4Misc_StartN4PlatformN@ ROGIXXz?,P VT$m=%winspoolHP LaserJet P2035USB001HP LaserJet P20354 oXCartaSDDMHP LaserJet P2035 Z(db4 ROGIXXz?,P VT$m=%winspoolHP LaserJet P2035USB001HP LaserJet P20354 oXCartaSDDMHP LaserJet P2035 Z(db4 ROGIXXp5< VT$m=%winspoolHP LaserJet P2035USB001HP LaserJet P20354 oXCartaSDDMHP LaserJet P2035 Z(db4  ROGIXXz?,P VT$m=%winspoolHP LaserJet P2035USB001HP LaserJet P20354 oXCartaSDDMHP LaserJet P2035 Z(db4^Graph*@@wwwwww?wwwwww?peWDashSettings#  !^KNormal@ Arial<HHHH$$^KNormal@ Arial<HHHH$$444444 +QNormal@ Arial<HHHH$$4 4 4 4 4 4 hhome4,dZ GF:vahide:EOM:F:vahide:EOMhideX>2d>P>8,yw| P>LVywX>\VywX>u^u|/^u3Ql! dl"u$/^u5c5cYX|RecentWindowsHCurve Fitting.ihfGraph0:wave1 vs wave0Help BrowserTable0:wave0,wave1 4Misc_EndNXOPState_Start`NData Browser0:wave1 vs wave0GizmoPeakFunctions2Help Browser4XOPState_EndNo;|C;:C 9 pV_Flag@V_chisqpMb6C@V_numNaNsV_numINFsV_npntsi@V_nterms?V_nheld?V_startRowV_endRowh@V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkV_sigadtjӚ^?V_sigbDCJ?V_q?V_Rab&3V_Pr`@L/?V_r2r5XZ ?S_waveNamesp  wave0;wave1;S_pathamesp S_fileNamep  ClipboardDisplay wave0 vs wave1 Display wave1 vs wave0 Make/D/N=1/O W_coef W_coef[0] = {0} FuncFit/NTHR=0 Besel W_coef wave0 /D Fit converged properly fit_wave0= Besel(W_coef,x) W_coef={1.9052} V_chisq= 6534.04;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26; W_sigma={112} Coefficient values one standard deviation x =1.9052 112 Make/D/N=1/O W_coef W_coef[0] = {0} FuncFit/NTHR=0 Besel W_coef wave0 /D Fit converged properly fit_wave0= Besel(W_coef,x) W_coef={1.9052} V_chisq= 6534.04;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26; W_sigma={112} Coefficient values one standard deviation x =1.9052 112 Make/D/N=1/O W_coef W_coef[0] = {1.24} FuncFit/NTHR=0 Beselj W_coef fit_wave0 /D Fit converged properly fit_fit_wave0= Beselj(W_coef,x) W_coef={2.0924} V_chisq= 4.1842;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={4.05} Coefficient values one standard deviation x =2.0924 4.05 Make/D/N=1/O W_coef W_coef[0] = {1.24} FuncFit/NTHR=0 Beselj W_coef fit_wave0 /D Fit converged properly fit_fit_wave0= Beselj(W_coef,x) W_coef={2.0924} V_chisq= 4.1842;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={4.05} Coefficient values one standard deviation x =2.0924 4.05 Make/D/N=1/O W_coef W_coef[0] = {1.24} FuncFit/NTHR=0 Beselj W_coef fit_wave0 /D Fit converged properly fit_fit_wave0= Beselj(W_coef,x) W_coef={2.0924} V_chisq= 4.1842;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={4.05} Coefficient values one standard deviation x =2.0924 4.05 CurveFit/M=2/W=0 gauss, wave1/X=wave0/D Fit converged properly fit_wave1= W_coef[0]+W_coef[1]*exp(-((x-W_coef[2])/W_coef[3])^2) W_coef={0.027055,0.17496,20.729,8.4641} V_chisq= 0.00167267;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26; W_sigma={0.00399,0.00459,0.162,0.351} Coefficient values one standard deviation y0 =0.027055 0.00399 A =0.17496 0.00459 x0 =20.729 0.162 width =8.4641 0.351 CurveFit/M=2/W=0 exp, wave1/X=wave0/D Fit converged properly fit_wave1= W_coef[0]+W_coef[1]*exp(-W_coef[2]*x) W_coef={0.25683,-0.28355,0.053855} V_chisq= 0.0209164;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26; W_sigma={0.0779,0.0642,0.0295} Coefficient values one standard deviation y0 =0.25683 0.0779 A =-0.28355 0.0642 invTau =0.053855 0.0295 CurveFit/M=2/W=0 poly 5, wave1/X=wave0/D fit_wave1= poly(W_coef,x) W_coef={0.0078862,0.0082555,-0.0012027,0.00013472,-3.5764e-006} V_chisq= 0.00105137;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26; W_sigma={0.00945,0.00436,0.000606,3.19e-05,5.62e-07} Coefficient values one standard deviation K0 =0.0078862 0.00945 K1 =0.0082555 0.00436 K2 =-0.0012027 0.000606 K3 =0.00013472 3.19e-005 K4 =-3.5764e-006 5.62e-007 Display wave1 vs wave0 ModifyGraph mode=2,lsize=3;DelayUpdate ErrorBars wave1 Y,pct=2 ErrorBars wave1 Y,pct=3 CurveFit/NTHR=0 line fit_fit_wave0 /D fit_fit_fit_wave0= W_coef[0]+W_coef[1]*x W_coef={0.43617,-6.6341e-018} V_chisq= 3.46737e-029;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199;V_q= 1;V_Rab= -0.864939; V_Pr= 4.70984e-017;V_r2= 0.0197656; W_sigma={5.9e-17,3.92e-18} Coefficient values one standard deviation a =0.43617 5.9e-017 b =-6.6341e-018 3.92e-018 CurveFit/M=2/W=0 line, wave1/X=wave0/D fit_wave1= W_coef[0]+W_coef[1]*x W_coef={0.0074106,0.0074543} V_chisq= 0.025713;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26;V_q= 1;V_Rab= -0.877624; V_Pr= 0.880774;V_r2= 0.775762; W_sigma={0.0129,0.000802} Coefficient values one standard deviation a =0.0074106 0.0129 b =0.0074543 0.000802 Display wave0 vs wave1 Display wave1 vs wave0 Make/D/N=1/O W_coef W_coef[0] = {0} FuncFit/H="1"/NTHR=0 Besel W_coef fit_fit_wave0 /D 9 iterations with no decrease in chi square fit_fit_fit_wave0= Besel(W_coef,x) W_coef={0} V_chisq= 38.0485;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={2.46e-157} Coefficient values one standard deviation x =0 2.46e-157 FuncFit/H="1"/NTHR=0 Besel W_coef fit_fit_wave0 /D 9 iterations with no decrease in chi square fit_fit_fit_wave0= Besel(W_coef,x) W_coef={0} V_chisq= 38.0485;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={2.46e-157} Coefficient values one standard deviation x =0 2.46e-157 FuncFit/H="1"/NTHR=0 Besel W_coef fit_fit_wave0 /D 9 iterations with no decrease in chi square fit_fit_fit_wave0= Besel(W_coef,x) W_coef={0} V_chisq= 38.0485;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={2.46e-157} Coefficient values one standard deviation x =0 2.46e-157 !gfV@(wave0?wqwq ?㪲@E 2 @E@=$@@@ؙB@hU @9@0GO"@apI$@3C&@-=(@&N7*@5{2,@!A,.@PI50@J1@Ù_ 2@_^}t 3@1=a4@D5@oض(6@ɫs 6@$07@~R8@%9@3f:@fV:X'wave1?wqwqߏain?O\h?zM:&?m˺^[?uu)?;/(j?l!?xJ+?\,)?#A?oFԧ?+J*?A?rf? ?[u?ح1?ӫ ?Xs%??u+%?g]?dj?S? }[?g=?;3 ֿ?H'KLW_coefg????*0P'fit_wave0TI ??dqdq$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?$?fit_wave0= Besel(W_coef,x) W_coef={1.9052} V_chisq= 6534.04;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26; W_sigma={112} Coefficient values one standard deviation x =1.9052 112 H'LLW_sigmag????,$BkL&fit_fit_wave0TI ??99-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?-?fit_fit_wave0= Beselj(W_coef,x) W_coef={2.0924} V_chisq= 4.1842;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={4.05} Coefficient values one standard deviation x =2.0924 4.05 BX+fit_wave11w-!9@ ?JJ?l~?fit_wave1= W_coef[0]+W_coef[1]*x W_coef={0.0074106,0.0074543} V_chisq= 0.025713;V_npnts= 27;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 26;V_q= 1;V_Rab= -0.877624; V_Pr= 0.880774;V_r2= 0.775762; W_sigma={0.0129,0.000802} Coefficient values one standard deviation a =0.0074106 0.0129 b =0.0074543 0.000802 H0(M_Covarg????/p2d?XW]&(>a *u[M0>XWn3>'r%ždn z>ao"]&(>'r%ž4F>07T#<=a *dn z>07Ts-}>{\g쓳u[M0>ao"#<={\g쓳ԉo)8V=p(W_ParamConfidenceIntervalg????0Gfit_fit_fit_wave0TI ??LLfit_fit_fit_wave0= Besel(W_coef,x) W_coef={0} V_chisq= 38.0485;V_npnts= 200;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 199; W_sigma={2.46e-157} Coefficient values one standard deviation x =0 2.46e-157 *// Platform=WindowsNT, IGORVersion=6.222, architecture=Intel Silent 101 // use | as bitwise or -- not comment. DefaultFont "Arial" MoveWindow/P 5.25,42.5,504.75,337.25 Table0() MoveWindow/C 8.25,487.25,330.75,605.75 Graph0() Window Graph0() : Graph PauseUpdate; Silent 1 // building window... Display /W=(561,69.5,955.5,278) wave1 vs wave0 EndMacro Window Table0() : Table PauseUpdate; Silent 1 // building window... Edit/W=(5.25,42.5,540.75,434) wave0,wave1 ModifyTable format(Point)=1 EndMacro #pragma rtGlobals=1 // Use modern global access method. Function Besel(w,x) : FitFunc Wave w Variable x //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(x) = x/2-(x^3)/16+(x^5)/384-(x^7)/18432 //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ x //CurveFitDialog/ Coefficients 1 //CurveFitDialog/ w[0] = x return w[0]/2-(w[0]^3)/16+(w[0]^5)/384-(w[0]^7)/18432 End Function Beselj(w,x) : FitFunc Wave w Variable x //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(x) =sin(x)/(x^2)- cos(x)/ (x) //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ x //CurveFitDialog/ Coefficients 1 //CurveFitDialog/ w[0] = x return sin(w[0])/(w[0]^2)- cos(w[0])/ (w[0]) End