select group of problems.

My main use for IgorCL is in running code on the CPU, not on the GPU. is oen provides a speedup
over native Igor code because OpenCL compiles directly tomachine code, which executesmuch faster. How-
ever, this is only worthwhile if you can identify speciĕc bottlenecks that cannot be rewritten in terms of
built-in Igor operations.

OpenCL is hard. Don’t bother unless you feel competent of your programming abilities.

3 OpenCL basics
It is entirely outside the scope of this document to provide an introduction to OpenCL. ere are plenty of
resources on the web, and plenty of books out there. I read CUDA by Example: An Introduction to General-
Purpose GPU Programming by Jason Sanders and Edward Kandrot, and Heterogeneous Computing with
OpenCL: Revised OpenCL 1.2 Edition by Benedict Gaster et al. While the ĕrst book is about CUDA, not
OpenCL, the concepts are sufficiently similar that the insights can be applied directly to OpenCL. In what
follows we will focus on the Igor-speciĕc aspects of OpenCL.

A unit of executable OpenCL code is known as a ‘kernel’. ese are functions, written in OpenCL-C,
that are executed on a compute device. When execution starts the input data is passed into a kernel via its
arguments. ese arguments are either scalars or pointers to memory buffers. Kernels never return a value -

1

www.wavemetrics.com
http://www.khronos.org/opencl/
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

calculation results must be returned by having the device write to one or more memory buffers also passed
in as an argument.

You must write these kernels in order to have OpenCL do something for you. ey have nothing to
do with the Igor programming language – you cannot use the same syntax nor can you make use of Igor
functionality from your OpenCL code. Igor doesn’t know anything about OpenCL. You need to look at the
OpenCL reference to ĕnd out what you can do in OpenCL-C.

Since OpenCL is expected to run across a wide range of devices, kernels must be provided as plain-text
source code. At runtime you select the device the calculation will run on, and OpenCL will automatically
compile your kernels for that particular architecture. is ‘just-in-time’ compilation is a deĕning feature of
OpenCL, and it is the reason why it can work across a wide range of devices. Since compiling can be an
expensive operation, IgorCL allows you to reuse compiled kernels, though you cannot use compiled kernels
across different devices, computers, or OpenCL driver versions. You should not reuse kernels across Igor
runs.

4 Installing IgorCL
To use IgorCL, simply download the IgorCL.xop ĕle appropriate to your platform (unzipping it if necessary)
and install it in the “Igor Extensions” folder in your Igor Pro User Files. To ĕnd the location of your Igor Pro
User Files, launch Igor and choose Help – “Show Igor Pro User Files”. en restart Igor.

Depending on your hardware and installed soware, youmay also need to install theOpenCL framework.
Implementations of OpenCL are available from a number of different vendors, including the AMD, NVidia,
and IntelOpenCL framework.eAMDruntimeprovides support for bothAMDGPUs and x86CPUs (from
Intel and AMD), so it is a one-stop solution for computers running Intel/AMD hardware. NVidia drivers are
speciĕc to the GPU, andwill not execute on the CPU. AMD andNVidia include the runtimewith their device
drivers. Multiple OpenCL frameworks (‘platforms’) can be installed on the same computer, and IgorCL will
allow you to choose between them at runtime.

On Macintosh the OpenCL runtime is included in recent versions of OS X, so OpenCL should work out
of the box.

On Windows I have experimented with the AMD and Intel OpenCL drivers. Overall I suggest the AMD
drivers since it supports both AMD video cards and x86 (AMD and Intel) CPUs. I did have difficulties on
some systems, which would report missing libraries when OpenCL was invoked. I resolved this by replacing
OpenCL.dll (in the win32 folder) with the OpenCL.dll that is shipped with the AMD Stream SDK.

5 Features and limitations of IgorCL
IgorCL makes OpenCL callable from Igor. It provides a means for you to select a particular OpenCL kernel,
platform and device, specify the input and output data, and start the computation.

To pass data between Igor and OpenCL, IgorCL connects Igor waves to OpenCL buffers. At runtime, you
must specify one or more Igor waves, and IgorCL will convert these to OpenCL memory buffers of the same
numeric type, size, and contents. Igor waves are the solemeans of data exchange between Igor and OpenCL.
All arguments to your kernel must be put into one or more waves, with one wave per argument. You must
also create and pass in Igor waves that will receive the output of the calculation.

From OpenCL’s point of view, the Igor waves consist of linear arrays. It doesn’t know, nor does it care,
that this memory is part of an Igor wave. It is also unaware of the dimensionality of the wave. All that it sees
is a pointer to memory, with your promise that the array contains all the . You are responsible for passing in
the correct number of waves, with the correct dimensions, and of the correct number type.

Here’s an example: suppose that your kernel takes three arguments: float*, float*, and double*.
Each of these can be input, output, or both input and output. You are responsible for passing three waves to
IgorCL, the ĕrst two of type Ęoat (32-bit Ęoating point; single precision), and the last one of type double (64-
bit Ęoating point; double precision). You are also responsible for ensuring that the waves are large enough so
that OpenCL does not generate an out-of-bounds access. IgorCL will not help you here.

2

For scalar arguments (such as int) you still need to pass a wave containing one or more points and of
the appropriate numeric type. You must also let IgorCL know that this is a scalar argument by passing an
appropriate memory Ęag (discussed in section 6.2.1).

If your kernel executes on the CPU and undertakes an action that the operating system considers to
be invalid, such as writing to or reading from a memory location that does not belong to the program, the
operating system will probably crash Igor and you (or the users of your code) will lose all unsaved data. e
results of performing an invalid operation on the GPU are less well-deĕned. Nothing may happen, Igor may
crash, or the computer may lock up. Don’t do it. You should test all of your code on the CPU before passing
it on to the GPU.

Kernels can be speciĕed in two ways: as a single Igor string containing all of the kernel code, or as a wave
that was previously created using the IgorCLCompile operation. e second way exists so you can compile
a kernel once, and call it many times, thus avoiding the work associated with repeated compilation.

e main limitation of IgorCL is that there is no way to deĕne new data types for the Igor programming
language. is means that it is impossible to add an entity representing OpenCL-allocated memory in the
Igor environment, or any other associated functionality. For this reason IgorCL does not support resident
OpenCL memory: when you start an IgorCL calculation, IgorCL will typically allocate OpenCL memory for
each wave you pass in, and will free this memory before returning. e unfortunate consequence of this is
that the performance of your OpenCL calculations may be reduced by the allocating and copying involved.
It also means that more involved calculation strategies are out of reach.

6 Anatomy of IgorCL
IgorCL adds three operations to Igor:

IgorCLInfo allows you to query the hardware available on the computer and ĕnd out about its capabilities.

IgorCL executes OpenCL kernels.

IgorCLCompile compiles OpenCL-C code to a compiled binary that you can then pass to IgorCL.

6.1 IgorCLInfo
OpenCL distinguishes between platforms and devices. A platform is an implementation of OpenCL that
knows how to communicate with one or more hardware devices. Platforms are typically provided by the
hardware manufacturer. A device is simply a symbolic representation of a particular piece of hardware at-
tached to your computer.

IgorCLInfo lets you query the OpenCL runtime for supported platforms and devices, and provides some
information on the abilities of each of these devices. It does so by creating twoormore textwaves.M_OpenCLPlatforms
lists the available platforms on the device. For each of these platforms, another textwave calledM_OpenCLDevicesX
will be created, where X is the index of the platform that manages these devices. In some cases multiple plat-
forms will be available for the same device. For example, the Intel and AMD OpenCL implementations both
support x86 processors. In this case you can freely choosewhich platform you select for that particular device,
though the platforms may differ in supported capabilities and efficiency.

ewave dimension labels provide descriptions of each attribute that is listed in these waves. To see them,
try executing Edit M_OpenCLDevices0.ld in Igor.

IgorCL identiĕes platforms and devices by numeric index. If there are two platforms, Igor will refer
to the ĕrst platform as index 0, and the second platform as index 1. e order is given by the order in
M_OpenCLPlatforms and the suffix in M_OpenCLDevicesX. Likewise devices are identiĕed by a numeric
index. ese must be passed to IgorCL and IgorCLCompile using the /PLTM and /DEV Ęags.

6.2 IgorCL
e IgorCL operation consists of a series of Ęags and a variable number of wave arguments.

IgorCL [flags] wave0, [wave1, …]

3

6.2.1 Flags

/PLTM=platform e index of the OpenCL platform that this calculation should be executed on. If this Ęag
is omitted then the ĕrst platform (index 0) is automatically used.

/DEV=device e index of the device that this calculation should be executed on. If this Ęag is omitted
then the ĕrst device (index 0) within the selected platform is automatically used. is Ęag can not be
combined with the /DTYP Ęag.

/DTYP=deviceTypeStr Selects the ĕrst device of the speciĕed type for execution. deviceTypeStr is one of
“CPU”, “GPU”, or “ACCELERATOR”. is Ęag can not be combined with the /DEV Ęag.

/SRCT=sourceStr sourceStr must contain valid OpenCL-C code, specifying one or more kernels. Exactly
one of the /SRCT or /SRCB Ęags must be speciĕed.

/SRCB=sourceBinaryWave sourceBinaryWavemust be anunsigned bytewave containing a compiledOpenCL
program, previously obtainedusing theIgorCLCompileoperation. Exactly one of the/SRCTor/SRCB
Ęags must be speciĕed.

/KERN=kernelNameStr e name of the kernel (as provided in the OpenCL-C code) that will be executed.
is Ęag is required.

/GSZE={g1,g2,g3} e global work size associated with the calculation. Must be speciĕed in three dimen-
sions. is Ęag is required.

/WGRP={w1,w2,w3} e local workgroup size (or work size) associatedwith the calculation.Must be speci-
ĕed in three dimensions, though the second and third argument can be zero. If you omit this argument
a default size will be selected by the OpenCL platform.

/MFLG=memoryFlagsWave is Ęag lets you pass in various Ęags that control how IgorCL will manage the
OpenCL memory buffers. Flags must be speciĕed in memoryFlagsWave, which must be numeric. e
ĕrst point inmemoryFlagsWave will be applied to the ĕrst wave argument, the second to the next, etc.

/Z=[quiet]When used as plain /Z or with non-zero quiet, prevents OpenCL errors from aborting procedure
execution. Instead the error will be reĘected in a nonzero value of V_flag. Igor errors will still cause
an abort. Setting quiet to zero is the same as omitting this Ęag.

6.2.2 Arguments

You must provide one wave for each argument to the OpenCL kernel, and each wave must be of the appro-
priate numeric type. In addition, you must ensure that each wave contains sufficient points to store all of the
input and/or output values. is is solely your responsibility. More information can be found in section 5.

6.2.3 Memory Ęags

If you specify a memory Ęags wave using the /MFLG Ęag, each point in memoryFlagsWave can be a bit-
wise combination of the values listed in table 1. e ĕrst four of these are wrappers for OpenCL Ęags, and
are explained in the OpenCL reference. However IgorCLIsLocalMemory is particularly useful because
it causes OpenCL to use the contents of the Igor wave directly, without copying, if the device supports
it. is can be a signiĕcant speedup if the OpenCL calculations are executed on a device that shares the
host memory space. e last two Ęags are speciĕc to IgorCL. IgorCLIsLocalMemory notiĕes IgorCL that
the value of the associated wave is the size in bytes of a local memory buffer to be allocated on the device.
IgorCLIsScalarArgument notiĕes IgorCL that the ĕrst point of the associated wave should be passed as a
scalar argument to the kernel.

4

Symbolic name bit OpenCL Ęag
IgorCLReadWrite 0 CL_MEM_READ_WRITE
IgorCLWriteOnly 1 CL_MEM_WRITE_ONLY
IgorCLReadOnly 2 CL_MEM_READ_ONLY
IgorCLUseHostPointer 3 CL_MEM_USE_HOST_PTR
IgorCLIsLocalMemory 4 speciĕc to IgorCL
IgorCLIsScalarArgument 5 speciĕc to IgorCL

Table 1: Memory Ęags supported by the IgorCL operation.

6.3 IgorCLCompile

6.4 IgorCL
e IgorCL operation consists of a series of Ęags and a variable number of wave arguments.

IgorCLCompile [flags] string

6.4.1 Flags

/PLTM=platform e index of the OpenCL platform that this calculation should be executed on. If this Ęag
is omitted then the ĕrst platform (index 0) is automatically used.

/DEV=device e index of the device that this calculation should be executed on. If this Ęag is omitted
then the ĕrst device (index 0) within the selected platform is automatically used. is Ęag can not be
combined with the /DTYP Ęag.

/DTYP=deviceTypeStr Selects the ĕrst device of the speciĕed type for execution. deviceTypeStr is one of
“CPU”, “GPU”, or “ACCELERATOR”. is Ęag can not be combined with the /DEV Ęag.

/DEST=destination Causes the wave containing the compiled binary to be created at the given destination.

/Z=[quiet]When used as plain /Z or with non-zero quiet, prevents OpenCL errors from aborting procedure
execution. Instead the error will be reĘected in a nonzero value of V_flag. Igor errors will still cause
an abort. Setting quiet to zero is the same as omitting this Ęag.

6.4.2 Arguments

IgorCLCompile takes a single string argument containing the full OpenCL-C code for one or more kernels.
is can be the string that you would otherwise pass to IgorCL using the /SRCT Ęag.

6.4.3 Output

By default the compiled binary will be created in the wave W_CompiledBinary, but this can be changed
using the /DEST Ęag. e resulting wave can then be passed to IgorCL using the /SRCB Ęag.

7 Examples

7.1 Adding numbers
Let’s follow the canonical example and add a bunch of numbers together. Here is the kernel:
k e r n e l vo id VectorAdd (g l o b a l f l o a t * A , g l o b a l f l o a t * B , g l o b a l f l o a t * C) {

i n t un i t ID = g e t _ g l o b a l _ i d (0) ;
C[un i t ID] = A[un i t ID] + B[un i t ID] ;

}

And here is some Igor code to run it on an example dataset:

5

Func t ion TestAdd ()
s t r i n g s ou r c e = ” k e r n e l vo id VectorAdd (g l o b a l f l o a t * A , g l o b a l f l o a t * B , g l o b a l

f l o a t * C) { \ n”
s ou r c e += ” i n t un i t ID = g e t _ g l o b a l _ i d (0) ; \ n ”
s ou r c e += ”C[un i t ID] = A[un i t ID] + B[un i t ID] ; \ n”
s ou r c e += ” } \ n”

Make / S /N=(128) /O W_A = 1 , W_B = 1 , W_C = 0 / / d a t a
IgorCL / SRCT= sou r c e /DTYP=”CPU” /GSZE= { 1 28 , 1 , 1 } /WGRP= { 6 4 , 1 , 1 } /KERN=”VectorAdd ”

W_A, W_B, W_C
End

Executing TestAdd() will run the calculation on the ĕrst platform on your system, and on the CPU. You
will get an error if the CPU is not supported. I have also included some code that times the operation.

7.2 Adding many numbers
e previous example could only handle situations where the number of points is multiple of the work group
size. What if we wanted to add numbers where this is not the case, or if there are a lot of numbers? Let’s
expand the code to handle this situation. Here’s the new kernel:
k e r n e l vo id VectorAdd2 (g l o b a l f l o a t * A , g l o b a l f l o a t * B , g l o b a l f l o a t * C , i n t nVa lues) {

i n t un i t ID = g e t _ g l o b a l _ i d (0) ;
i n t g l o b a l S i z e = g e t _ g l o b a l _ s i z e (0) ;
f o r (i n t i = un i t ID ; i < nVa lues ; i += g l o b a l S i z e) {

C[i] = A[i] + B [i] ;
}

}

And here’s the Igor code:
Func t ion / S Source2 ()

s t r i n g s ou r c e = ” k e r n e l vo id VectorAdd2 (g l o b a l f l o a t * A , g l o b a l f l o a t * B , g l o b a l
f l o a t * C , i n t nVa lues) { ”

s ou r c e += ” i n t un i t ID = g e t _ g l o b a l _ i d (0) ; \ n ”
s ou r c e += ” i n t g l o b a l S i z e = g e t _ g l o b a l _ s i z e (0) ; \ n ”
s ou r c e += ” f o r (i n t i = un i t ID ; i < nVa lues ; i += g l o b a l S i z e) { \ n”
s ou r c e += ”C[i] = A[i] + B [i] ; ”
s ou r c e += ” } \ n”
s ou r c e += ” } \ n”
r e t u r n sou r c e

End

Func t ion TestAdd2 ()
v a r i a b l e I go rCL I s S c a l a rArgumen t = 2^5
v a r i a b l e nVa lues = 1 e6

Make / S /N=(nVa lues) /O W_A = 1 , W_B = 1 , W_C = 0 / / d a t a
Make / I /O/N=(1) W_nValues = nVa lues / / number o f p o i n t s
Make / I /U/O /N=(4) W_MemFlags = 0 / / memory f l a g s
W_MemFlags [3] = Igo rCLI s S c a l a rArgumen t
v a r i a b l e g l o b a l S i z e = c e i l (nVa lues / 64) * 64
IgorCL / SRCT=Source2 () /DTYP=”CPU” /MFLG=W_MemFlags /GSZE={ g l o b a l S i z e , 1 , 1 }

/KERN=”VectorAdd2 ” W_A, W_B, W_C, W_nValues
End

Note that things are getting more complex simply because we added a scalar value. We could also have used
a buffer with just a single point instead of a scalar.

7.3 Avoiding memory copying
It’s possible to avoid unnecessary copy operations if you’re calculating on the CPU or if the device and the
host have a uniĕed memory space. Here are the necessary modiĕcations:
Func t ion TestAdd3 ()

v a r i a b l e IgorCLUseHos tP t r = 2^3

6

10

8

6

4

2

0

Ti
m

e
(s

)

4000300020001000
Input size

 Igor
 Igor + MultiThread
 Igor + Igor Threads
 IgorCL - CPU
 IgorCL - GPU

Figure 1: Time taken to calculate a distance matrix for the given number of points with random coordinates.
Tested on a Macbook Pro with an Intel i7-3720QM CPU and Intel HD Graphics 4000 GPU.

v a r i a b l e I go rCL I s S c a l a rArgumen t = 2^5
v a r i a b l e nVa lues = 1 e6

Make / S /N=(nVa lues) /O W_A = 1 , W_B = 1 , W_C = 0
Make / I /O/N=(1) W_nValues = nVa lues
Make / I /U/O /N=(4) W_MemFlags = IgorCLUseHos tP t r
W_MemFlags [3] = Igo rCLI s S c a l a rArgumen t
v a r i a b l e g l o b a l S i z e = c e i l (nVa lues / 64) * 64
IgorCL / SRCT=Source2 () /DTYP=”CPU” /MFLG=W_MemFlags /GSZE={ g l o b a l S i z e , 1 , 1 }

/KERN=”VectorAdd2 ” W_A, W_B, W_C, W_nValues
End

On my computer the IgorCL operation executes about six times faster in this version. is large speedup
occurs becausewe do very little work in our kernel, andmuch of the execution time is taken up simply shiing
the data back and forth. is code will also work if the host and device do not have a uniform memory space,
but in that case it may be slower compared to the previous version.

7.4 Using the GPU
You can run all of these calculations on the GPU by changing the /DTYP="CPU" Ęag to /DTYP="GPU". It
should just work. at’s the beauty of OpenCL!

7.5 Benchmarks
Figure 1 shows a simple benchmark. Given a set of (x, y) coordinates, I wrote code that calculates the distance
matrix between these points.e kernel was pre-compiled for each device to avoid compilation overhead. As
you can see, the IgorCL-based solution performedmuch faster than the native Igor code. An Igor experiment,
‘Benchmark.pxp’, implementing this code is included with the IgorCL binaries.

7

	Introduction
	Target audience
	OpenCL basics
	Installing IgorCL
	Features and limitations of IgorCL
	Anatomy of IgorCL
	IgorCLInfo
	IgorCL
	Flags
	Arguments
	Memory flags

	IgorCLCompile
	IgorCL
	Flags
	Arguments
	Output

	Examples
	Adding numbers
	Adding many numbers
	Avoiding memory copying
	Using the GPU
	Benchmarks

