4Misc_Start4Platform@ ROGIcc f  {  4!*D#winspoolB&W Wax PrinterPharosPopupPortB&W Wax PrinterdS odccLetterPRIV0''''d\KhCSMTJ ROGIcc f  {  4!*D#winspoolB&W Wax PrinterPharosPopupPortB&W Wax PrinterdS odccLetterPRIV0''''d\KhCSMTJ ROGIcc f  {  4!*D#winspoolB&W Wax PrinterPharosPopupPortB&W Wax PrinterdS odccLetterPRIV0''''d\KhCSMTJ  ROGIcc f  {  4!*D#winspoolB&W Wax PrinterPharosPopupPortB&W Wax PrinterdS odccLetterPRIV0''''d\KhCSMTJ^Graph*@@??jWDashSettings#  !?^Normal@ Arial<HHHH$$?^Normal@ Arial<HHHH$$444444 +Normal@ Arial<HHHH$$4 4 4 4 4 4 homeaYdyrC:Users:Rory:Documents:School:ANSEL:Experiments:XPT2:Igor:C:Users:Rory:Documents:School:ANSEL:Experiments:XPT2:IgorPT2wxww0w0T$h 5w' 5wӀx!T t:w߹' 5wlcmc4RecentWindowsAnalysis.ihfCurve Fitting.ihfGraph0:Ni_kev_Hist,fit_Ni_kev_HistGraph1:pulse_hist_comb,...Graph2:Ni2_kev_Hist,fit_Ni2_kev_HistGraph3:AL_kev_Hist,fit_AL_kev_HistGraph4:Sn_kev_Hist,fit_Sn_kev_HistGraph6:Ni_kev_Hist,...Help BrowserIgor Reference.ihfIP Tutorial Help.ihfMulti-peak Fit Set 5Multi-peak Fitting 2.0.ipfMultipeakFit_Set5:Ni_kev_Hist,...;...PeakFunctions2.ipfStart Multi-peak Fit 4Misc_EndXOPState_Start`Data Browser:MultiPeakFit2ionsGizmo i?PeakFunctions2hist_comb,...Data Browserroot4XOPState_End)J_1Jɕ"_F-C?rĸC^V_Flag@V_chisq] vYY@V_numNaNsV_numINFsV_npnts@V_nterms@V_nheldV_startRow@V_endRow@V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkV_siga4?V_sigb>3=F??V_q?V_RabcT tԿV_Pr]?S_waveNames]^Sn;S_pathames]^@C:Users:Rory:Documents:School:ANSEL:Experiments:XPT2:Data:Alpha:S_fileName]^20130226_Am241_sn.txtS_infoame]^̍DATE=Sun, Mar 17, 2013;TIME=9:01:46 AM;FUNCTION=GaussTail;AUTODESTWAVE=fit_Sn_kev_Hist;YDATA=root:Sn_kev_Hist[1128,2442];XDATA=_calculated_,; Delimited text load from "20130221_Am241_1us.txt" LoadWave is unable to find column names on line 0 Data length: 3900, waves: Am241_1us Delimited text load from "20130221_Am241_2us.txt" LoadWave is unable to find column names on line 0 Data length: 3960, waves: Am241_2us Delimited text load from "20130221_Am241_3us.txt" LoadWave is unable to find column names on line 0 Data length: 3930, waves: Am241_3us Delimited text load from "20130221_Am241_05us.txt" LoadWave is unable to find column names on line 0 Data length: 3900, waves: Am241_05us Delimited text load from "20130221_Am241_pulse.3.txt" LoadWave is unable to find column names on line 0 Data length: 2580, waves: Pulse3 Delimited text load from "20130221_Am241_pulse1.5.txt" LoadWave is unable to find column names on line 0 Data length: 2610, waves: Pulse1_5 Delimited text load from "20130221_Am241_pulse1.txt" LoadWave is unable to find column names on line 0 Data length: 2640, waves: Pulse1 Delimited text load from "20130221_Am241_pulse2.5.txt" LoadWave is unable to find column names on line 0 Data length: 2610, waves: Pulse2_5 Delimited text load from "20130221_Am241_pulse2.txt" LoadWave is unable to find column names on line 0 Data length: 2640, waves: Pulse2 Delimited text load from "20130221_Am241_pulse3.5.txt" LoadWave is unable to find column names on line 0 Data length: 2640, waves: Pulse3_5 Delimited text load from "20130221_Am241_pulse3.txt" LoadWave is unable to find column names on line 0 Data length: 2610, waves: Pulse3 Delimited text load from "20130221_Am241_pulse4.txt" LoadWave is unable to find column names on line 0 Data length: 2640, waves: Pulse4 Delimited text load from "20130221_Am241_pulse5.64.txt" LoadWave is unable to find column names on line 0 Data length: 13350, waves: Pulse5_64 Delimited text load from "20130221_Am241_pulse6.5.txt" LoadWave is unable to find column names on line 0 Data length: 2610, waves: Pulse5 Delimited text load from "20130221_Am241_pulse6.txt" LoadWave is unable to find column names on line 0 Data length: 2640, waves: Pulse6 Make/N=4000/O Pulse0_3_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse0_3,Pulse0_3_Hist Display root:Pulse0_3_Hist ModifyGraph mode=6 SetAxis/A Make/N=4000/O Pulse1_5_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse1_5,Pulse1_5_Hist Make/N=4000/O Pulse1_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse1,Pulse1_Hist AppendToGraph Pulse1_5_Hist AppendToGraph Pulse1_Hist duplicate pulse1 pulse_comb pulse_comb=pulse1+pulse0_3+pulse1_5 Make/N=4000/O pulse_comb_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} pulse_comb,pulse_comb_Hist Display root:pulse_comb_Hist pulse_comb=pulse1_hist+pulse1_5_hist+pulse0_3_hist Display root:pulse_comb Display root:Pulse1_Hist Display root:Pulse1_5_Hist duplicate pulse1_hist pulse_hist_comb pulse_hist_comb = pulse_hist_comb+pulse1_5_hist+pulse0_3_hist Display root:pulse_hist_comb Make/N=4000/O Pulse2_5_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse2_5,Pulse2_5_Hist Make/N=4000/O Pulse2_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse2,Pulse2_Hist Make/N=4000/O Pulse3_5_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse3_5,Pulse3_5_Hist Make/N=4000/O Pulse3_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse3,Pulse3_Hist Make/N=4000/O Pulse4_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse4,Pulse4_Hist Make/N=4000/O Pulse5_64_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse5_64,Pulse5_64_Hist Make/N=4000/O Pulse6_5_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse6_5,Pulse6_5_Hist Make/N=4000/O Pulse6_Hist;DelayUpdate Histogram/N/B={-32000,16,4000} Pulse6,Pulse6_Hist pulse_hist_comb=pulse_hist_comb + pulse2_5_hist + pulse2_hist + pulse3_5_hist + pulse3_hist + pulse4_hist + pulse5_64_hist + pulse6_5_hist + pulse6_hist ShowInfo Peaks(1) ModifyGraph mode=6 print sum(pulse_hist_comb,Pcsr(A),Pcsr(B)) 3 CurveFit/NTHR=0/TBOX=777 gauss pulse_hist_comb[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: pulse_hist_comb[258,301] fit_pulse_hist_comb= W_coef[0]+W_coef[1]*exp(-((x-W_coef[2])/W_coef[3])^2) W_coef={2.8857,111.88,-27510,142.24} V_chisq= 1592.67;V_npnts= 44;V_numNaNs= 0;V_numINFs= 0; V_startRow= 258;V_endRow= 301; W_sigma={1.91,2.69,2.4,4.8} Coefficient values one standard deviation y0 =2.8857 1.91 A =111.88 2.69 x0 =-27510 2.4 width =142.24 4.8 duplicate pulse_hist_comb weight_adc_pulse_comb weight_adc_pulse_comb = sqrt(weight_adc_pulse_comb) FitPeaks(pulse_comb_hist,weight_adc_pulse_comb,1) Fit converged properly Curve fit with data subrange: pulse_comb_Hist[233,333] fit_pulse_comb_Hist= SingleGauss(Coef_0,x) Coef_0={-0.0029996,-80.185,676.38,-27671,63.144} V_chisq= 23.9288;V_npnts= 54;V_numNaNs= 0;V_numINFs= 0; V_startRow= 233;V_endRow= 333; W_sigma={0.000534,14.7,455,49.5,37.9} Coefficient values one standard deviation w_0 =-0.0029996 0.000534 w_1 =-80.185 14.7 w_2 =676.38 455 w_3 =-27671 49.5 w_4 =63.144 37.9 FitPeaks(pulse_comb_hist,weight_adc_pulse_comb,1) Fit converged properly Curve fit with data subrange: pulse_comb_Hist[233,333] fit_pulse_comb_Hist= SingleGauss(Coef_0,x) Coef_0={-0.0029996,-80.185,676.38,-27671,63.144} V_chisq= 23.9288;V_npnts= 54;V_numNaNs= 0;V_numINFs= 0; V_startRow= 233;V_endRow= 333; W_sigma={0.000534,14.7,455,49.5,37.9} Coefficient values one standard deviation w_0 =-0.0029996 0.000534 w_1 =-80.185 14.7 w_2 =676.38 455 w_3 =-27671 49.5 w_4 =63.144 37.9 TextBox/K/N=CF_pulse_hist_comb FitPeaks(pulse_hist_comb,weight_adc_pulse_comb,1) Fit converged properly Curve fit with data subrange: pulse_hist_comb[233,333] fit_pulse_hist_comb= SingleGauss(Coef_0,x) Coef_0={-6.2086e-005,-0.49618,28779,-27507,104.07} V_chisq= 41.9097;V_npnts= 54;V_numNaNs= 0;V_numINFs= 0; V_startRow= 233;V_endRow= 333; W_sigma={0.000529,14.6,712,2.59,2.17} Coefficient values one standard deviation w_0 =-6.2086e-005 0.000529 w_1 =-0.49618 14.6 w_2 =28779 712 w_3 =-27507 2.59 w_4 =104.07 2.17 FitPeaks(pulse_hist_comb,weight_adc_pulse_comb,1) Fit converged properly Curve fit with data subrange: pulse_hist_comb[233,333] fit_pulse_hist_comb= SingleGauss(Coef_0,x) Coef_0={-6.2086e-005,-0.49618,28779,-27507,104.07} V_chisq= 41.9097;V_npnts= 54;V_numNaNs= 0;V_numINFs= 0; V_startRow= 233;V_endRow= 333; W_sigma={0.000529,14.6,712,2.59,2.17} Coefficient values one standard deviation w_0 =-6.2086e-005 0.000529 w_1 =-0.49618 14.6 w_2 =28779 712 w_3 =-27507 2.59 w_4 =104.07 2.17 FitPeaks(pulse_hist_comb,weight_adc_pulse_comb,1) Fit converged properly Curve fit with data subrange: pulse_hist_comb[233,333] fit_pulse_hist_comb= SingleGauss(Coef_0,x) Coef_0={-6.2086e-005,-0.49618,28779,-27507,104.07} V_chisq= 41.9097;V_npnts= 54;V_numNaNs= 0;V_numINFs= 0; V_startRow= 233;V_endRow= 333; W_sigma={0.000529,14.6,712,2.59,2.17} Coefficient values one standard deviation w_0 =-6.2086e-005 0.000529 w_1 =-0.49618 14.6 w_2 =28779 712 w_3 =-27507 2.59 w_4 =104.07 2.17 SetAxis/A Peaks(11) FitPeaks(pulse_hist_comb,weight_adc_pulse_comb,11) Fit converged properly Curve fit with data subrange: pulse_hist_comb[233,333] fit_pulse_hist_comb= SingleGauss(Coef_0,x) Coef_0={-6.1714e-005,-0.48563,28779,-27507,104.06} V_chisq= 41.9097;V_npnts= 54;V_numNaNs= 0;V_numINFs= 0; V_startRow= 233;V_endRow= 333; W_sigma={0.000529,14.6,712,2.59,2.17} Coefficient values one standard deviation w_0 =-6.1714e-005 0.000529 w_1 =-0.48563 14.6 w_2 =28779 712 w_3 =-27507 2.59 w_4 =104.06 2.17 Fit converged properly Curve fit with data subrange: pulse_hist_comb[625,725] fit_pulse_hist_comb= SingleGauss(Coef_1,x) Coef_1={8.1109e-005,2.0377,29908,-21141,106.85} V_chisq= 44.197;V_npnts= 50;V_numNaNs= 0;V_numINFs= 0; V_startRow= 625;V_endRow= 725; W_sigma={0.000645,13.6,737,2.62,2.14} Coefficient values one standard deviation w_0 =8.1109e-005 0.000645 w_1 =2.0377 13.6 w_2 =29908 737 w_3 =-21141 2.62 w_4 =106.85 2.14 Fit converged properly Curve fit with data subrange: pulse_hist_comb[910,1010] fit_pulse_hist_comb= SingleGauss(Coef_2,x) Coef_2={0.00024845,4.8658,29664,-16619,103.79} V_chisq= 48.0122;V_npnts= 48;V_numNaNs= 0;V_numINFs= 0; V_startRow= 910;V_endRow= 1010; W_sigma={0.00062,10.4,733,2.55,2.09} Coefficient values one standard deviation w_0 =0.00024845 0.00062 w_1 =4.8658 10.4 w_2 =29664 733 w_3 =-16619 2.55 w_4 =103.79 2.09 Fit converged properly Curve fit with data subrange: pulse_hist_comb[1195,1295] fit_pulse_hist_comb= SingleGauss(Coef_3,x) Coef_3={-0.00020414,-1.7815,29698,-12037,101.91} V_chisq= 29.7416;V_npnts= 52;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1195;V_endRow= 1295; W_sigma={0.000614,7.57,733,2.51,2.14} Coefficient values one standard deviation w_0 =-0.00020414 0.000614 w_1 =-1.7815 7.57 w_2 =29698 733 w_3 =-12037 2.51 w_4 =101.91 2.14 Fit converged properly Curve fit with data subrange: pulse_hist_comb[1480,1580] fit_pulse_hist_comb= SingleGauss(Coef_4,x) Coef_4={0.00012378,1.8237,29003,-7490.3,100.58} V_chisq= 45.6747;V_npnts= 49;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1480;V_endRow= 1580; W_sigma={0.000581,4.46,722,2.5,2.05} Coefficient values one standard deviation w_0 =0.00012378 0.000581 w_1 =1.8237 4.46 w_2 =29003 722 w_3 =-7490.3 2.5 w_4 =100.58 2.05 Fit converged properly Curve fit with data subrange: pulse_hist_comb[1765,1865] fit_pulse_hist_comb= SingleGauss(Coef_5,x) Coef_5={8.2952e-005,0.85243,28716,-2946.3,105.67} V_chisq= 59.8189;V_npnts= 47;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1765;V_endRow= 1865; W_sigma={0.000709,2.13,732,2.66,2.26} Coefficient values one standard deviation w_0 =8.2952e-005 0.000709 w_1 =0.85243 2.13 w_2 =28716 732 w_3 =-2946.3 2.66 w_4 =105.67 2.26 Fit converged properly Curve fit with data subrange: pulse_hist_comb[2040,2140] fit_pulse_hist_comb= SingleGauss(Coef_6,x) Coef_6={6.7169e-005,0.60305,29706,1502.1,99.426} V_chisq= 52.3578;V_npnts= 56;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2040;V_endRow= 2140; W_sigma={0.00043,0.728,716,2.42,1.81} Coefficient values one standard deviation w_0 =6.7169e-005 0.00043 w_1 =0.60305 0.728 w_2 =29706 716 w_3 =1502.1 2.42 w_4 =99.426 1.81 Fit converged properly Curve fit with data subrange: pulse_hist_comb[2330,2430] fit_pulse_hist_comb= SingleGauss(Coef_7,x) Coef_7={-0.00010348,1.5615,29689,6130.9,103.76} V_chisq= 44.7787;V_npnts= 62;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2330;V_endRow= 2430; W_sigma={0.000377,2.29,716,2.53,1.99} Coefficient values one standard deviation w_0 =-0.00010348 0.000377 w_1 =1.5615 2.29 w_2 =29689 716 w_3 =6130.9 2.53 w_4 =103.76 1.99 Fit converged properly Curve fit with data subrange: pulse_hist_comb[3100,3500] fit_pulse_hist_comb= SingleGauss(Coef_8,x) Coef_8={-0.0014569,35.327,2.3784e+005,20988,123.37} V_chisq= 2388.68;V_npnts= 268;V_numNaNs= 0;V_numINFs= 0; V_startRow= 3100;V_endRow= 3500; W_sigma={7.76e-05,1.61,1.97e+03,1.05,0.817} Coefficient values one standard deviation w_0 =-0.0014569 7.76e-005 w_1 =35.327 1.61 w_2 =2.3784e+005 1.97e+003 w_3 =20988 1.05 w_4 =123.37 0.817 Fit converged properly Curve fit with data subrange: pulse_hist_comb[3465,3565] fit_pulse_hist_comb= SingleGauss(Coef_9,x) Coef_9={-4.6197e-005,1.8864,29389,24252,104.06} V_chisq= 36.1627;V_npnts= 45;V_numNaNs= 0;V_numINFs= 0; V_startRow= 3465;V_endRow= 3565; W_sigma={0.00101,24.2,753,2.63,2.37} Coefficient values one standard deviation w_0 =-4.6197e-005 0.00101 w_1 =1.8864 24.2 w_2 =29389 753 w_3 =24252 2.63 w_4 =104.06 2.37 Fit converged properly Curve fit with data subrange: pulse_hist_comb[3750,3850] fit_pulse_hist_comb= SingleGauss(Coef_10,x) Coef_10={-0.0008207,23.487,29052,28785,102.14} V_chisq= 44.3369;V_npnts= 43;V_numNaNs= 0;V_numINFs= 0; V_startRow= 3750;V_endRow= 3850; W_sigma={0.00122,34.9,778,2.65,2.38} Coefficient values one standard deviation w_0 =-0.0008207 0.00122 w_1 =23.487 34.9 w_2 =29052 778 w_3 =28785 2.65 w_4 =102.14 2.38 FitResults(11) Edit Rename wave0,'Known keV'; Rename wave0,'ADC Peaks'; Display 'Known keV' vs 'ADC Peaks' ModifyGraph mode=3 Rename wave0,'ADC Sigma'; CurveFit/NTHR=0/TBOX=777 line 'Known keV' /X='ADC Peaks' /W='ADC Sigma' /I=1 /D 'fit_Known keV'= W_coef[0]+W_coef[1]*x W_coef={3.3282,0.00011015} V_chisq= 1.46156e-005;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 10;V_q= 1;V_Rab= -0.319582; V_Pr= 0.954847; W_sigma={0.677,3.59e-05} Coefficient values one standard deviation a =3.3282 0.677 b =0.00011015 3.59e-005 Rename wave0,'A and B'; Rename wave1,'Sigma A and B'; Delimited text load from "20130226_Am241_al07.txt" LoadWave is unable to find column names on line 0 Data length: 4200, waves: AL07 Delimited text load from "20130226_Am241_ni.txt" LoadWave is unable to find column names on line 0 Data length: 3450, waves: Ni Delimited text load from "20130226_Am241_Ni2.txt" LoadWave is unable to find column names on line 0 Data length: 3060, waves: Ni2 General text load from "20130226_Am241_sn.txt" LoadWave is unable to find column names on line 0 Data length: 3060, waves: Sn duplicate AL07 AL_kev duplicate Ni Ni_kev duplicate Ni2 Ni2_kev duplicate Sn Sn_kev Al_kev = al07*0.00011015+3.3282 ni_kev=ni*0.00011015+3.3282 ni2_kev=ni2*0.00011015+3.3282 sn_kev=sn*0.00011015+3.3282 Make/N=4000/O AL_kev_Hist;DelayUpdate Histogram/N/B={0,0.5,4000} AL_kev,AL_kev_Hist Display root:AL_kev_Hist Make/N=4000/O AL_kev_Hist;DelayUpdate Histogram/N/B={0,0.002,4000} AL_kev,AL_kev_Hist Make/N=4000/O Ni_kev_Hist;DelayUpdate Histogram/N/B={0,0.002,4000} Ni_kev,Ni_kev_Hist Make/N=4000/O Ni2_kev_Hist;DelayUpdate Histogram/N/B={0,0.002,4000} Ni2_kev,Ni2_kev_Hist Make/N=4000/O Sn_kev_Hist;DelayUpdate Histogram/N/B={0,0.002,4000} Sn_kev,Sn_kev_Hist Display root:Ni_kev_Hist Display root:Ni2_kev_Hist Display root:Sn_kev_Hist ModifyGraph rgb=(0,0,65280) AppendToGraph Ni2_kev_Hist AppendToGraph AL_kev_Hist AppendToGraph Sn_kev RemoveFromGraph Sn_kev ModifyGraph rgb(AL_kev_Hist)=(0,0,0) AppendToGraph Sn_kev_Hist ModifyGraph rgb(Sn_kev_Hist)=(34816,34816,34816) SetAxis/A ShowInfo ModifyGraph rgb(Sn_kev_Hist)=(39168,0,15616) ModifyGraph rgb(Sn_kev_Hist)=(0,34816,52224) Edit 'Known keV','ADC Peaks','ADC Sigma','A and B' as "Known Energy vs ADC";DelayUpdate AppendToTable 'Sigma A and B' fitresults("ADCFitResults",11) fitresults("ADC Fit Results",11) display ni_kev_hist ShowInfo Make/D/N=6/O W_coef W_coef[0] = {-0.1,.1,34,4.95,.07,.1} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[2],W_coef[3],W_coef[4],W_coef[5] Make/D/N=6/O W_coef W_coef[0] = {-0.1,.1,34,4.95,.07,.1} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[2],W_coef[3],W_coef[4],W_coef[5] ModifyGraph rgb(fit_Ni_kev_Hist)=(0,0,65280) Make/D/N=5/O W_coef W_coef[0] = {-0.1,.1,34,4.95,.07} FuncFit/NTHR=0/TBOX=777 SingleGauss W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2197,2598] fit_Ni_kev_Hist= SingleGauss(W_coef,x) W_coef={-2.5915,14.435,36.583,4.9611,0.050541} V_chisq= 5628.08;V_npnts= 402;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2197;V_endRow= 2598; W_sigma={0.952,4.49,0.728,0.00112,0.00128} Coefficient values one standard deviation w_0 =-2.5915 0.952 w_1 =14.435 4.49 w_2 =36.583 0.728 w_3 =4.9611 0.00112 w_4 =0.050541 0.00128 Make/D/N=6/O W_coef W_coef[0] = {-2,14,36,4.96,0.05,.06} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2198,2598] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.9274e+005,-9.2508e+005,10.364,-100.17,-92.076,-209.83} V_chisq= 7.98352e+011;V_npnts= 401;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2598; W_sigma={9.64e+03,4.99e+04,6.23e+03,1.87e+04,6.78e+06,9.25e+03} Coefficient values one standard deviation w_0 =1.9274e+005 9.64e+003 w_1 =-9.2508e+005 4.99e+004 w_2 =10.364 6.23e+003 w_3 =-100.17 1.87e+004 w_4 =-92.076 6.78e+006 w_5 =-209.83 9.25e+003 Make/D/N=6/O W_coef W_coef[0] = {-2,14,36,4.96,0.05,.06} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[2],W_coef[3],W_coef[4],W_coef[5] Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.06} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.5812e-005,15.546,7.4979,26.108} V_chisq= 7322.55;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={0.0163,2.78e+03,861,5.51e+03} Coefficient values one standard deviation w_0 =1.5812e-005 0.0163 w_1 =15.546 2.78e+003 w_2 =7.4979 861 w_3 =26.108 5.51e+003 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.2} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={2.5518e-024,4.8856,0.035678,0.089306} V_chisq= 7968.68;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={9.55e-20,2.08e+03,774,3.85e+03} Coefficient values one standard deviation w_0 =2.5518e-024 9.55e-020 w_1 =4.8856 2.08e+003 w_2 =0.035678 774 w_3 =0.089306 3.85e+003 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.1} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.0319e-013,5.0342,0.10009,0.30466} V_chisq= 7978.8;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={7.13e-09,1.91e+04,6.33e+03,3.87e+04} Coefficient values one standard deviation w_0 =1.0319e-013 7.13e-009 w_1 =5.0342 1.91e+004 w_2 =0.10009 6.33e+003 w_3 =0.30466 3.87e+004 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4625,4.4408,0.048152,0.0063898} V_chisq= 977.452;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={0.24,34.6,261,69.2} Coefficient values one standard deviation w_0 =1.4625 0.24 w_1 =4.4408 34.6 w_2 =0.048152 261 w_3 =0.0063898 69.2 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.06} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.5812e-005,15.546,7.4979,26.108} V_chisq= 7322.55;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={0.0163,2.78e+03,861,5.51e+03} Coefficient values one standard deviation w_0 =1.5812e-005 0.0163 w_1 =15.546 2.78e+003 w_2 =7.4979 861 w_3 =26.108 5.51e+003 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4628,4.4432,0.063252,0.011031} V_chisq= 977.451;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={0.24,31.9,183,63.7} Coefficient values one standard deviation w_0 =1.4628 0.24 w_1 =4.4432 31.9 w_2 =0.063252 183 w_3 =0.011031 63.7 Make/D/N=4/O W_coef W_coef[0] = {36,4.4,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4625,4.4408,0.047929,0.006332} V_chisq= 977.451;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={0.239,25.2,190,50.3} Coefficient values one standard deviation w_0 =1.4625 0.239 w_1 =4.4408 25.2 w_2 =0.047929 190 w_3 =0.006332 50.3 Make/D/N=6/O W_coef W_coef[0] = {2,1,34,4.96,0.05,0.006} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2198,2450] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.408,4.4144,0.039459,0.0038464} V_chisq= 1414.54;V_npnts= 253;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2450; W_sigma={0.331,30.8,316,61.6} Coefficient values one standard deviation w_0 =1.408 0.331 w_1 =4.4144 30.8 w_2 =0.039459 316 w_3 =0.0038464 61.6 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2198,2579] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.248,4.9637,0.049637,-0.046639} V_chisq= 5788.74;V_npnts= 382;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2198;V_endRow= 2579; W_sigma={0.74,0.00125,0.00139,0.00248} Coefficient values one standard deviation w_0 =38.248 0.74 w_1 =4.9637 0.00125 w_2 =0.049637 0.00139 w_3 =-0.046639 0.00248 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2190,2579] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={19.667,-3.0774,13.356,-1.5255} V_chisq= 36070.7;V_npnts= 390;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2190;V_endRow= 2579; W_sigma={55,14.8,103,26.4} Coefficient values one standard deviation w_0 =19.667 55 w_1 =-3.0774 14.8 w_2 =13.356 103 w_3 =-1.5255 26.4 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2190,2579] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={14.416,5.8591,-0.082354,-0.14063} V_chisq= 74665;V_npnts= 390;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2190;V_endRow= 2579; W_sigma={5.13e+20,6.8e+17,3.95e+16,1.97e+35} Coefficient values one standard deviation w_0 =14.416 5.13e+020 w_1 =5.8591 6.8e+017 w_2 =-0.082354 3.95e+016 w_3 =-0.14063 1.97e+035 Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.01} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[3] Make/D/N=4/O W_coef W_coef[0] = {36,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2183,2579] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={9.3382,5.3858,-22.566,2.4427} V_chisq= 50693.4;V_npnts= 397;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2183;V_endRow= 2579; W_sigma={1.66,219,1.67e+03,404} Coefficient values one standard deviation w_0 =9.3382 1.66 w_1 =5.3858 219 w_2 =-22.566 1.67e+003 w_3 =2.4427 404 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[2183,2579] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={48.268,2.4054,-1.7833,-5.8268} V_chisq= 30069.8;V_npnts= 397;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2183;V_endRow= 2579; W_sigma={9.43,5.25e+03,3.44e+03,2.72e+03} Coefficient values one standard deviation w_0 =48.268 9.43 w_1 =2.4054 5.25e+003 w_2 =-1.7833 3.44e+003 w_3 =-5.8268 2.72e+003 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[2183,2605] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={250.17,4.088,0.40142,-2.0598} V_chisq= 19986.8;V_npnts= 423;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2183;V_endRow= 2605; W_sigma={3.31,1.45e+04,2.27e+04,6.51e+03} Coefficient values one standard deviation w_0 =250.17 3.31 w_1 =4.088 1.45e+004 w_2 =0.40142 2.27e+004 w_3 =-2.0598 6.51e+003 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[2183,2552] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={20.804,5.101,2.2479,-1.4748} V_chisq= 24960.6;V_npnts= 370;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2183;V_endRow= 2552; W_sigma={83.6,3.54e+03,1.38e+03,2.19e+03} Coefficient values one standard deviation w_0 =20.804 83.6 w_1 =5.101 3.54e+003 w_2 =2.2479 1.38e+003 w_3 =-1.4748 2.19e+003 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[2183,2552] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={20.804,5.101,2.2479,-1.4748} V_chisq= 24960.6;V_npnts= 370;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2183;V_endRow= 2552; W_sigma={83.6,3.54e+03,1.38e+03,2.19e+03} Coefficient values one standard deviation w_0 =20.804 83.6 w_1 =5.101 3.54e+003 w_2 =2.2479 1.38e+003 w_3 =-1.4748 2.19e+003 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[2186,2572] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={122.38,4.3228,0.35451,-1.5331} V_chisq= 18267.5;V_npnts= 387;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2186;V_endRow= 2572; W_sigma={8.47,1.44e+04,2e+04,6.4e+03} Coefficient values one standard deviation w_0 =122.38 8.47 w_1 =4.3228 1.44e+004 w_2 =0.35451 2e+004 w_3 =-1.5331 6.4e+003 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-1} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[3] Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.1} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2186,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.275,4.9637,0.049606,-0.046763} V_chisq= 5808.71;V_npnts= 411;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2186;V_endRow= 2596; W_sigma={0.714,0.00121,0.00134,0.0024} Coefficient values one standard deviation w_0 =38.275 0.714 w_1 =4.9637 0.00121 w_2 =0.049606 0.00134 w_3 =-0.046763 0.0024 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.06} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2186,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.276,4.9637,0.049595,-0.046744} V_chisq= 5808.71;V_npnts= 411;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2186;V_endRow= 2596; W_sigma={0.714,0.00121,0.00134,0.0024} Coefficient values one standard deviation w_0 =38.276 0.714 w_1 =4.9637 0.00121 w_2 =0.049595 0.00134 w_3 =-0.046744 0.0024 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2186,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.247,4.9637,0.049626,-0.046588} V_chisq= 5808.78;V_npnts= 411;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2186;V_endRow= 2596; W_sigma={0.714,0.00121,0.00134,0.00239} Coefficient values one standard deviation w_0 =38.247 0.714 w_1 =4.9637 0.00121 w_2 =0.049626 0.00134 w_3 =-0.046588 0.00239 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2190,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.247,4.9637,0.049626,-0.046589} V_chisq= 5795.78;V_npnts= 407;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2190;V_endRow= 2596; W_sigma={0.717,0.00122,0.00135,0.0024} Coefficient values one standard deviation w_0 =38.247 0.717 w_1 =4.9637 0.00122 w_2 =0.049626 0.00135 w_3 =-0.046589 0.0024 ModifyGraph lsize(fit_Ni_kev_Hist)=2 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2190,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.247,4.9637,0.049626,-0.046589} V_chisq= 5795.78;V_npnts= 407;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2190;V_endRow= 2596; W_sigma={0.717,0.00122,0.00135,0.0024} Coefficient values one standard deviation w_0 =38.247 0.717 w_1 =4.9637 0.00122 w_2 =0.049626 0.00135 w_3 =-0.046589 0.0024 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[3] Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2190,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={36.459,4.9851,0.033733,-0.016939} V_chisq= 5878.54;V_npnts= 407;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2190;V_endRow= 2596; W_sigma={0.658,0.00359,0.0029,0.00344} Coefficient values one standard deviation w_0 =36.459 0.658 w_1 =4.9851 0.00359 w_2 =0.033733 0.0029 w_3 =-0.016939 0.00344 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.016} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2265,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={36.523,4.9845,0.03408,-0.017744} V_chisq= 5639.71;V_npnts= 332;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2265;V_endRow= 2596; W_sigma={0.714,0.00412,0.00329,0.00404} Coefficient values one standard deviation w_0 =36.523 0.714 w_1 =4.9845 0.00412 w_2 =0.03408 0.00329 w_3 =-0.017744 0.00404 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.016} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2265,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={36.523,4.9845,0.03408,-0.017744} V_chisq= 5639.71;V_npnts= 332;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2265;V_endRow= 2596; W_sigma={0.714,0.00412,0.00329,0.00404} Coefficient values one standard deviation w_0 =36.523 0.714 w_1 =4.9845 0.00412 w_2 =0.03408 0.00329 w_3 =-0.017744 0.00404 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.016} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2265,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={37.545,4.9789,0.037657,-0.0239} V_chisq= 5480.29;V_npnts= 332;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2265;V_endRow= 2596; W_sigma={0.775,0.00367,0.00294,0.00451} Coefficient values one standard deviation w_0 =37.545 0.775 w_1 =4.9789 0.00367 w_2 =0.037657 0.00294 w_3 =-0.0239 0.00451 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.016} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2265,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.072,4.9756,0.039824,-0.027842} V_chisq= 5470.71;V_npnts= 332;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2265;V_endRow= 2596; W_sigma={0.767,0.00197,0.00188,0.00274} Coefficient values one standard deviation w_0 =38.072 0.767 w_1 =4.9756 0.00197 w_2 =0.039824 0.00188 w_3 =-0.027842 0.00274 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.016} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2265,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.007,4.9776,0.038177,-0.025344} V_chisq= 5386.98;V_npnts= 332;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2265;V_endRow= 2596; W_sigma={0.754,0.00211,0.00196,0.00279} Coefficient values one standard deviation w_0 =38.007 0.754 w_1 =4.9776 0.00211 w_2 =0.038177 0.00196 w_3 =-0.025344 0.00279 SetAxis/A Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.016} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.007,4.9777,0.038177,-0.025343} V_chisq= 5904.98;V_npnts= 582;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2596; W_sigma={0.595,0.00166,0.00155,0.0022} Coefficient values one standard deviation w_0 =38.007 0.595 w_1 =4.9777 0.00166 w_2 =0.038177 0.00155 w_3 =-0.025343 0.0022 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.03} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={38.033,4.9759,0.039597,-0.027679} V_chisq= 5955.95;V_npnts= 582;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2596; W_sigma={0.6,0.00163,0.00153,0.00226} Coefficient values one standard deviation w_0 =38.033 0.6 w_1 =4.9759 0.00163 w_2 =0.039597 0.00153 w_3 =-0.027679 0.00226 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.03} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={36.074,4.985,0.034057,-0.016956} V_chisq= 6139.62;V_npnts= 582;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2596; W_sigma={0.559,0.0031,0.00251,0.00295} Coefficient values one standard deviation w_0 =36.074 0.559 w_1 =4.985 0.0031 w_2 =0.034057 0.00251 w_3 =-0.016956 0.00295 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.03} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[3] Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.006} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[3] Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.006} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={36.48,4.985,0.033766,-0.017028} V_chisq= 6127.36;V_npnts= 582;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2596; W_sigma={0.561,0.00307,0.00248,0.00295} Coefficient values one standard deviation w_0 =36.48 0.561 w_1 =4.985 0.00307 w_2 =0.033766 0.00248 w_3 =-0.017028 0.00295 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,-0.015} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2596] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={36.283,4.986,0.033089,-0.015999} V_chisq= 6136.1;V_npnts= 582;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2596; W_sigma={0.56,0.00301,0.00244,0.00278} Coefficient values one standard deviation w_0 =36.283 0.56 w_1 =4.986 0.00301 w_2 =0.033089 0.00244 w_3 =-0.015999 0.00278 Make/D/N=4/O W_coef W_coef[0] = {34,4.6,0.05,-0.015} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2015,2485] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.30803,2.1956,-0.33165,-0.13931} V_chisq= 45013;V_npnts= 471;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2485; W_sigma={4.44e+10,3.17e+10,6.34e+10,5.32e+10} Coefficient values one standard deviation w_0 =0.30803 4.44e+010 w_1 =2.1956 3.17e+010 w_2 =-0.33165 6.34e+010 w_3 =-0.13931 5.32e+010 Make/D/N=4/O W_coef W_coef[0] = {34,4.6,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2485] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.60346,4.3035,0.067921,0.010941} V_chisq= 3499.37;V_npnts= 471;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2485; W_sigma={0.1,11.3,70.4,22.7} Coefficient values one standard deviation w_0 =0.60346 0.1 w_1 =4.3035 11.3 w_2 =0.067921 70.4 w_3 =0.010941 22.7 Make/D/N=4/O W_coef W_coef[0] = {34,4.6,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2015,2473] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.45198,4.3513,0.056915,0.0099682} V_chisq= 2467.73;V_npnts= 459;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2015;V_endRow= 2473; W_sigma={0.057,10.8,61.6,21.6} Coefficient values one standard deviation w_0 =0.45198 0.057 w_1 =4.3513 10.8 w_2 =0.056915 61.6 w_3 =0.0099682 21.6 Make/D/N=4/O W_coef W_coef[0] = {34,4.6,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2013,2473] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.5985,-27.586,-3.5173,0.96163} V_chisq= 29238;V_npnts= 461;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2473; W_sigma={7.9e+143,4.97e+142,2.76e+141,4.33e+140} Coefficient values one standard deviation w_0 =1.5985 7.9e+143 w_1 =-27.586 4.97e+142 w_2 =-3.5173 2.76e+141 w_3 =0.96163 4.33e+140 Make/D/N=4/O W_coef W_coef[0] = {34,4.6,0.05,-0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2473] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.4418,4.3378,0.053569,-0.0087464} V_chisq= 2472.67;V_npnts= 461;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2473; W_sigma={0.0557,10.9,66.9,21.8} Coefficient values one standard deviation w_0 =0.4418 0.0557 w_1 =4.3378 10.9 w_2 =0.053569 66.9 w_3 =-0.0087464 21.8 Make/D/N=4/O W_coef W_coef[0] = {34,4.6,0.05,-0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.55435,4.0718,0.28051,-0.15274} V_chisq= 74820.3;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={1.25,2.46,2.51,4.95} Coefficient values one standard deviation w_0 =0.55435 1.25 w_1 =4.0718 2.46 w_2 =0.28051 2.51 w_3 =-0.15274 4.95 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={34.456,4.9942,0.038349,0.021942} V_chisq= 6757.19;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.606,0.00132,0.00189,0.00291} Coefficient values one standard deviation w_0 =34.456 0.606 w_1 =4.9942 0.00132 w_2 =0.038349 0.00189 w_3 =0.021942 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/H="0001"/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={35.781,5.0024,0.027257,0.01} V_chisq= 6542.87;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.553,0.000765,0.000495,0} Coefficient values one standard deviation w_0 =35.781 0.553 w_1 =5.0024 0.000765 w_2 =0.027257 0.000495 w_3 =0.01 0 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/H="0001"/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={35.781,5.0024,0.027257,0.01} V_chisq= 6542.87;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.553,0.000765,0.000495,0} Coefficient values one standard deviation w_0 =35.781 0.553 w_1 =5.0024 0.000765 w_2 =0.027257 0.000495 w_3 =0.01 0 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={34.456,4.9942,0.038349,0.021942} V_chisq= 6757.19;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.606,0.00132,0.00189,0.00291} Coefficient values one standard deviation w_0 =34.456 0.606 w_1 =4.9942 0.00132 w_2 =0.038349 0.00189 w_3 =0.021942 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={34.456,4.9942,0.038349,0.021942} V_chisq= 6757.19;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.606,0.00132,0.00189,0.00291} Coefficient values one standard deviation w_0 =34.456 0.606 w_1 =4.9942 0.00132 w_2 =0.038349 0.00189 w_3 =0.021942 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={34.456,4.9942,0.038349,0.021942} V_chisq= 6757.19;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.606,0.00132,0.00189,0.00291} Coefficient values one standard deviation w_0 =34.456 0.606 w_1 =4.9942 0.00132 w_2 =0.038349 0.00189 w_3 =0.021942 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={34.456,4.9942,0.038349,0.021942} V_chisq= 6757.19;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.606,0.00132,0.00189,0.00291} Coefficient values one standard deviation w_0 =34.456 0.606 w_1 =4.9942 0.00132 w_2 =0.038349 0.00189 w_3 =0.021942 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={33.988,4.9902,0.032889,0.01793} V_chisq= 8438.86;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.696,0.00145,0.00205,0.00291} Coefficient values one standard deviation w_0 =33.988 0.696 w_1 =4.9902 0.00145 w_2 =0.032889 0.00205 w_3 =0.01793 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={34.456,4.9942,0.038349,0.021942} V_chisq= 6757.19;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.606,0.00132,0.00189,0.00291} Coefficient values one standard deviation w_0 =34.456 0.606 w_1 =4.9942 0.00132 w_2 =0.038349 0.00189 w_3 =0.021942 0.00291 Make/D/N=4/O W_coef W_coef[0] = {34,4.96,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail2 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail2(W_coef,x) W_coef={38.596,4.9628,0.070653,0.10632} V_chisq= 5949.98;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.584,0.000874,0.00127,0.00248} Coefficient values one standard deviation w_0 =38.596 0.584 w_1 =4.9628 0.000874 w_2 =0.070653 0.00127 w_3 =0.10632 0.00248 FuncFit/NTHR=0/TBOX=777 GaussTail2 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail2(W_coef,x) W_coef={36.411,4.9851,0.047521,0.11814} V_chisq= 6088.92;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.542,0.00234,0.00283,0.00338} Coefficient values one standard deviation w_0 =36.411 0.542 w_1 =4.9851 0.00234 w_2 =0.047521 0.00283 w_3 =0.11814 0.00338 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.96,0.05,0.1} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.96,0.05,0.1} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[4] Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.96,0.05,0.1} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[4] Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.96,0.05,0.1} FuncFit/NTHR=0/TBOX=777 GaussTail2 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail2(W_coef,x) W_coef={-0.61922,4.8744,36.892,4.9636,0.076097,0.069294} V_chisq= 5804.32;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.699,3.09,0.59,0.000913,0.00305,0.00137} Coefficient values one standard deviation w_0 =-0.61922 0.699 w_1 =4.8744 3.09 w_2 =36.892 0.59 w_3 =4.9636 0.000913 w_4 =0.076097 0.00305 w_5 =0.069294 0.00137 Make/D/N=4/O W_coef W_coef[0] = {34,4.95,.05,.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={35.065,4.9953,0.037008,0.021179} V_chisq= 6524.87;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.601,0.00126,0.0018,0.00276} Coefficient values one standard deviation w_0 =35.065 0.601 w_1 =4.9953 0.00126 w_2 =0.037008 0.0018 w_3 =0.021179 0.00276 Make/D/N=4/O W_coef W_coef[0] = {34,4.95,.05,.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={29.367,4.9788,0.057398,0.044298} V_chisq= 11691.1;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.778,0.00183,0.00293,0.00741} Coefficient values one standard deviation w_0 =29.367 0.778 w_1 =4.9788 0.00183 w_2 =0.057398 0.00293 w_3 =0.044298 0.00741 Make/D/N=4/O W_coef W_coef[0] = {34,4.95,.05,.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={35.065,4.9953,0.037008,0.021179} V_chisq= 6524.87;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.601,0.00126,0.0018,0.00276} Coefficient values one standard deviation w_0 =35.065 0.601 w_1 =4.9953 0.00126 w_2 =0.037008 0.0018 w_3 =0.021179 0.00276 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.95,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={5.5688,-22.9,29.903,5.0011,0.035893,0.023022} V_chisq= 6035.04;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.732,3.23,0.65,0.00126,0.00187,0.00354} Coefficient values one standard deviation w_0 =5.5688 0.732 w_1 =-22.9 3.23 w_2 =29.903 0.65 w_3 =5.0011 0.00126 w_4 =0.035893 0.00187 w_5 =0.023022 0.00354 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.95,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.37027,-0.49485,34.78,5.0005,0.033658,0.01853} V_chisq= 5715.69;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.399,1.82,0.576,0.00119,0.00174,0.00261} Coefficient values one standard deviation w_0 =0.37027 0.399 w_1 =-0.49485 1.82 w_2 =34.78 0.576 w_3 =5.0005 0.00119 w_4 =0.033658 0.00174 w_5 =0.01853 0.00261 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.95,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.41174,-0.47457,34.342,4.9951,0.033309,0.02095} V_chisq= 5628.04;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.41,1.86,0.617,0.00104,0.00156,0.00259} Coefficient values one standard deviation w_0 =0.41174 0.41 w_1 =-0.47457 1.86 w_2 =34.342 0.617 w_3 =4.9951 0.00104 w_4 =0.033309 0.00156 w_5 =0.02095 0.00259 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.95,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2614] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={5.7359,-23.522,32.156,4.9969,0.037906,0.062105} V_chisq= 4612.95;V_npnts= 602;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2614; W_sigma={0.6,2.66,0.537,0.000877,0.00079,0.0047} Coefficient values one standard deviation w_0 =5.7359 0.6 w_1 =-23.522 2.66 w_2 =32.156 0.537 w_3 =4.9969 0.000877 w_4 =0.037906 0.00079 w_5 =0.062105 0.0047 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.95,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2467] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={-0.21373,2.1205,132.82,5.3195,0.046867,0.0069811} V_chisq= 2277.27;V_npnts= 455;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2467; W_sigma={0.866,3.72,297,30.7,207,61.5} Coefficient values one standard deviation w_0 =-0.21373 0.866 w_1 =2.1205 3.72 w_2 =132.82 297 w_3 =5.3195 30.7 w_4 =0.046867 207 w_5 =0.0069811 61.5 Make/D/N=6/O W_coef W_coef[0] = {-0.1,5,34,4.95,0.05,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2466] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={3.7598,-15.06,845.34,5.3892,0.04402,0.0083053} V_chisq= 1496.42;V_npnts= 454;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2466; W_sigma={0.554,2.41,3.6e+03,17.1,91.1,34.4} Coefficient values one standard deviation w_0 =3.7598 0.554 w_1 =-15.06 2.41 w_2 =845.34 3.6e+003 w_3 =5.3892 17.1 w_4 =0.04402 91.1 w_5 =0.0083053 34.4 ModifyGraph rgb(fit_Ni_kev_Hist#1)=(0,0,0);DelayUpdate ModifyGraph rgb(Res_Ni_kev_Hist)=(21760,21760,21760),rgb(Bkg_Ni_kev_Hist)=(0,0,0) ModifyGraph rgb(fit_Ni_kev_Hist#1)=(32768,40704,65280) ModifyGraph lsize(fit_Ni_kev_Hist#1)=1.5 duplicate ni_kev_hist weight_ni1 weight_ni1=sqrt(weight_ni1) Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.96,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2595] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={2.0364,-7.4227,29.509,4.9955,0.039749,0.033385} V_chisq= 444.416;V_npnts= 419;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2595; W_sigma={0.395,1.74,0.98,0.0017,0.00193,0.0053} Coefficient values one standard deviation w_0 =2.0364 0.395 w_1 =-7.4227 1.74 w_2 =29.509 0.98 w_3 =4.9955 0.0017 w_4 =0.039749 0.00193 w_5 =0.033385 0.0053 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.96,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2595] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.35116,-0.09464,29.155,5.0377,0.048886,0.023722} V_chisq= 687.431;V_npnts= 419;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2595; W_sigma={0.459,2,2.07,127,261,253} Coefficient values one standard deviation w_0 =0.35116 0.459 w_1 =-0.09464 2 w_2 =29.155 2.07 w_3 =5.0377 127 w_4 =0.048886 261 w_5 =0.023722 253 ** GetUserData gave error: expected name of a target window ** GetUserData gave error: expected name of a target window ** GetUserData gave error: expected name of a target window ** GetUserData gave error: expected name of a target window ** GetUserData gave error: expected name of a target window ** GetUserData gave error: expected name of a target window Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2595] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.3764,-0.14052,30.768,5.0408,0.046293,0.022651} V_chisq= 629.208;V_npnts= 419;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2595; W_sigma={0.446,1.95,2.14,136,278,272} Coefficient values one standard deviation w_0 =0.3764 0.446 w_1 =-0.14052 1.95 w_2 =30.768 2.14 w_3 =5.0408 136 w_4 =0.046293 278 w_5 =0.022651 272 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2595] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.3764,-0.14052,30.768,5.0408,0.046293,0.022651} V_chisq= 629.208;V_npnts= 419;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2595; W_sigma={0.446,1.95,2.14,136,278,272} Coefficient values one standard deviation w_0 =0.3764 0.446 w_1 =-0.14052 1.95 w_2 =30.768 2.14 w_3 =5.0408 136 w_4 =0.046293 278 w_5 =0.022651 272 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[2013,2595] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.0151,-2.9293,29.259,5.0043,0.033006,0.018161} V_chisq= 553.866;V_npnts= 419;V_numNaNs= 0;V_numINFs= 0; V_startRow= 2013;V_endRow= 2595; W_sigma={0.41,1.8,0.978,163,295,325} Coefficient values one standard deviation w_0 =1.0151 0.41 w_1 =-2.9293 1.8 w_2 =29.259 0.978 w_3 =5.0043 163 w_4 =0.033006 295 w_5 =0.018161 325 ** GetUserData gave error: expected name of a target window ** GetUserData gave error: expected name of a target window display ni_kev_hist ShowInfo Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2909] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.9052,-2.4424,29.652,5.004,0.033099,0.018222} V_chisq= 559.441;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2909; W_sigma={0.244,1.04,0.959,202,368,405} Coefficient values one standard deviation w_0 =0.9052 0.244 w_1 =-2.4424 1.04 w_2 =29.652 0.959 w_3 =5.004 202 w_4 =0.033099 368 w_5 =0.018222 405 ModifyGraph lsize(fit_Ni_kev_Hist)=1.5,rgb(fit_Ni_kev_Hist)=(0,0,52224) ModifyGraph mode(Ni_kev_Hist)=6 ModifyGraph lsize=1.5,mode(Ni_kev_Hist)=2 ModifyGraph mode(Ni_kev_Hist)=3 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[3],W_coef[4],W_coef[5] Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[3],W_coef[4],W_coef[5] FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.44782,-0.50707,30.929,5.0408,0.046396,0.022611} V_chisq= 633.115;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.259,1.1,2.03,129,265,259} Coefficient values one standard deviation w_0 =0.44782 0.259 w_1 =-0.50707 1.1 w_2 =30.929 2.03 w_3 =5.0408 129 w_4 =0.046396 265 w_5 =0.022611 259 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.4478,-0.50726,30.944,5.0407,0.046396,0.022613} V_chisq= 632.997;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.258,1.1,2.04,128,263,256} Coefficient values one standard deviation w_0 =0.4478 0.258 w_1 =-0.50726 1.1 w_2 =30.944 2.04 w_3 =5.0407 128 w_4 =0.046396 263 w_5 =0.022613 256 **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[5] **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[5] Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2137,-3.7623,29.509,4.9975,0.03875,0.029338} V_chisq= 432.724;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.24,1.03,0.95,0.00181,0.002,0.00465} Coefficient values one standard deviation w_0 =1.2137 0.24 w_1 =-3.7623 1.03 w_2 =29.509 0.95 w_3 =4.9975 0.00181 w_4 =0.03875 0.002 w_5 =0.029338 0.00465 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2137,-3.7623,29.509,4.9975,0.03875,0.029338} V_chisq= 432.724;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.24,1.03,0.95,0.00181,0.002,0.00465} Coefficient values one standard deviation w_0 =1.2137 0.24 w_1 =-3.7623 1.03 w_2 =29.509 0.95 w_3 =4.9975 0.00181 w_4 =0.03875 0.002 w_5 =0.029338 0.00465 ModifyGraph mode=0 ModifyGraph lsize(Ni_kev_Hist)=1 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2137,-3.7623,29.509,4.9975,0.03875,0.029338} V_chisq= 432.724;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.24,1.03,0.95,0.00181,0.002,0.00465} Coefficient values one standard deviation w_0 =1.2137 0.24 w_1 =-3.7623 1.03 w_2 =29.509 0.95 w_3 =4.9975 0.00181 w_4 =0.03875 0.002 w_5 =0.029338 0.00465 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2137,-3.7623,29.509,4.9975,0.03875,0.029338} V_chisq= 432.724;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.24,1.03,0.95,0.00181,0.002,0.00465} Coefficient values one standard deviation w_0 =1.2137 0.24 w_1 =-3.7623 1.03 w_2 =29.509 0.95 w_3 =4.9975 0.00181 w_4 =0.03875 0.002 w_5 =0.029338 0.00465 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2137,-3.7623,29.509,4.9975,0.03875,0.029338} V_chisq= 432.724;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.24,1.03,0.95,0.00181,0.002,0.00465} Coefficient values one standard deviation w_0 =1.2137 0.24 w_1 =-3.7623 1.03 w_2 =29.509 0.95 w_3 =4.9975 0.00181 w_4 =0.03875 0.002 w_5 =0.029338 0.00465 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.44782,-0.50707,30.929,5.0408,0.046396,0.022611} V_chisq= 633.115;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.259,1.1,2.03,129,265,259} Coefficient values one standard deviation w_0 =0.44782 0.259 w_1 =-0.50707 1.1 w_2 =30.929 2.03 w_3 =5.0408 129 w_4 =0.046396 265 w_5 =0.022611 259 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.44782,-0.50707,30.929,5.0408,0.046396,0.022611} V_chisq= 633.115;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.259,1.1,2.03,129,265,259} Coefficient values one standard deviation w_0 =0.44782 0.259 w_1 =-0.50707 1.1 w_2 =30.929 2.03 w_3 =5.0408 129 w_4 =0.046396 265 w_5 =0.022611 259 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.44867,-0.53239,28.419,5.022,0.04534,0.024969} V_chisq= 588.336;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.255,1.09,1.22,207,375,413} Coefficient values one standard deviation w_0 =0.44867 0.255 w_1 =-0.53239 1.09 w_2 =28.419 1.22 w_3 =5.022 207 w_4 =0.04534 375 w_5 =0.024969 413 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.44867,-0.53239,28.419,5.022,0.04534,0.024969} V_chisq= 514.802;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.202,0.873,1.21,199,361,397} Coefficient values one standard deviation w_0 =0.44867 0.202 w_1 =-0.53239 0.873 w_2 =28.419 1.21 w_3 =5.022 199 w_4 =0.04534 361 w_5 =0.024969 397 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.44867,-0.53239,28.419,5.022,0.04534,0.024969} V_chisq= 588.335;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.255,1.08,1.22,153,278,306} Coefficient values one standard deviation w_0 =0.44867 0.255 w_1 =-0.53239 1.08 w_2 =28.419 1.22 w_3 =5.022 153 w_4 =0.04534 278 w_5 =0.024969 306 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.0435,-3.0493,236.34,5.2337,0.047761,0.01445} V_chisq= 1670.11;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.265,1.13,505,53.4,177,107} Coefficient values one standard deviation w_0 =1.0435 0.265 w_1 =-3.0493 1.13 w_2 =236.34 505 w_3 =5.2337 53.4 w_4 =0.047761 177 w_5 =0.01445 107 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.1629,-3.5565,229.13,5.2276,0.052878,0.018392} V_chisq= 1667.13;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.254,1.08,311,0.175,0.0692,0.0396} Coefficient values one standard deviation w_0 =1.1629 0.254 w_1 =-3.5565 1.08 w_2 =229.13 311 w_3 =5.2276 0.175 w_4 =0.052878 0.0692 w_5 =0.018392 0.0396 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.108,-3.3374,497.26,5.3463,0.10381,0.052808} V_chisq= 1625.8;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.251,1.07,278,0.0705,0.0249,0.018} Coefficient values one standard deviation w_0 =1.108 0.251 w_1 =-3.3374 1.07 w_2 =497.26 278 w_3 =5.3463 0.0705 w_4 =0.10381 0.0249 w_5 =0.052808 0.018 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.1094,-3.3394,532.89,5.3499,0.10389,0.053133} V_chisq= 1636.51;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.269,1.14,1.67e+03,0.282,0.124,0.169} Coefficient values one standard deviation w_0 =1.1094 0.269 w_1 =-3.3394 1.14 w_2 =532.89 1.67e+003 w_3 =5.3499 0.282 w_4 =0.10389 0.124 w_5 =0.053133 0.169 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4384,-4.6891,30.87,4.9963,0.038694,0.036749} V_chisq= 381.382;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.235,1.01,0.883,0.00199,0.00199,0.00708} Coefficient values one standard deviation w_0 =1.4384 0.235 w_1 =-4.6891 1.01 w_2 =30.87 0.883 w_3 =4.9963 0.00199 w_4 =0.038694 0.00199 w_5 =0.036749 0.00708 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4159,-4.5988,30.109,4.997,0.038598,0.034374} V_chisq= 963.229;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.236,1.01,1.1,0.00223,0.00231,0.00712} Coefficient values one standard deviation w_0 =1.4159 0.236 w_1 =-4.5988 1.01 w_2 =30.109 1.1 w_3 =4.997 0.00223 w_4 =0.038598 0.00231 w_5 =0.034374 0.00712 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4158,-4.5992,30.274,4.9967,0.038675,0.034441} V_chisq= 454.791;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.236,1.01,1.01,0.00157,0.00181,0.00534} Coefficient values one standard deviation w_0 =1.4158 0.236 w_1 =-4.5992 1.01 w_2 =30.274 1.01 w_3 =4.9967 0.00157 w_4 =0.038675 0.00181 w_5 =0.034441 0.00534 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4158,-4.5992,30.288,4.9966,0.038682,0.034447} V_chisq= 454.522;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.236,1.01,1.01,0.00157,0.00181,0.00534} Coefficient values one standard deviation w_0 =1.4158 0.236 w_1 =-4.5992 1.01 w_2 =30.288 1.01 w_3 =4.9966 0.00157 w_4 =0.038682 0.00181 w_5 =0.034447 0.00534 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4154,-4.6008,30.254,4.9965,0.038694,0.034509} V_chisq= 462.347;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.237,1.01,1.16,0.00125,0.00164,0.00438} Coefficient values one standard deviation w_0 =1.4154 0.237 w_1 =-4.6008 1.01 w_2 =30.254 1.16 w_3 =4.9965 0.00125 w_4 =0.038694 0.00164 w_5 =0.034509 0.00438 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.3815,-4.5082,32.983,5.0319,0.03758,0.017871} V_chisq= 660.337;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.25,1.07,2.07,166,348,331} Coefficient values one standard deviation w_0 =1.3815 0.25 w_1 =-4.5082 1.07 w_2 =32.983 2.07 w_3 =5.0319 166 w_4 =0.03758 348 w_5 =0.017871 331 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.3815,-4.5082,32.983,5.0319,0.037579,0.017872} V_chisq= 660.335;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.25,1.07,2.07,97.1,204,194} Coefficient values one standard deviation w_0 =1.3815 0.25 w_1 =-4.5082 1.07 w_2 =32.983 2.07 w_3 =5.0319 97.1 w_4 =0.037579 204 w_5 =0.017872 194 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.3815,-4.5082,32.983,5.0319,0.037579,0.017872} V_chisq= 660.334;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.251,1.07,2.07,99.1,208,198} Coefficient values one standard deviation w_0 =1.3815 0.251 w_1 =-4.5082 1.07 w_2 =32.983 2.07 w_3 =5.0319 99.1 w_4 =0.037579 208 w_5 =0.017872 198 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.3786,-4.5044,29.81,5.0236,0.037486,0.018273} V_chisq= 577.396;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.25,1.07,1.38,106,217,211} Coefficient values one standard deviation w_0 =1.3786 0.25 w_1 =-4.5044 1.07 w_2 =29.81 1.38 w_3 =5.0236 106 w_4 =0.037486 217 w_5 =0.018273 211 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.3788,-4.5032,29.872,5.0233,0.037457,0.018318} V_chisq= 576.896;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.25,1.07,1.36,102,209,205} Coefficient values one standard deviation w_0 =1.3788 0.25 w_1 =-4.5032 1.07 w_2 =29.872 1.36 w_3 =5.0233 102 w_4 =0.037457 209 w_5 =0.018318 205 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4374,-4.685,30.866,4.9963,0.038691,0.036689} V_chisq= 381.384;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.235,1.01,0.883,0.002,0.002,0.00708} Coefficient values one standard deviation w_0 =1.4374 0.235 w_1 =-4.685 1.01 w_2 =30.866 0.883 w_3 =4.9963 0.002 w_4 =0.038691 0.002 w_5 =0.036689 0.00708 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4453,-4.7175,30.918,4.9964,0.03859,0.036756} V_chisq= 381.364;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.235,1.01,0.884,0.00199,0.00199,0.00709} Coefficient values one standard deviation w_0 =1.4453 0.235 w_1 =-4.7175 1.01 w_2 =30.918 0.884 w_3 =4.9964 0.00199 w_4 =0.03859 0.00199 w_5 =0.036756 0.00709 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4475,-4.7183,29.074,4.9917,0.042628,0.054232} V_chisq= 464.205;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.232,0.996,0.888,0.00152,0.00118,0.00369} Coefficient values one standard deviation w_0 =1.4475 0.232 w_1 =-4.7183 0.996 w_2 =29.074 0.888 w_3 =4.9917 0.00152 w_4 =0.042628 0.00118 w_5 =0.054232 0.00369 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4452,-4.7269,29.904,4.9903,0.043463,0.053971} V_chisq= 611.977;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.235,1.01,1.1,0.00129,0.00161,0.00883} Coefficient values one standard deviation w_0 =1.4452 0.235 w_1 =-4.7269 1.01 w_2 =29.904 1.1 w_3 =4.9903 0.00129 w_4 =0.043463 0.00161 w_5 =0.053971 0.00883 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4451,-4.7271,29.919,4.9903,0.043479,0.053981} V_chisq= 611.627;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.235,1.01,1.1,0.00129,0.00161,0.00883} Coefficient values one standard deviation w_0 =1.4451 0.235 w_1 =-4.7271 1.01 w_2 =29.919 1.1 w_3 =4.9903 0.00129 w_4 =0.043479 0.00161 w_5 =0.053981 0.00883 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2825] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4397,-4.6942,30.902,4.9965,0.038494,0.036173} V_chisq= 381.375;V_npnts= 473;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2825; W_sigma={0.235,1.01,0.884,0.00201,0.00201,0.00701} Coefficient values one standard deviation w_0 =1.4397 0.235 w_1 =-4.6942 1.01 w_2 =30.902 0.884 w_3 =4.9965 0.00201 w_4 =0.038494 0.00201 w_5 =0.036173 0.00701 FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2674] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.4457,-4.7191,30.924,4.9964,0.038557,0.036656} V_chisq= 380.364;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2674; W_sigma={0.235,1.01,0.884,0.00199,0.00199,0.00708} Coefficient values one standard deviation w_0 =1.4457 0.235 w_1 =-4.7191 1.01 w_2 =30.924 0.884 w_3 =4.9964 0.00199 w_4 =0.038557 0.00199 w_5 =0.036656 0.00708 Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist /W=weight_ni1 /I=1 /D Fit converged properly fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.14074,0.83782,31.075,4.9969,0.038039,0.028998} V_chisq= 427.51;V_npnts= 572;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 3999; W_sigma={0.0452,0.172,0.861,0.00229,0.00226,0.0056} Coefficient values one standard deviation w_0 =0.14074 0.0452 w_1 =0.83782 0.172 w_2 =31.075 0.861 w_3 =4.9969 0.00229 w_4 =0.038039 0.00226 w_5 =0.028998 0.0056 ModifyGraph lsize(fit_Ni_kev_Hist#1)=1.5,rgb(fit_Ni_kev_Hist#1)=(4352,4352,4352) Make/D/N=6/O W_coef W_coef[0] = {-0.1,3,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist /W=weight_ni1 /I=1 /D Fit converged properly fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.1135,0.89995,28.29,4.9965,0.041491,0.02838} V_chisq= 480.751;V_npnts= 572;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 3999; W_sigma={0.0455,0.173,0.886,0.00207,0.00221,0.00447} Coefficient values one standard deviation w_0 =0.1135 0.0455 w_1 =0.89995 0.173 w_2 =28.29 0.886 w_3 =4.9965 0.00207 w_4 =0.041491 0.00221 w_5 =0.02838 0.00447 Make/D/N=4/O W_coef W_coef[0] = {.5,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[3] Make/D/N=4/O W_coef W_coef[0] = {0.4,4.95,0.2,0.17} FuncFit/NTHR=0/TBOX=777 GaussTail3 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2674] fit_Ni_kev_Hist= GaussTail3(W_coef,x) W_coef={0.044096,5.3926,-0.41004,0.37983} V_chisq= 3471.97;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2674; W_sigma={1.42e+05,1.22e+06,447,5.22} Coefficient values one standard deviation w_0 =0.044096 1.42e+005 w_1 =5.3926 1.22e+006 w_2 =-0.41004 447 w_3 =0.37983 5.22 Make/D/N=4/O W_coef W_coef[0] = {0.1,4.95,0.12,0.1} FuncFit/NTHR=0/TBOX=777 GaussTail3 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2674] fit_Ni_kev_Hist= GaussTail3(W_coef,x) W_coef={0.22124,4.5495,0.84577,0.60325} V_chisq= 1991.67;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2674; W_sigma={2.83e+03,7.71e+03,16.9,0.522} Coefficient values one standard deviation w_0 =0.22124 2.83e+003 w_1 =4.5495 7.71e+003 w_2 =0.84577 16.9 w_3 =0.60325 0.522 Make/D/N=4/O W_coef W_coef[0] = {0.1,4.95,0.12,0.1} FuncFit/NTHR=0/TBOX=777 GaussTail3 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2674] fit_Ni_kev_Hist= GaussTail3(W_coef,x) W_coef={0.10931,4.9411,0.15844,0.17127} V_chisq= 6870.6;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2674; W_sigma={0.756,1.1,1.33,0.00725} Coefficient values one standard deviation w_0 =0.10931 0.756 w_1 =4.9411 1.1 w_2 =0.15844 1.33 w_3 =0.17127 0.00725 Make/D/N=6/O W_coef W_coef[0] = {0.1,4.95,0.12,0.1,34,0.04} FuncFit/NTHR=0/TBOX=777 GaussTail3 W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2674] fit_Ni_kev_Hist= GaussTail3(W_coef,x) W_coef={0.094827,4.9815,0.047875,0.098797,34.565,0.049837} V_chisq= 655.899;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2674; W_sigma={407,0.00686,272,0.109,2.86,0.00455} Coefficient values one standard deviation w_0 =0.094827 407 w_1 =4.9815 0.00686 w_2 =0.047875 272 w_3 =0.098797 0.109 w_4 =34.565 2.86 w_5 =0.049837 0.00455 Make/D/N=8/O W_coef W_coef[0] = {-0.1,4.95,0.09,4.98,0.09,0.1,34,0.05} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[4],W_coef[5] Make/D/N=8/O W_coef W_coef[0] = {-0.2,2,0.09,4.98,0.09,0.1,34,0.05} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[4],W_coef[5] Make/D/N=8/O W_coef W_coef[0] = {-0.2,2,0.09,4.98,0.09,0.1,34,0.05} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[4],W_coef[5] Make/D/N=8/O W_coef W_coef[0] = {-0.2,2,0.09,4.98,0.09,0.1,34,0.05} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[4],W_coef[5] Make/D/N=8/O W_coef W_coef[0] = {-0.2,2,0.01,4.98,0.09,0.09,34,0.03} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[4],W_coef[5] BUG: Caught unexpected integer error code from Curve Fit dialog constructor: 2 Make/D/N=6/O W_coef W_coef[0] = {0.1,3,0.09,4.98,0.09,0.09} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1],W_coef[2],W_coef[3],W_coef[4],W_coef[5] DisplayHelpTopic "All-At-Once Fitting Functions" Edit Rename wave0,pw; pw[3] = 0.04;pw[4] = 30; FuncFit/NTHR=0/TBOX=777 convfunc pw Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] Duplicate/O fit_Ni_kev_Hist,WMCF_TempAutoXWave convfunc(pw,fit_Ni_kev_Hist,WMCF_TempAutoXWave) KillWaves/Z WMCF_TempAutoXWave pw={1.13,36.92,4.9594,0.072694,499.05} V_chisq= 6484.37;V_npnts= 842;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.105,0.584,0.00934,0.00132,2.52e+03} Coefficient values one standard deviation K0 =1.13 0.105 K1 =36.92 0.584 K2 =4.9594 0.00934 K3 =0.072694 0.00132 K4 =499.05 2.52e+003 pw[4] = 2; pw[4] = 3; pw[4] = 40; BUG: In CoefficientsTab::setInitialGuessesFromWave, number of points in coefficients wave does not match the number of rows in the Coefficients List pw[4] = 100; pw[4] = -0.02; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0] pw[0] = 1;pw[1] = 36;pw[2] = 4.95;pw[3] = 0.05;pw[4] = 0.02; FuncFit/NTHR=0/TBOX=777 convfunc pw Ni_kev_Hist[pcsr(A),pcsr(B)] /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[1827,2668] Duplicate/O fit_Ni_kev_Hist,WMCF_TempAutoXWave convfunc(pw,fit_Ni_kev_Hist,WMCF_TempAutoXWave) KillWaves/Z WMCF_TempAutoXWave pw={-385.93,38.448,4.9111,0.090844,170.4} V_chisq= 30038.9;V_npnts= 842;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={4.81e+04,5.21,0.00593,0.0136,2.03e+06} Coefficient values one standard deviation K0 =-385.93 4.81e+004 K1 =38.448 5.21 K2 =4.9111 0.00593 K3 =0.090844 0.0136 K4 =170.4 2.03e+006 **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0] pw[0] = 1;pw[3] = 0.05;pw[4] = 20; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0] pw[4] = 0.0001; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0] SetAxis/A WARNING: P or X used outside of a wave assignment loop. For details execute: DisplayHelpTopic "P or X used outside of a wave assignment loop" Or execute SetIgorOption FuncOptimize, CatchIllegalPandX= 3 and recompile to find and fix the error. WARNING: P or X used outside of a wave assignment loop. For details execute: DisplayHelpTopic "P or X used outside of a wave assignment loop" Or execute SetIgorOption FuncOptimize, CatchIllegalPandX= 3 and recompile to find and fix the error. WARNING: P or X used outside of a wave assignment loop. For details execute: DisplayHelpTopic "P or X used outside of a wave assignment loop" Or execute SetIgorOption FuncOptimize, CatchIllegalPandX= 3 and recompile to find and fix the error. pw[4] = 50; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0] FuncFit/NTHR=0/TBOX=777 convfunc pw Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] Duplicate/O fit_Ni_kev_Hist,WMCF_TempAutoXWave convfunc(pw,fit_Ni_kev_Hist,WMCF_TempAutoXWave) KillWaves/Z WMCF_TempAutoXWave pw={1.1292,37.132,4.9548,0.072411,148.93} V_chisq= 6490.2;V_npnts= 842;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.106,1.61,0.0162,0.0032,370} Coefficient values one standard deviation K0 =1.1292 0.106 K1 =37.132 1.61 K2 =4.9548 0.0162 K3 =0.072411 0.0032 K4 =148.93 370 pw[4] = 1; FuncFit/NTHR=0/TBOX=777 convfunc pw Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] Duplicate/O fit_Ni_kev_Hist,WMCF_TempAutoXWave convfunc(pw,fit_Ni_kev_Hist,WMCF_TempAutoXWave) KillWaves/Z WMCF_TempAutoXWave pw={1.1285,36.934,4.958,0.072705,-242.13} V_chisq= 6491.04;V_npnts= 842;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.105,0.873,0.0136,0.002,822} Coefficient values one standard deviation K0 =1.1285 0.105 K1 =36.934 0.873 K2 =4.958 0.0136 K3 =0.072705 0.002 K4 =-242.13 822 pw[4] = .19; pw[4] = 0.02; FuncFit/NTHR=0/TBOX=777 convfunc pw Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] Duplicate/O fit_Ni_kev_Hist,WMCF_TempAutoXWave convfunc(pw,fit_Ni_kev_Hist,WMCF_TempAutoXWave) KillWaves/Z WMCF_TempAutoXWave pw={1.3273,35.881,5.1574,0.073508,-0.032405} V_chisq= 6363.43;V_npnts= 842;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.112,0.743,0.0103,0.00165,0.089} Coefficient values one standard deviation K0 =1.3273 0.112 K1 =35.881 0.743 K2 =5.1574 0.0103 K3 =0.073508 0.00165 K4 =-0.032405 0.089 pw[2] = 4.96;pw[4] = 0.03; FuncFit/NTHR=0/TBOX=777 convfunc pw Ni_kev_Hist[pcsr(A),pcsr(B)] /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] Duplicate/O fit_Ni_kev_Hist,WMCF_TempAutoXWave convfunc(pw,fit_Ni_kev_Hist,WMCF_TempAutoXWave) KillWaves/Z WMCF_TempAutoXWave pw={4.4239,-0.12297,4.849,0.060876,-0.02229} V_chisq= 60045.2;V_npnts= 842;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.338,1.71,0.683,1,0.733} Coefficient values one standard deviation K0 =4.4239 0.338 K1 =-0.12297 1.71 K2 =4.849 0.683 K3 =0.060876 1 K4 =-0.02229 0.733 pw[1] = 32;pw[2] = 4.95;pw[3] = 0.04;pw[4] = -0.2; pw[4] = 0.02; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[4] pw[0] = 3;pw[1] = 34;pw[4] = 200; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[4] **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0],pw[4] pw[4] = .02; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0],pw[4] **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[4] pw[0] = 1;pw[4] = 0.2; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[4] **** Singular matrix error during curve fitting **** These parameters may be linearly dependent: pw[0],pw[1] DisplayHelpTopic "Deconvolution" pw[0] = 3;pw[4] = 10; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0],pw[1] pw[4] = 0.02; **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[0],pw[1],pw[2],pw[3],pw[4] Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2166,-3.7743,28.868,4.9985,0.038943,0.028197} V_chisq= 434.274;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.241,1.03,0.928,0.0019,0.00207,0.00455} Coefficient values one standard deviation w_0 =1.2166 0.241 w_1 =-3.7743 1.03 w_2 =28.868 0.928 w_3 =4.9985 0.0019 w_4 =0.038943 0.00207 w_5 =0.028197 0.00455 SetAxis/A Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.0622,-3.1123,19.707,4.9794,0.045101,0.088076} V_chisq= 411.254;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.224,0.961,0.739,0.00331,0.00161,0.0122} Coefficient values one standard deviation w_0 =1.0622 0.224 w_1 =-3.1123 0.961 w_2 =19.707 0.739 w_3 =4.9794 0.00331 w_4 =0.045101 0.00161 w_5 =0.088076 0.0122 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2166,-3.7743,28.868,4.9985,0.038943,0.028197} V_chisq= 434.274;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.241,1.03,0.928,0.0019,0.00207,0.00455} Coefficient values one standard deviation w_0 =1.2166 0.241 w_1 =-3.7743 1.03 w_2 =28.868 0.928 w_3 =4.9985 0.0019 w_4 =0.038943 0.00207 w_5 =0.028197 0.00455 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[2],W_coef[3],W_coef[4],W_coef[5] Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[5] Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2166,-3.7743,28.868,4.9985,0.038943,0.028197} V_chisq= 434.274;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.241,1.03,0.928,0.0019,0.00207,0.00455} Coefficient values one standard deviation w_0 =1.2166 0.241 w_1 =-3.7743 1.03 w_2 =28.868 0.928 w_3 =4.9985 0.0019 w_4 =0.038943 0.00207 w_5 =0.028197 0.00455 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2668] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.49244,-0.69341,30.724,5.0408,0.046252,0.022627} V_chisq= 632.402;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2668; W_sigma={0.258,1.1,2.04,109,222,218} Coefficient values one standard deviation w_0 =0.49244 0.258 w_1 =-0.69341 1.1 w_2 =30.724 2.04 w_3 =5.0408 109 w_4 =0.046252 222 w_5 =0.022627 218 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2468] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.0082,-2.9087,197.52,5.2342,0.050015,0.014944} V_chisq= 234.602;V_npnts= 398;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2468; W_sigma={0.271,1.15,501,68.5,229,137} Coefficient values one standard deviation w_0 =1.0082 0.271 w_1 =-2.9087 1.15 w_2 =197.52 501 w_3 =5.2342 68.5 w_4 =0.050015 229 w_5 =0.014944 137 CurveFit/NTHR=0/TBOX=777 Power Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[1827,2468] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]*x^W_coef[2] W_coef={0.88276,4.2054e-022,32.419} V_chisq= 398.472;V_npnts= 398;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2468; W_sigma={15.1,6.41e+22,42.3} Coefficient values one standard deviation y0 =0.88276 15.1 A =4.2054e-022 6.41e+022 pow =32.419 42.3 CurveFit/NTHR=0/TBOX=777 Power Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]*x^W_coef[2] W_coef={0.89273,7.4366e-022,32.04} V_chisq= 374.355;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={15.1,3.51e+22,41} Coefficient values one standard deviation y0 =0.89273 15.1 A =7.4366e-022 3.51e+022 pow =32.04 41 CurveFit/NTHR=0/TBOX=777 poly 3, Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= poly(W_coef,x) W_coef={146.36,-70.918,8.6269} V_chisq= 582.192;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={12.4,5.83,0.681} Coefficient values one standard deviation K0 =146.36 12.4 K1 =-70.918 5.83 K2 =8.6269 0.681 CurveFit/NTHR=0/TBOX=777 poly 10, Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Singular value. Parameter 8 zeroed. Singular value. Parameter 9 zeroed. Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= poly(W_coef,x) W_coef={-4.6194e+006,6.0669e+006,-2.9445e+006,5.259e+005,40107,-23387,-509.44,1132.7,-169.84,8.1871} V_chisq= 227.597;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={1.53e+06,1.97e+06,9.38e+05,1.62e+05,1.34e+04,7.18e+03,197,346,50.5,2.39} Coefficient values one standard deviation K0 =-4.6194e+006 1.53e+006 K1 =6.0669e+006 1.97e+006 K2 =-2.9445e+006 9.38e+005 K3 =5.259e+005 1.62e+005 K4 =40107 1.34e+004 K5 =-23387 7.18e+003 K6 =-509.44 197 K7 =1132.7 346 K8 =-169.84 50.5 K9 =8.1871 2.39 CurveFit/NTHR=0/TBOX=777 poly 4, Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= poly(W_coef,x) W_coef={-1732.3,1257,-303.12,24.309} V_chisq= 453.361;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={166,117,27.5,2.14} Coefficient values one standard deviation K0 =-1732.3 166 K1 =1257 117 K2 =-303.12 27.5 K3 =24.309 2.14 CurveFit/NTHR=0/TBOX=777 poly 5, Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= poly(W_coef,x) W_coef={19426,-18703,6738.8,-1076.8,64.396} V_chisq= 349.314;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={2.08e+03,1.96e+03,691,108,6.31} Coefficient values one standard deviation K0 =19426 2.08e+003 K1 =-18703 1.96e+003 K2 =6738.8 691 K3 =-1076.8 108 K4 =64.396 6.31 CurveFit/NTHR=0/TBOX=777 poly 6, Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= poly(W_coef,x) W_coef={-2.1792e+005,2.614e+005,-1.2518e+005,29916,-3568.2,169.92} V_chisq= 273.627;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={2.74e+04,3.23e+04,1.52e+04,3.56e+03,418,19.5} Coefficient values one standard deviation K0 =-2.1792e+005 2.74e+004 K1 =2.614e+005 3.23e+004 K2 =-1.2518e+005 1.52e+004 K3 =29916 3.56e+003 K4 =-3568.2 418 K5 =169.92 19.5 CurveFit/NTHR=0/TBOX=777 lor Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]/((x-W_coef[2])^2+W_coef[3]) W_coef={1.0032,0.11222,4.9669,0.0027124} V_chisq= 225.2;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={0.097,0.0261,0.0184,0.000842} Coefficient values one standard deviation y0 =1.0032 0.097 A =0.11222 0.0261 x0 =4.9669 0.0184 B =0.0027124 0.000842 CurveFit/NTHR=0/TBOX=777 gauss Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]*exp(-((x-W_coef[2])/W_coef[3])^2) W_coef={1.3556,129.55,5.2246,0.22285} V_chisq= 247.681;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={0.073,252,0.263,0.0787} Coefficient values one standard deviation y0 =1.3556 0.073 A =129.55 252 x0 =5.2246 0.263 width =0.22285 0.0787 CurveFit/NTHR=0/TBOX=777 lor Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]/((x-W_coef[2])^2+W_coef[3]) W_coef={1.0032,0.11222,4.9669,0.0027124} V_chisq= 225.2;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={0.097,0.0261,0.0184,0.000842} Coefficient values one standard deviation y0 =1.0032 0.097 A =0.11222 0.0261 x0 =4.9669 0.0184 B =0.0027124 0.000842 CurveFit/NTHR=0/TBOX=777 HillEquation Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D 40 iterations with no convergence Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= W_coef[0]+(W_coef[1]-W_coef[0])*(x^W_coef[2]/(x^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={1.303,17697,60.895,5.5114} V_chisq= 247.969;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={15.1,0.00143,3.18,280} Coefficient values one standard deviation base =1.303 15.1 max =17697 0.00143 rate =60.895 3.18 xhalf =5.5114 280 CurveFit/NTHR=0/TBOX=777 Sigmoid Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2466] fit_Ni_kev_Hist= W_coef[0] + W_coef[1]/(1+exp(-(x-W_coef[2])/W_coef[3])) W_coef={1.3063,951.42,5.1761,0.067159} V_chisq= 237.574;V_npnts= 396;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2466; W_sigma={0.0756,1.33e+04,0.993,0.00947} Coefficient values one standard deviation base =1.3063 0.0756 max =951.42 1.33e+004 xhalf =5.1761 0.993 rate =0.067159 0.00947 CurveFit/NTHR=0/TBOX=777 Sigmoid Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2640] fit_Ni_kev_Hist= W_coef[0] + W_coef[1]/(1+exp(-(x-W_coef[2])/W_coef[3])) W_coef={-2.1748,205.49,8.7785,1.1278} V_chisq= 2018.65;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2640; W_sigma={5.81,1.2e+04,77.5,3} Coefficient values one standard deviation base =-2.1748 5.81 max =205.49 1.2e+004 xhalf =8.7785 77.5 rate =1.1278 3 CurveFit/NTHR=0/TBOX=777 lor Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2640] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]/((x-W_coef[2])^2+W_coef[3]) W_coef={1.0722,0.069203,4.9545,0.0017796} V_chisq= 560.182;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2640; W_sigma={0.0723,0.00355,0.0013,0.000128} Coefficient values one standard deviation y0 =1.0722 0.0723 A =0.069203 0.00355 x0 =4.9545 0.0013 B =0.0017796 0.000128 CurveFit/NTHR=0/TBOX=777 Power Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[1827,2640] fit_Ni_kev_Hist= W_coef[0]+W_coef[1]*x^W_coef[2] W_coef={1.0943,8.9693e-017,16.27} V_chisq= 2583.91;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2640; W_sigma={0.129,4.98e-11,3.43e+05} Coefficient values one standard deviation y0 =1.0943 0.129 A =8.9693e-017 4.98e-011 pow =16.27 3.43e+005 **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: pw[1],pw[2],pw[3],pw[4] BUG: In CoefficientsTab::setInitialGuessesFromWave, number of points in coefficients wave does not match the number of rows in the Coefficients List CurveFit/NTHR=0/TBOX=777 poly 10, Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Singular value. Parameter 8 zeroed. Singular value. Parameter 9 zeroed. Curve fit with data subrange: Ni_kev_Hist[1827,2640] fit_Ni_kev_Hist= poly(W_coef,x) W_coef={4.5418e+006,-5.961e+006,2.9061e+006,-5.3476e+005,-30993,21839,173.08,-971.52,147.51,-7.0895} V_chisq= 1089.47;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2640; W_sigma={6.42e+05,8.17e+05,3.85e+05,6.73e+04,4.54e+03,2.72e+03,46.1,120,17.4,0.811} Coefficient values one standard deviation K0 =4.5418e+006 6.42e+005 K1 =-5.961e+006 8.17e+005 K2 =2.9061e+006 3.85e+005 K3 =-5.3476e+005 6.73e+004 K4 =-30993 4.54e+003 K5 =21839 2.72e+003 K6 =173.08 46.1 K7 =-971.52 120 K8 =147.51 17.4 K9 =-7.0895 0.811 ShowInfo Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[284,*] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.17178,0.6477,31.201,5.0425,0.047305,0.022442} V_chisq= 627.92;V_npnts= 547;V_numNaNs= 0;V_numINFs= 0; V_startRow= 284;V_endRow= 3999; W_sigma={0.0657,0.256,1.93,109,230,218} Coefficient values one standard deviation w_0 =0.17178 0.0657 w_1 =0.6477 0.256 w_2 =31.201 1.93 w_3 =5.0425 109 w_4 =0.047305 230 w_5 =0.022442 218 ModifyGraph lsize(fit_Ni_kev_Hist#1)=1.5,rgb(fit_Ni_kev_Hist#1)=(0,0,0) Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[284,*] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.27539,0.3228,34.667,4.9796,0.029929,0.048234} V_chisq= 526.746;V_npnts= 547;V_numNaNs= 0;V_numINFs= 0; V_startRow= 284;V_endRow= 3999; W_sigma={0.0618,0.247,1.01,117,72.9,235} Coefficient values one standard deviation w_0 =0.27539 0.0618 w_1 =0.3228 0.247 w_2 =34.667 1.01 w_3 =4.9796 117 w_4 =0.029929 72.9 w_5 =0.048234 235 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[284,*] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.27539,0.3228,34.667,4.9796,0.029929,0.048234} V_chisq= 526.746;V_npnts= 547;V_numNaNs= 0;V_numINFs= 0; V_startRow= 284;V_endRow= 3999; W_sigma={0.0618,0.247,1.01,117,72.9,235} Coefficient values one standard deviation w_0 =0.27539 0.0618 w_1 =0.3228 0.247 w_2 =34.667 1.01 w_3 =4.9796 117 w_4 =0.029929 72.9 w_5 =0.048234 235 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[284,*] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.27539,0.3228,34.667,4.9796,0.029929,0.048234} V_chisq= 526.746;V_npnts= 547;V_numNaNs= 0;V_numINFs= 0; V_startRow= 284;V_endRow= 3999; W_sigma={0.0618,0.247,1.01,117,72.9,235} Coefficient values one standard deviation w_0 =0.27539 0.0618 w_1 =0.3228 0.247 w_2 =34.667 1.01 w_3 =4.9796 117 w_4 =0.029929 72.9 w_5 =0.048234 235 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2640] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.2473,-3.8611,34.875,4.991,0.034081,0.069363} V_chisq= 495.536;V_npnts= 472;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2640; W_sigma={0.213,0.918,1.04,126,61.8,252} Coefficient values one standard deviation w_0 =1.2473 0.213 w_1 =-3.8611 0.918 w_2 =34.875 1.04 w_3 =4.991 126 w_4 =0.034081 61.8 w_5 =0.069363 252 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1827,2459] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.986,-2.8362,171.85,5.2633,0.044712,0.009776} V_chisq= 222.737;V_npnts= 389;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1827;V_endRow= 2459; W_sigma={0.286,1.21,668,51,234,102} Coefficient values one standard deviation w_0 =0.986 0.286 w_1 =-2.8362 1.21 w_2 =171.85 668 w_3 =5.2633 51 w_4 =0.044712 234 w_5 =0.009776 102 Make/D/N=5/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Make/D/N=5/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[0],W_coef[1] Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2459] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.316,-4.3402,746.31,5.5067,0.047879,0.0065495} V_chisq= 226.021;V_npnts= 341;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2459; W_sigma={0.541,2.33,8.08e+03,29.7,218,59.8} Coefficient values one standard deviation w_0 =1.316 0.541 w_1 =-4.3402 2.33 w_2 =746.31 8.08e+003 w_3 =5.5067 29.7 w_4 =0.047879 218 w_5 =0.0065495 59.8 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2459] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.316,-4.3402,746.31,5.5067,0.047879,0.0065495} V_chisq= 226.021;V_npnts= 341;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2459; W_sigma={0.541,2.33,8.08e+03,29.7,218,59.8} Coefficient values one standard deviation w_0 =1.316 0.541 w_1 =-4.3402 2.33 w_2 =746.31 8.08e+003 w_3 =5.5067 29.7 w_4 =0.047879 218 w_5 =0.0065495 59.8 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={0.47235,-0.58576,31.449,5.039,0.046036,0.022873} V_chisq= 639.439;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={0.418,1.82,2.12,106,213,212} Coefficient values one standard deviation w_0 =0.47235 0.418 w_1 =-0.58576 1.82 w_2 =31.449 2.12 w_3 =5.039 106 w_4 =0.046036 213 w_5 =0.022873 212 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.8145,-6.4557,28.79,4.9935,0.042483,0.03948} V_chisq= 475.613;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={0.376,1.65,0.987,0.00163,0.00189,0.00618} Coefficient values one standard deviation w_0 =1.8145 0.376 w_1 =-6.4557 1.65 w_2 =28.79 0.987 w_3 =4.9935 0.00163 w_4 =0.042483 0.00189 w_5 =0.03948 0.00618 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.6478,-5.7226,26.913,4.9932,0.043824,0.041008} V_chisq= 476.826;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={0.379,1.66,1.1,0.00142,0.00184,0.0056} Coefficient values one standard deviation w_0 =1.6478 0.379 w_1 =-5.7226 1.66 w_2 =26.913 1.1 w_3 =4.9932 0.00142 w_4 =0.043824 0.00184 w_5 =0.041008 0.0056 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.8145,-6.4557,28.79,4.9935,0.042483,0.03948} V_chisq= 475.613;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={0.376,1.65,0.987,0.00163,0.00189,0.00618} Coefficient values one standard deviation w_0 =1.8145 0.376 w_1 =-6.4557 1.65 w_2 =28.79 0.987 w_3 =4.9935 0.00163 w_4 =0.042483 0.00189 w_5 =0.03948 0.00618 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.02} **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: W_coef[2],W_coef[3],W_coef[4],W_coef[5] Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,0.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={4.6831,-18.765,0.99836,4.1824,-0.014231,-0.01475} V_chisq= 3251.88;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={3.33,13.6,2.46,0.102,0.087,0.181} Coefficient values one standard deviation w_0 =4.6831 3.33 w_1 =-18.765 13.6 w_2 =0.99836 2.46 w_3 =4.1824 0.102 w_4 =-0.014231 0.087 w_5 =-0.01475 0.181 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D 9 iterations with no decrease in chi square Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={4.6831,-18.765,0.99836,4.1824,-0.014231,-0.01475} V_chisq= 3251.88;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={3.33,13.6,2.46,0.102,0.087,0.181} Coefficient values one standard deviation w_0 =4.6831 3.33 w_1 =-18.765 13.6 w_2 =0.99836 2.46 w_3 =4.1824 0.102 w_4 =-0.014231 0.087 w_5 =-0.01475 0.181 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,4.95,0.04,.01} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni1 /I=1 /D Fit converged properly Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.5031,-5.1293,38.323,4.9693,0.04099,0.029264} V_chisq= 336.638;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={0.432,1.88,1.11,0.00185,0.00142,0.00312} Coefficient values one standard deviation w_0 =1.5031 0.432 w_1 =-5.1293 1.88 w_2 =38.323 1.11 w_3 =4.9693 0.00185 w_4 =0.04099 0.00142 w_5 =0.029264 0.00312 display ni2_kev_hist duplicate ni2_kev_hist weight_ni2 weight_ni2=sqrt(weight_ni2) ShowInfo Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,34,5.2,0.04,.02} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Ni2_kev_Hist[pcsr(A),pcsr(B)] /W=weight_ni2 /I=1 /D Fit converged properly Curve fit with data subrange: Ni2_kev_Hist[1968,2843] fit_Ni2_kev_Hist= GaussTail(W_coef,x) W_coef={0.38264,-0.51264,33.529,5.2668,0.030526,0.010925} V_chisq= 276.713;V_npnts= 463;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1968;V_endRow= 2843; W_sigma={0.296,1.32,1.06,0.00233,0.00166,0.00142} Coefficient values one standard deviation w_0 =0.38264 0.296 w_1 =-0.51264 1.32 w_2 =33.529 1.06 w_3 =5.2668 0.00233 w_4 =0.030526 0.00166 w_5 =0.010925 0.00142 ModifyGraph lsize(fit_Ni2_kev_Hist)=1.5 display al_kev_hist duplicate al_kev_hist weight_al weight_al=sqrt(weight_al) ShowInfo Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,9,2.19,0.2,.1} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef AL_kev_Hist[pcsr(A),pcsr(B)] /W=weight_al /I=1 /D Fit converged properly Curve fit with data subrange: AL_kev_Hist[538,1595] fit_AL_kev_Hist= GaussTail(W_coef,x) W_coef={-1.5807,2.9092,7.7663,2.2653,0.25679,0.24308} V_chisq= 594.444;V_npnts= 758;V_numNaNs= 0;V_numINFs= 0; V_startRow= 538;V_endRow= 1595; W_sigma={0.491,0.554,0.218,0.0112,0.0102,0.05} Coefficient values one standard deviation w_0 =-1.5807 0.491 w_1 =2.9092 0.554 w_2 =7.7663 0.218 w_3 =2.2653 0.0112 w_4 =0.25679 0.0102 w_5 =0.24308 0.05 display sn_kev_hist ShowInfo duplicate sn_kev_hist weight_sn weight_sn = sqrt(weight_sn) Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,9,3.8,0.2,.15} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Sn_kev_Hist[pcsr(A),pcsr(B)] /W=weight_al /I=1 /D Fit converged properly Curve fit with data subrange: Sn_kev_Hist[1128,2442] fit_Sn_kev_Hist= GaussTail(W_coef,x) W_coef={0.55524,-1.0727,12.748,3.9431,0.2495,0.67226} V_chisq= 47.2428;V_npnts= 283;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1128;V_endRow= 2442; W_sigma={0.72,1.88,5.62e+05,2.38e+04,7.32e+03,3.95e+04} Coefficient values one standard deviation w_0 =0.55524 0.72 w_1 =-1.0727 1.88 w_2 =12.748 5.62e+005 w_3 =3.9431 2.38e+004 w_4 =0.2495 7.32e+003 w_5 =0.67226 3.95e+004 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,9,3.8,0.1,.05} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Sn_kev_Hist[pcsr(A),pcsr(B)] /W=weight_al /I=1 /D Fit converged properly Curve fit with data subrange: Sn_kev_Hist[1128,2442] fit_Sn_kev_Hist= GaussTail(W_coef,x) W_coef={0.5056,-0.94465,14.808,3.8866,0.089357,0.058471} V_chisq= 47.2605;V_npnts= 283;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1128;V_endRow= 2442; W_sigma={0.685,1.8,3.36e+06,2.79e+04,1.06e+04,1.39e+04} Coefficient values one standard deviation w_0 =0.5056 0.685 w_1 =-0.94465 1.8 w_2 =14.808 3.36e+006 w_3 =3.8866 2.79e+004 w_4 =0.089357 1.06e+004 w_5 =0.058471 1.39e+004 Make/D/N=6/O W_coef W_coef[0] = {-0.1,2,9,3.8,0.1,.05} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Sn_kev_Hist[pcsr(A),pcsr(B)] /W=weight_sn /I=1 /D Fit converged properly Curve fit with data subrange: Sn_kev_Hist[1128,2442] fit_Sn_kev_Hist= GaussTail(W_coef,x) W_coef={0.0045279,1.1007,10.956,3.8396,0.13568,0.13031} V_chisq= 510.663;V_npnts= 662;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1128;V_endRow= 2442; W_sigma={0.319,0.882,0.346,0.00517,0.00473,0.0228} Coefficient values one standard deviation w_0 =0.0045279 0.319 w_1 =1.1007 0.882 w_2 =10.956 0.346 w_3 =3.8396 0.00517 w_4 =0.13568 0.00473 w_5 =0.13031 0.0228 Make/D/N=6/O W_coef W_coef[0] = {-0.1,1,10,3.8,0.13,.1} FuncFit/NTHR=0/TBOX=777 GaussTail W_coef Sn_kev_Hist[pcsr(A),pcsr(B)] /W=weight_sn /I=1 /D Fit converged properly Curve fit with data subrange: Sn_kev_Hist[1128,2442] fit_Sn_kev_Hist= GaussTail(W_coef,x) W_coef={0.34746,0.1736,11.003,3.8349,0.13864,0.16563} V_chisq= 501.584;V_npnts= 662;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1128;V_endRow= 2442; W_sigma={0.292,0.82,0.343,0.00448,0.00423,0.0336} Coefficient values one standard deviation w_0 =0.34746 0.292 w_1 =0.1736 0.82 w_2 =11.003 0.343 w_3 =3.8349 0.00448 w_4 =0.13864 0.00423 w_5 =0.16563 0.0336 ModifyGraph lsize(fit_Sn_kev_Hist)=1.5 ModifyGraph lsize(fit_AL_kev_Hist)=1.5 !(\TmSVeaVeP pulse_comb(\P ????A@??????@?@@@@"@$@&@&@<@B@A@?@N@S@P@U@@Z@]@\@[@@[@^@@Z@V@V@R@S@L@E@H@9@:@@@1@0@"@$@@@@@???????????????@@"@,@1@7@:@@@E@K@P@K@U@U@T@[@@[@Y@W@Z@[@[@@U@X@S@@Q@I@F@H@=@2@1@*@@@@@????????@??@"@,@&@4@B@<@J@J@R@T@R@X@@Y@[@@\@W@_@@Z@]@T@V@S@S@N@H@>@@@:@2@0@@@"@ @@@?????????????????????????????????????????????????@???????????????@*/?X)Ve)Ve͠pulse_comb_Hist(\0@???@B??@???@?????????????@??@@?@???@??@?????@?@????@?@????@???@@@@????@@??@@@??@@???@@@@??@@@@@@??@@@@@@@??@@@@@@@@A@@@@@@?@@@@@@@A@@0A@@@@A@@@@@A@@@@@@@@@@@?@@@?@?@@@@@@?@@@????????@@???????????????????@??@???@??????@???????????@?@?@?@?@?@??@?@???@?@???@?@@??@?@@@?@@@@@@@?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A@@@@@A@@@@@@@@@?@@@@@@@@@@@????????????????????????????@?????????????????@???????@@??????@???@@??????????????@?@?@?@??@@?@????@@@?@@@@@@?@@??@@@@@@@?@@A?@@@@@@@@@@@@@@@@0A@A@@@@@@@@@@@@A@@@@@@??@??@?@?????????????????????????????????????????????????????@???????@?????????????@@?????@@?????@?????@@@?@??@?@@??@@@??@??@@??@@??@?????@@@?@@??@??@????@@??????????????????@?????????????????????????????@??@@@????@???????@?@???@?????@??@@@???@@@?@@@?@?@@@?@@@@??@??@???????????????@????@?????@????@@???@????@?????????@???@??@@??@@@??@@@?@@???@@????@??@???@@??@@@@???@??????@ ?VeNXe͠pulse_hist_comb(\0@???@C@??@?????????????@?@??@@?@@@@ A A0A0AAB BApBBBBBBBBBBBBBBBdB,B@BAABAAA A@@@@@????????????????@?????????????????????????????@@A`AAAAB(B\BB\BBBBBBBBBBBBBBBHB4B@BAAAPA@@@@?????????????????????????@??????@@??@A`A0AABATBTBBBBBBBBBBBBBBBBtB@BABAAA@@AA@@????????????????????????????????@@?@@@@ApAAAABDBdBBBBBBBBBBBBBBB\BDB@BBAA`A`AA@@?@@????????????????????????????????????????????@?@?`AA@AAB,B4BTBBBBBBCBBCBBBBBBpBBAAAA@A A@@@@@@@?@???????????????????????????@@@@ApAAABA BxBBBBBBBBCBBBBBBLBXBB8BAAA@AA A?A@@@@?????????@???@??@???@??????@?@@@0A AA BBHB|BBBBBBBBBBBBBBBBBHB8B B`AA@@@?@@@????@???????@?????????????????????@??????????????@????@@???????????????@@@?@?@?@PA@@AAABBLBdBHBBBBBBBBBBBBBBBpB,BBBBAAA@@?@@@@@???@????@?????@?????@???????@@?@????@?@?@????@???@@???@@?@@?@@@?@?@?@@???@@@?@@@???@?@?????@???@?@?@@@????@???@?@?@@?@@??????@@??@@@?@@@??@?????@??@??@???@??@@@??@@?@??@??@??@@?????@@@@???@@@@?@@@?@@??@@@?@??@@@????@@@@@??@@@@?@@@@@@?@@@@@?@@?@@?@@@@@@@@@@@@?@@@?@@@??@??@?@??@@??@@?@@@@@@@?@@@@@@@@??@?@@@@@@@@@@?@@@??@@@@@@??@@@@@@@@@@@@@@@?@??@?@??@@?@?@@@@?@@?@@@@@@?@?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?@?@@@@?@@@@@@@@@@@@@@@@@@@?@?@@@@AA@@@@@@@@?@@@@A@@@@@@@@@@ A@@@@@@@@?@ A@@@@@0A@A@@AAA@@@@@A@@@@@@@@@@@A0A@@@@@@@@?@A0A@@A@A@@@@@@@@@@@@A@@ A@@A@@A@@@@@AA@@@@0AA@@A@ APApA@@PA@PA@A@@A@PA@ AAA@ A@A A0A@@A AA@AA0AA AA@@APA@A@@@A0A ApA APAAAA0A A ApA@AAAAA A@AAPAA AA@@AAPA`AA0A@AAPAAAAAAApAAAAA`AAAA`AAA`AAA`AAAA`AAAAAABAAAAAAAAABAAAABBAABAB BBB(BBD6DCDED@;D5D2D@DDCCCCcC'CCBBPBPBAApAA A@@@@@@@@@@@@?@?@????????????????@@ APApAAAA,BB@BBBBBBBBBBBBBBB@BXBB BBAA0AA@@@@?@?????????@?@@A@AABB0BLBBBBBBBCBBBBBBBBlB@BBBAA0A@@@@?@=cp6k6kW_coef(\????M#8X? f?7Z8)?.?)-?(ڲp? A3?HWK?x5?SxF{?>?<2?(?0o?r"J?e ?zD?d!P?ł,S\?A!?GU?jM?>/Rx?4AA?L, ?\%?S?\+A@l{bB@C@`VD@AJF@4CLG@A I@ sJ@t `L@OtM@Rnh O@ԍJP@&z1Q@Q@0U+R@`M]S@/YT@T@U@nt'IV@itV@)lEW@ O>X@ðX@2g@]cY@:+4Y@U_Z@Q?3Z@&2,[@h[@"P[@!3ء[@#4*\@<ʛrnF\@gMv"T\@x\!@@׳@@++@@{@@@@bJ@@׳?@???????????????????????????????????????????????@@@@Qwo@{@tw@++@uӷ@:b@Q@4AQ@`A`AVA (A 'A A2 A$A6'A6'AAAqA 6AA0F@@׳@ES@Ç@{@Zf@S)@?q@q@????????????????????????????????׳???q@@@Qwo@CT@@@S@@@ AAAAJ AF&AP*A2 AO4A#A.AAZAN A 6A@׳@oE@uӷ@F@Ç@@S)@S)@@@5@@?????????????????????????????????????@@׳]@w@@Ç@++@@@>@vA| A++#A 'Aa"A2AES,AoE/AP*A AeLAVAAAQ@@׳@@tw@ES@Qwo@Qwo@@@q@@?????????????????????????????????????????????????@?Qwo@@@S)@Ç@@@@@@| A AvA++#A#A5Aa"AA5A 'AqA`AvAAA@@oE@++@@@׳]@bJ@q@׳??׳???????????????????????????????@@q@׳]@w@Ç@oE@@ES@b@@AAAAf AA0AP*Am6AUdA#AZ%AAAVA@&@@@ +@Ç@@׳]@{@bJ@?5@?׳????????????????????????????????@S)@CT@bJ@++@P@@0F@@4AAZAZA*A.A++#A++#A-A A$AAAN AAf AA0F@@P@Qwo@@@q@@??׳???????????????????????????????????????????????????????׳????????????????׳???????@Zf@@S)@{@@@(@@@>@0F@ AAAAO4AS)A-A-A-AUdAZAAVAAf A@@@@@@Ç@5@@@?׳?׳??????????????????????????????׳????????????????????????????׳??????????׳???????????????????????????????׳?????????????׳??׳???????@@???׳???׳???????????????@???????????׳???????????׳??????????????׳?@?׳????@???׳???????@?????׳?????@?@@???׳?????׳?????@?׳??@?@׳?q@?׳??׳???׳???@@??????????׳???׳???׳??@׳???׳?@@@?@???????@@׳?????׳????׳?׳??????׳?׳?׳?׳??׳?@׳??@????????????@׳????@?@׳??׳??@??q@@׳?׳?׳?@?׳?@@S)@@׳?q@?@@@?@׳?׳?@?q@@׳??׳??@?׳?@?@?׳????@@q@׳?@@@@@?q@@׳??׳?@?@?׳?׳?@@@@?q@@@@@?@?׳?@?@@@?q@@׳?@@׳?bJ@?׳??׳?@@?@bJ@׳?S)@q@@CT@@@@S)@@5@5@5@@׳?q@@5@@?q@׳?q@@q@q@@S)@@@CT@@@@?@S)@@q@?׳]@CT@S)@q@@@q@@@?@׳?q@q@q@S)@@S)@q@@5@@S)@bJ@S)@@5@׳?5@׳?@q@׳]@5@q@S)@q@S)@CT@@@S)@q@@@q@bJ@Zf@w@q@@Zf@S)@Zf@׳]@?@5@S)@Zf@S)@bJ@{@5@q@bJ@S)@|@bJ@CT@q@S)@@@bJ@5@q@@@@@CT@@@bJ@@@q@S)@5@Zf@׳]@S)@q@q@@@CT@bJ@w@bJ@Zf@@@{@5@CT@bJ@bJ@w@S)@@5@@@@@@bJ@@@@{@Zf@{@bJ@Ç@@׳]@@@Zf@Qwo@{@CT@׳]@Ç@Zf@@@@qĜ@@{@@w@@v@|@{@Qwo@@@oE@Qwo@qĜ@{@Qwo@@qĜ@Qwo@|@@Ç@Qwo@@@@{@S@@|@qĜ@ +@@ES@S@ES@ +@@uӷ@@@ +@++@@uӷ@S@ +@uӷ@oE@@b@@@:b@@a@a@@0F@0F@@@{AAvAAAAAVAAA++#AAES,A-AA̹0A`8APAuwUAgARAމA)A`A +A<%AAfAA/OAwAKA϶AAcAAwAlԾAh@Zyɾ$t3p@9z4C9a|);0``ջi#-w{Ck@(O B,mqMe-a05ozbm&Om8wW l)¿}Dm/^rboY '@OltO{&{' MsQ4nX V/CSCj$'@\!к(@EfZFRda@f'P5F NG8$gO* hw o[>@2+8WߺH|Swt^nEM_E@e!]>GwK 7!xCsbg+7=QgnHnkKpznWDK@4d{ R^PWScX25cGu@] x ҿG \xjIӿV+=ta~e}O-%@p1ڽz; $(Siwq P2]?8 @X@YYV$ռ)QVĐ)(/w~5n=ELX^njeT(Ϲzvpvk*/o ̿ʾC@^LwgW:Że0;@JDpa-l2:@'[xI@QH(}#bo0$-u @/x @O˹MȚ{VKgvs@gVy  &YKY^G4n&{z+agsVwݾ$wK<2¾Z@"tW?RqϾg^x1yo6@MֹU.*Լ@S%D/RK.NdnQi_@ɺl+@;pVy?@NYoOp:xP@hkM'*WW,pX*^JH63wP+@aJO(?)E̽O@\ѿ5@q@F 74ں[IDwK@L0Ere>.'hoQ h@^AJ*RW'&vK!4a.`\cپicA5['%+NA!==U{#@t>7>1",yE+h@8Y:@/\E^H&RK>,l Bk9 @* f9e <@)Eup@]J}3<Vٽz.8"@<,@ @:I̓vE6V!fugO ?OQ3ܿNlH!>a[{X{>PRN(mOgOY0@#@b.@nl!N@6\b~hE,e9Y[fDDܼuʷ(wxù y@ lUGL'@wx(ռk1˿[1e@30@ĴIOZ޺Ȼ@fAkUhF+! %<ޯJbR` 0LX@h1*Iga<w ? yڽx'n?@@}aPScH.Li,&NdPƺH :@A/O;IP"+@B-q.ky-*#]tC$8̾˿0(,@@EA3C7LjݺUjfCheaǷV;a@M HsH5a4[|t@@udQ@N~ON5:'@@ͻGgv;,nHqZ^S6+2WI'0LFlnr'!?(E y.$`*,O"_^H|)G9>Ba? } t7!En+PMqO@kY4t0isXf.P5>%rKg_GAf+?@~ԷBkgxF]So`93gڼ1SDEWܼ.$rM=SH! l@9Ž.@<8+ĶkGDEfMI|Nj=\|iH@8jԽ5QHSN\(E7(dǸ:h(޼bX RdI[6@\e@>So,@%IhRq@-Ox+QlX˾f9z,ƹ,Zqzy{#LGvA5,5qmwy/irqKs]mQC"/_%N6OCP (_չ^^Wd guO4nx}x˽IrGYG.OGo>88%DA3RC@s&*o@\(2*j~UsLQ+Tn^Sf4{RRdVQl =  o:`Y^MJEr@kh޿"wѹXpIN9c#%!wǾ*.wVdi)xHl~ m7v̽!J|+(p&պL^un OzK>E˿3 "4v'Xuf,ta}@D#|kU@JOպ/Ai"ҷ'NoX# h+ fUW!=cHWPZeZ9Q$ ͻ@Uڼ M8C5Q L7 XNq8}o)A!mkD@T_Ue1"\<L((_7(ƷE URsֿU>xDGWFgZ@j Լe a. ] ]|nkFM$}w+)QxM)1&Zqp^xg*@( Ʒ@t>RiLKedGc`bf@f_@\@qXJ@mj@8am@WY^xpU5vy@O@Wpxpaټm@zZR~^^L@dg@^`Ywa&,Sw]P'd!@k-@@@L^@,@:J@ @_@j@L@X@@@@bpG@@l@@e@@@s@m@@ BĿz>@I@zL H@@X@*vZ6F>@J85@A1 1@OS@TL,:@VoL@l@8@gZmg@mvu@t@GJwjWxje>S]JaJBmieN`@Q@r@T@_7S2@eY_@eUuO@XXq@c@G@zfez`Q]@spL@pf%Ni@2QFa@_kE6@\g_&ZD-F]@S@7XV@QN@Qp{@mQj@Wcfd>>@\.L@YIWX@Ef@njsV@gq@n@ZZIyClnZ@Zd[@mP`G_hQ@ZX@[)nXecV`@h@V`c@JLgM1N`cX@[@rDmXbmkhOG>BZ&@uQ@G\c\Zw]f@eIVpayV?@\Oi@@pv@@j@nd`g@VֹV@gcie@^nEbh@Ygen3@V`@MXl@W!!Q@cd@hX{pd@ke@!@^@lgUNn`r_@G\@P @fW\k]bK@!@@[@O@b@ui(_s'o N<w_u?Biبg5Z@@geVt{O@G^M*J_mT6H@X?J3H>@hSgR8Y]@KgNRjhH^J@C@EOW8l5UHR@?P@T$cugU@V=+XOX(V@X@e@2Ue@rP@ki@lI@\@6T@obiR@=pS@fvrBXN@mOy޻j@dKϺg+@(ؼc'Ը+s3ռ!cv$"9@U4(%Oغt@+iP˾@TqZ@lqۻN``Y@geqz@;@Q@niW@Z@xQ@^xo_S@:@ZQ@jM@`bMLi3a@HY^jC@9(n:7@E+L@/@.H4"@2!@1;@*/@8@@GA@]S"@lR_JV}fQg:E@_%\ Te@3@3e04(KGM_80@#GE) ~-@)@c#nE`H%DZNB@Y@@R@de@jbLO@iPp\H@]@mj_Hs6^@@i@zZio>@i@L@v@^Zt@RS@`BQJas@V^_@:N@;TQ~`O l :}vDL-Jz9A !(%@`PmGnmde͠dez Ni(\z ????@@@)@-@@@@@X@ @@@@@@@@@T@@@@@@@@.@$@@@J@S@@@@@@@@@@5@@@@@S@@@3@H@@3@@@@@@@@l@@M@@@b@@r@@x@R@F@@q@u@@V@S@@@0@@@$@@j@Q@@@@@@@@@@r@@@@S@s@2@@C@@@@s@@me@f@@B@h@$@@@@@5@M@G@.@F@@@@ @@:@@T@H@3@@i@`@@e@@T@7@@X@@v@p@@@@@I@@@@@@2@@@@(@@@@г@b@S@@@5@@@@h@@@@@@@@ @v@$@8@@@@ @@@@@@@@l@F@@@|@@@@V@ӿ@ @@@*@k@H@d@@@Q@@@@@9@@@m@@@@~@@@+@@*@@@U@@@o@@ s@@Y@@@#@@3@@@@t@@2@k@@@v@@H@@@a'@j@@@L@A@O@@@{@L@K@@r@@@@@s@@a@M@@@@@@6@+@@@@T@@Z@@{@D@&@ز@@@@\@>@@@Y@@$@m@@@$@~@@@@@@@@I@@Z@@@&@@N@@@R@@@@6@@5@@@@w@@m@@@@@p@@@7@@^@@@@?@@@@@@@@@@c@@@D@(@@J@@@g@@@@@@@L@@r@@}@@@@@@2@@@@@@@@@@@3@a@`@@@@O@@@@@.@@c@@@U@)@@W@$@@j@w@=@Q@@@B@K@@@@@@@@@@@@@n@@@/@ȧ@o@Q@@c@@@h@#@x@1@@@@P@@H@ @k@ @K@ @@@@@ @޾@}@B@@a@f@@@@,@@@@@@@@ @@@t@@@?@@@o@ @n@m@@Q@o@,@@h@@@ @@t@@@@@4@L@@@ @@C@@@@y@@@'@4@@@@@@@@@@@@@ @f@a@8@@,@@@A@@@@@`@@@D@d@@@@5@o@@b@@^@7@@@@@a@@@@g@@@@@@@@W@-@@@@@@e@@D@@ @@@@"@D@ @@@@@@@@@@@@@ @u@X@@*@@@)@@P@4@K@j@@Ca@]@1@@8@@@@@8@@1@@P@@@t@R@`@m@@@t@@@@@@@8@@@@@@V@Z@p@&@R@9@@@@&@j@'@B@@!@@$@y@l@@@@e@?@@@@̣@@@@@@<@@@9@@@@K@@(@@@@ @5@@4@B@F@^@k@p@T@@@3@@@@ @|@@@@@ @@@-@V@0@@@@@@@@L@@̨@@@@@@@J@@@@!@@@@U@@@@@9@@@@@{@@@@-@>@@@@@@@b@@@@8@@@)@(@@@@j@@ָ@h@@@@@@@(@@@@@t@G@f@@@F@@@@@@@@@@@@@Q@@@d@@@@@@@@@u@F@@@@i@@@C@@@U@@@>@@@W@q@@@v@@@ @H@@@E@@@a@@9@1@@@X@(@@a@/@g@9@!@J@@@@8@@K@m@7@G@@@@u@)@@\@@@@@@A@,@_@@@@Y@}@+@s@]@(@@@#@@\@@n@@t@@@@@3@@@@@H@@#@@!@@@k@r@@@@@@@@5@@0@@@r@ @@@@r@@@@@$@@@@@@@@@@@U@t@@@@k@3@@d@V@^@δ@@c@@@@@@.@@@J@h@@z@@@@@@@@X@t@@Q@(@\@@@@@@@@&@@p@@&@k@f@R@@@@@@ @@@@@@@@e@@e@@@@}@ @@@@@j@@@0@@@@@@@@P@@@@/@@@@@@@ @@@B@@@6@@9@D@@@D@(@@@:@@@@@@{@@@@@@B@@@7@ @S@@@q@@z@7@@@L@@@@o@@@X@~@-@o@;@@@(@.@%@@@@@w@s@@@7@"@@Z@@@@@c@@3@@@@l@1@@@8@v@@@@3@c@@b@@@6@&@@/@u@@O@@@@h@@@@@@<@K@o@@@N@@@@j@@@z@@@@@)@l@@@<Р@@r@@@@#@+@@@@p@O@@@@I@@ @M@C@"@@%@f@@t@W@@S@@z@@@)@@_@@@@@q@r&@q@~@@{@@r@@@@@*@@+@@k@%@=@9@@|@t@@@@@@@@G@=@u@o@*@@)@5@@@@{@@@@@d@V@0@@@=@~@*@@@Y@U@@@R@@@@@@@<@@i@ @@]@ @@@@@@>@M@@@@7@F@@4@q@@@@@@E@k@@%@B@@@@@@@@@"@@,@@@@@@{@c@@@ @@@6@@@@@^@E@*@@h@7@@[@$@@@@@)@@@5@}@@@@*@@@@@/@"@@@X@G@@9@W@@@\@I@@@@2@@Y@@@M@O@#@@X@@ @@@@@@@g@@@@5@@L@@@@@@@0@2@k@@4@@x@@@@@@Z@@@@S@@*@@Q@@>@x@@@@@@@@@s@@u@@@@@@"@@@H@[@@p@@@@;@@T@@P@c@N@@=@:@@Y@@@q@@@@K@@@!@@@Y@1@@@@@@@@@@@@P@@@@@@@@@@@@@ @@@@@R@i@6@y@ @@@@@*@@R@p@V@@@@h@@@v@@@@@s@+@@@ @@@V@^@@@|@@#@M@@b@@U@*@ @@@c@f@}@'@@$@ٵ@@N@@p@@@@F@Z@@@@@@2@@@@@@V@0@@5@}@@@@@W@޾@.@@@@?@<@'@C@'@@@@@o@@@@9@@!@@@@@M@@@e@Z@L@@s@o@@@@d@@@@ @@@R@@@_@@@+@@@@ @@@@v@k@@"@S@^@@@@@ @@8@@@@N@@ @-@,@@@n@E@@L@@7@@@@#@@@(@@@s@W@j@0@@@k@@@ @@@@v@q@$@?@@p@@@@V@@M@@X@ @X@@4@@R@#@b@z@p@@@w@@@@&@%@@@w@@\@@w@@@@@@@Y@g@$@@@@@@@/@@+@n@-@Ѿ@8@z@@@6@w@;@+@@@@@'d@@P@@X@@@@j@@@@@R@@b@@@@;@@@/@@"@G@r@Q@d@E@n@ @@)@?@@@@@S@=@C@@@C@@@@@@S@@+@@@D@6@@^@@`@X@@@@@q@@@@E@@@@r@@'@@@=@H@@@F@@`@@@=@}@@ @@@@!@@u@D@P@@4@@A@@@@@@@@@@@@o@@@@@8@u@p@5@:@@@@h@@@@@n@@"@f@һ@@@@@@@@%@@U@-@@@@Y@@@@@~@@@@q@@@@d@@R@E@u@\@@x@@,@@g@@@@@@@@i@@@7@@@@w@M@b@m@@@>@1@@V@K@@ @@_@@o@@@@@}@@4@@@c@@J@@@@P@]@I@@@@@@u@Y@G@A@@@R@@@@@@@B@Z@2@p@@@@@°@Q@O@?@@@@@L@@7@@@@@@@@Y@@ZQ@@@@:@@@@D@#@?@ @@@$@@/@2@}@@@@s@@F@@-@n@@@@<@P@@@@E@@@B@@E@@U@@@@@@@8@[@@@@@@S@p@W@i@e@L@@@@Ȭ@w@@j@(@@@@W @-@@@@@@@@@@@i@<@@7@@@@@G@@@@g@D@@@@(@@@b@@U@`@@@E@@@@0@l@@0@@o@@@v@5@@@@5@:@,@M@@@z@u@@@%@o@@@@@ @G@@@@.@g@1@@j@{@@c@@@@%@@@@fp@ @@4@@@|@@?@@/@k@@@@-@@@.@@@@&@A@@V@@|@,@4@@K@@@@@ @@@@@@&@Y@@V@z)@@@-@@@@@_@@@V@@@<@@ @Y@@@@p@@@@|@@@{@@i@@@@q@@R@@@@ @@@@@@@7@u@6@n@@@@1@@P@v@@@@=@'@@T@@@@@@@@U@&@@@}@@@Z@Z@߳@}@@@@@@@o@+@@@F@g@0@@$@@@@x@@@~@$@j@@@X@;@@@@@ @@@@@@@@@@@ @@@@N@@@G@@9@{@@@@@?@Z@@E@@H@@@D@@@@@ɹ@c@ @,@S@<@'@@@@@@@@@@@@@g@@@@@#@@@@@@@@@N@q@@@@@r@@ @F@@ @@"@A@V@@@@W@@@7@t@8@v@@@l@}@@@@@@@@@@@@9@@@_@@@m@@@@W@M@T@@W@5@@@@@@@@@2@z@@@b@@@:@@G@@@@l@@@@@@P@x@@@@@@@@J@@u@@)@@@@&@@|@@s@)@@ @@@@@@=@@(@D@?@/@@@ @~@a@5@@@0@Q@@J@{@F@@@b@7@6@R@@@@@@*@@@@@@g@@:@ @f@@?@~@@@h@@~@@@@@@@@%@@@@@@4@@@@@@@@ @;@@0@@%@@@@@@@4 @@@@+@@@}@@@7@@m@m@@@T@@@A@o@~@@@@a@ @@c@@@g@@2@@ @@W@<@$@@]@@@@@W@>@@@#@@-@'@@@ @@W@@@@)@@@@@@!@@@@@@@y@U@@v@@@*@ @@@@@@q@P@q@q@^@@@Z@@c@@v@'@@@@=@@*@@>@@f@@@@@@@@@@@@,@@@c@;@@@G@#@`@@@2@@l@̻@1@@^@3@@@z@0@@@@@Q@@@j@e@@@w@ @@R@@@Y@t@'@@n@}@@ @"@R@@@@A@O@1@@A@W@@|@.@c@@n@0@@@@:@N@@@@@@@@Y@@8@I@I@@c@@@@@@@@@@@?@h@:@@@X%@@|@H@6@@Q@@@@@@@@@@Z@@@/@@@@&@X@@@@k@@@h@]@6@(@@@@@@)@R@<@@ @Z@~@@t@>@|@~@@-@X@@@O@@@@@@@@@-@ @@@0@@@&@@@u@@P@@S@@@F@@0@@@@r@@@@w@|@@@@@@@@@ @o@@@[@@&@@^@#@T@@@p@ @@4@v@@@@@@@@@@@s@@@C@@@@@@@ @@@@@(@@@ @@m@@Z@#@@5@@-@0@@m@ @i@@M@@R@@L@@u@@@6@@U@@R@7@G@&@m@@`@@@@g@@@i@`@@M@@@@@B@@@̷@@@@@@Y@u@@b@I@l@-@@/@@@*@@@@&@@@@/@@@@@@@@@@@F@i@,@@~@6@@@@X@+@@@G@@@$@@@p@@@F@Z@@]@@@@B@@@r@ @\@@U@@-@@@@@@8@@@@@@@@@@@@@@7@!@@tr@@@@~@@@@@ڽ@@-@3@@@G@*@@@@@@H@M@@T@@@@@@@@@@@D@(@@@~@ @@@M@5@@@:@@@)@?@@@@;@@ @d@G@@@@@@r@T@@$@@@@@@@@@9@I@@@@@9@@Y@u@5@@E@@@L@@s@@@@@>@/@@I@@@@@C@@V@ @@@W@[@@@V@@@@@@e@@S@@Q@@7@@@o@@&@@@@(@@@@@@@n@@ a|`xdeͮde Ni2(\ ????@@@W@@@@t@@*@@@@i@L@(@@@@@@/@'@@@`@@@j@@^@@@@C@@2@@&@/@@S@V@Z@@ @J@{@@@@@@(@5@@I;@A@@.@@@@@@@6@@@@X@@s@@@@^@%@@Q@@@@@@@@]@@@n@{@@]@@?@@v@d@@@@@@y@@@@ @@@2@<@I@@@O@7@@\@@@@@@H@u@r@@@$@@@@@@@@@@@g@@9@@7@~@@@z@@@@^@@@J@@9@@@[@@O@@@z@@@q@u@t@@z@N@@L@V@@@5@R@@E@@Q@@@s@d@@@@@@@)@@@y@@ @@@@@@@@G@@@@@@@&@@{@@@Y@@@A@@R@@@n@@[@4@@P@@@@@@W@=@l@@@|@$@@@@޸@@@@@@y@@|@)@D@@m@@$@@V@]@S@@[@@@@@@_@@@@@@@@@U@@+@w@@@@X@K@@@@@@@@8@@ @@@@[@@@@%@@=@@ @@a@9@H@@@@@@\@@@.@w@@@@@m@@@@@s@u@@@@@@.@@@@@Y@@@@S@@c@@@@@@@@^@@H@@@[@@B@|@@@@@@@@@$@@@@^@\@@@`@:@@8@@@)@@j@E@a@@@@&@,@@@@@@Y@~@{@5@@@@@@b@I@@'@@@@@@@@$@@@@@@%@ @@@I@@q@@@@@@q@@#@@@@)@r@ @@@@@@@@@@E@r@@X@@@ @@"@@@@M@@Z@@@@a@@@.@@@@@%@@@@+@@@d@~@p@@@E@@@@e@@T@@c@@@@@#@Q@@W@@@b@@@4@x@e@P@@@@@@$@@@N@@D@@<@@p@@@@ @@@@R@@@@+@@Y@4@5@@H@@@@@@?@@J@3@@@@@@$@^@}@X@e@ @@@&@@@@"@@/@_@@@@@)@@@N@@{@@@%@@p@U@@@@@@@@@@(@@7@@%@@@a@;@@@@@3@4@u@@@9@@@@8@.@@@@@#@@@B@@L@@@]@@*@@@b@@@@@@b@@@@@H@@@@@@@@h@@@@@@@@@Q@@S@@@?@V@@X@@>@@@@@-@@@5@@R@@.@@.@@@Y@d@@6@@@@@@A@@Z@F@|@ @@@@@O@@ @@Y@@@@(@s@%@@4@@@@@@@@@@@@p@@@@@C@@.@@'@@@@@@h@@@@\@@@@+@@@@@@P@@X@@@@+@@@@@p@@b@@@4@@@@z@@ @x@?@@@ @<@@@0@@a@g@@3@@k@Z@@@@Q@@@@@-@@2@@@@s@8@@@@@ @t@@@@J@@@@A@e@#@@@@@@+@@@@J@)@6@@ @@@v@@@@@&@@c@@@@@k@@@ @@@@@@@@@@@@@@@M@@W@.@@֥@N@ @@@@@@E@@d@@;@@b@@@@@^@@@@@+@@@@@=@t@@@G@z@Q@ʲU@@@@@@@@_@@@K@@@o@;@@@@@@@@ @X@@@@ @@@_@Y@@@5@@@D@*@@@@@@S@s@U@<@@G@@@ @@(@@@@@@l@@@@t@@@%@@|@F@@@@v@@@@@@@L@@5@@@x@*@a@@Y@@@@_@@O@ @@@X@@)@@@E@@@-@@@l@@@#@@O@@/@@@@@@@7@R@(@@@@@@8@2@@@@@v@@Z@v@ @@@3@@@L@ @@c@@N@@@@4@@@@7@@J@p'@@H@]@v@@@@{@@@@b@@`@L@@S@@@@Q@@@@@@@`q@d@@@@h@@@@@@@@@@9@y@L@@@d@@*@@@C@@@@x@ @m@@@@.@@P@3@@@@8@@Ǽ@o@@L@C@K@V@@I@@=@9@ @X@@@@@@@@@@X@@O@@`@@Q@@@]@@@@1@@@@@h@(@@@p@@@\@@@#@^@:@@@@@_@A@@@@|@F@@N@[@@@>@@@@@@1@0@@@o@@@!@@@{@@6@d@@@@@@9@@@b@I@I@@"@@@@6@@@@@5@9@@r@@@@"@@P@@@3@'@C@T@@@b@]@V@@@@w@"@@@O@@I@@@@@@v@@q@k@@@"@@@@,@2@@)@@@&@&@@k@@o@@@@D@j@@@@@@@'@@.@@@:@$@@ʲ@@@^@@@@@@@+@@@W@@@N@f@@%@@@@v@@@@@w@@@ @@5@i@;@@@)@@@I@@@@@@@L@@o@6@9@@@p@@@@x@3@0@P@&@@@A@@m@T@@1@@@@m@A@@@@@@@@@@4@~@@o@@@@@i@@m@@:@@@@M@@g@@Q@@@R@ @@@&@|@@[@~@8@@@.@@0@@,@1@@+@@<@@@@@@@@@@[@@@a@@@@@@@`@_@g@@@@?@@F@@~@@@;@@;@v@@@V@@3@<@b@@@@+@@@U@@@<@P@@@;@}@@A@Z@@5@@@@\@@@[@@,@>@@<@]@[@_@(@@~@@@@_@V@@@e@4@@@@ @@@u@@@@>@@>@I@]@@@@i@@j@\@&@@@@@@@@C@@1@@@@@T@Z@6@@@|@@@@@q@@@@@H@@@@@@@@@@>@@@@@@@@@@I@@6@b@q@@@@ӻ@(@@@@@@@m@@@U@;@T@;@@@@@%@@@%@@K@d@u@|@(@@|@a@@I@@@@@@@@`@v@ @@@@@4@.@@@s@@O@@@a@@I@@N@@}@J@@j@@%@@S@@@@@@?@@@!@@@@J@@@@@@@>@@@L@@@@q@@Z@@@@@G@@v@@@@@o@@@r@k@@?@@@@@.@@@Y@@M@@@@@@@@M@9@#@@@@!@@@@@@@2@o@@*@@@@@@T@@@@4@@@@@@~@@@7@@j@9@@k@ @%@P@@m@@ @@@@@@Q@@@4@2@@ @@@@"@@@@@6@@@t@@%@:@A@@@Y@@@j@d@s@-@$@%@@@@V@@u@:@@@@v@@l@@@@,@@@@@@@@@@@R@@@@@D@`@@@@A@@@@v@@@i@@ @}@@ @@@@D@@@@@@@M@@@@@@%@@ @1@^@@@@@@P@@f@@@@x@@@A@@@@@0@@$@̽@*@@@G@@*@@6@@j@@P@@@@Y@y@@@@1@@@@@$@D@@u@1@B@!@l̲@@m@@@@@@@@@6@@j@Y@;@@"@@@@P@@-@-@@@@@@@ @@1@>@@@=@@<@@Z@@@@O@]@,@@ @t@@+@@@,@ @@@@5@@8@5@@@-@(@@;@@@@@@@@@@l@@@@@@q@s@'@ @ @@@;@F@@V@@@0@@@@@@@@@x@@@@5@ @@@@1@@@@@3@u@@@c@@@@@@@`@G@@@}@W@@,@@ @@u@1@e@@@@@@k@@c@@@>@@@k@4L@@@@1@2@@@<@7@:@@@x@@@@@@]@>@@@@@@#@k@@U@@8@f@@@ @@@@@@@@r@@@@@V@L@@@@@@)@q@@1@G@M@@@@\@M@@J@@o@c@@r@h@@@V@@@ܹC@@k@(@X@@t@@u@@@@@g@a@f@@@y@@@@C@k@:@;@@@@@ @ @@@@@@n@@@@L@Y@@=@@l@@@@@&@@@@7@g@@@|@O@@@@@{@h@@@x@@s@@@@(@@@M@@@?@@2@K@@%@~@@J@V@@@E@l@@(@@o@@M@@o@2@@?@@J@@]@@@y@z@@!@@z@@l@@@I@@E@)@@V@@@7@@~@@@/@@@:@@@@@T@7@@@@@=@ @Y@@@@@@@@@h@W@@V@@@@@@@@O@@a@@@@Q@@@@@@d@@@F@@@y@y@@@'@@o@!@1@4@_@@@@r@@@@ @@@@@@@d@@W@@t@@T@@ @z@+@ @Z@$@D@r@@@I@x@@@7@@@@R@@@@4@@3@V@A@@@@1@ @@@a@@@9@G@@@@5@@p@@x@X@"@@@`@@@P@@@-@\@t@@@o@,@@@@@@H@Q@@`@@(Z@@ @6@@i@I@@V@@@K@@\@@@@@ @y@3@@@~@@=@@@@@@@@@@V@@!@R@@@k@@g@@@@@&@o@@i@@@&@@@U@@@@@@@@b@y@@@@@@@@@<@D@@@@@@@"@@@X@ @$@@@@@@@@@@@@:@@@@T@@@'@j@@@@x@@ @@@@0@@@5@5@@@@@d@|@@@6@@@@@7@@B@Y@J@H@@x@h@@r@|@ @@@@@@B@}@@@_@@@@@_@@a@@@@@B@ @X@k@3@@@@C@@q@[@@U@_@@@n@@(@@@@)@@a@@@+@@@@@@@;@@@@@@@=@@޼@@@E@^@]@r@V@@@@@J@@@$@6@@+@8@@@@@@^@@@8@@@@@@@E@U@x@@l@@@3@@@d@y@@]@:@@@@'@@f@@@@J@@@@R@@l@@$@@S@;@:@@@]@@@ @@@-@@@@_@@Z@u@@@@"@@I@@T@@@@g@Q@@@@@@c@V@@L@g@@@@@N@0@@@p@@@@@@#@@@@T@@@@@Z@@C@g@@0@@3@@@@@?@@m@@@@@o@@@?@@@@@@ @@@;@@@@@@S@"@@@@6@E@@@!@@@@?@@@s@+@@t@V@@@L@@D@@@@&@_@@?@@@@ @@@@@@@h@@@@@@n@@%@Y@@@@@k@6@@@@@@@,@@&@p@\@@@@@@t@@&@@@@S@T@@@@@@@@H@@L@@@@@@5@@@@\@.@;@Ԥ@@@`@@@@@@V@{@@6@@@y@z@@@@@@\@@i@@@@=@"@F@Q@@[@@@@_@@@@@@@@@@5@@@4@-@N@@@@~@@Y@[@WT@ @d@@:@ {@@@@@@@@(@~@@h@@g@@@f@p@+@l@@c@@@@d@@B@@w@A@@@W@@@N@@@L@@@@@@@@@c@@@K@8@@9@@}@@@@@@@@9@:@@'@@@@@@_@@@L@@@%@^@@@@/@[@&@@@c@@@$@@E@6@-@@@@n@@@+@R@@@@G@Q@@@@@@@ @@@g@@@@@@@+@@@@x@@(@E@@g@̺@@b@@/@z@@@@( @"@S@R@@V@@c@@f@@@@^@@@J@>@G@<@@@@@@M@@X@X@H@@@@3@@P@@|@@a@@@<@@@@@@C@@@@@x@@O@T@@@p@@@@|@@a@\@^@g@@@e@@@@7@@ @ @@@@@\@@@Σ@@@@E@@@@*@9)@@@^@O@@@@c@@@8@i@@P@;@@]@@@4@9@@(@{@@@@@@@5@s@@@@@@?@@@@@b@@0@;@@}@@]@2@:@@@ @@@@@m@@@@@@@8@@@@#@@@@@@@@@@@@@@N@0@@@@A@@@@@@@@@@@?@@@I@@J@@@3@@@@@@@@)@^@H@t@@@@@n@@@@_@(@B@@@@@q@@=@@;@-@@0@u@\@@@@@@@e@@Q@5@f@@S@@Y@@@j@$@@h@@@b@@@G@D@@h@ z@)@#@@M@ aDv`deͼde Sn(\ ????%@"@£@ @@`h@@U@ι@ @T@ε@x@@>@z@$@@¸@Q@U؝@@e@@@@@6@W@H@ү@@P@F@@Ѕ@t@@@R@,&j@@@@@@@@@D@=@&@'@C@д@@г@!@l@@y@@@@|@@@ @@c@0@l@@n@L`@@Px@@U@@(@}@@~@@߰@@K@@@d@c@9@@D@@ڷ@@ڧ@<@@p@l@ɲ@T@Л@@@|@>@4@xm@b@P@@$@U@z@հ2@@@@Ư@`g@@γ@@a@ϲ@б@@@ð@<ۻ@t@@@@@@$@@@@@@6@@@@@ɳ@@@@@z@@0@@@@@@@ @G@@5@.@@@@ @@@A@b@@@8@@@@s@j@V@@@@@d@`@>@@@@@@h@h@@@@S@Ƶ@ެ@@@+@S@n@ȡ@S@U@@@X@:@"@C@ʷ@0@ί@`@Ϋ@@uo@@`s@0@@ɱ@ް@ܖ@@е@@@@H@4@<@`s@ @y@@^@@_@@@l@S@@@y@$@P@Ұ@@@D@ڸ@į@Ș@S@@ά@ @ή@@v@@@D@@Ё@%@@@6Ҡ@x@@@n@0@@@@"@@r@@V@@@p@β@p@`@@@@Ѕ@l@@@@@ dL@>@@۳@@@@@@l~@@t@@@8@V@p@@@D@ݴ@Z@u{@ @@ @@Z@@ޮ@״@j@^@h@ @@@x@ޥ@/@;@@ޢ@,@@@@@@@@@@@ү@@@J@@@5@ @޶@@@@@@o@v@8@Է@@@؏@\@@N@@ɰ@հ@ @@@b@@ܵ@H@@H@z@q@B@N@N@IӰ@A@@y@@@@N@@q@@ܤ@.B@0@@@>@@w.@ @@:@ @~h@W,@.@j@@P@ޫ@@@ z@p@@6@\@Z@T@@IJh߱@-i@ޡ@@@@Ĝ@0@3@x@@@F@@P@Ա@0+@\@N@|@E@@@'@M3@@@@r@@r@cm@@@˲@@@ɱ@ fޫ@@@:@n@Y@@`@K@n@K@P%@0@Q@4@x@@Py@}@Ӽ@@@@@ڭ@@@^@^{@J@@@@@@D@@s@@@@@>@8@@8@u@@@A@@ԩ@}@@@m@ʻ@@@@@Ե@@@ @V@@'@^@y@<@@@}_@k@@@Z@@@@@F@$@@<@ @d@8@@@V@h@@@@Г@@@@@P@Ȃ@Ӳ@@y@@,@:@@W@v@`@@d@_س@@]@X@k`@@\@@@P@8@а@@@@$@@|@@@V@L@~@n@Z@N@@@l@P@@@@@@@h@H@؉@@@&@6@v@u@H@Ϊ@@T@a@ @+@z@HXR@@P@@@@L@f@@)@x@@X@<@v@X@ @Ȋ@@r@&@$@,@@v@0@@ԯ@`@ @@/@J@@'@@p@p@@@p}@-@c@0@@@X@@@Z@@@@O@¤@0@@޲@z@@@@z@@@˰@@@@P@@@ @@V@1@r@@@]@ѱ@@@U@L@a@@@x@@@ٸ@ɱ@b@ݵ@ T@и@3@ڥ@C@@t@@@P@&@@@@4@kp@<@@@P@@@}0@@7@ߵ@@5@@@@ j@H@@c@_u@@޴@@ʦ@@@m@@m@o@@z@@4@"@@H@@@@h@ݱ@@W@@,@@@@@ƴ@ɷ@$@}@;@p@@@@8@(@@4@@@@@@~F@Ь@@`r@÷@Q@(@@oP@ڴ@@ @@@@Eң@/@B@P@@q@,@@@P@ɴ@ٷ@%@2@L@u@@@@f@\#@X@*@@@@@@ʹ@@@@̡@$@@8@x@7@D@ƣ@@l@@ @r@@@@@@@z@@;@̫@ @X@@b@@e@@z@ܢ@d@ȩ@@s@Ȫ@,@@L@P~@@P@ٺ@@J@@@@u@@@@@L@*@@@@PB@@9 @$@Ҧ@Ӳ@@%@d@@@ޭ@O@@@@_V@@@0@@S@ñ@@@ײ@"@@@@4@@@N@@o@@@@@@ʲ@@(@@Z@r@@@P@ӵ@@| n@j@ @S@ʭ@@F@1@@@ @@@%@'@@,@@j@@Љj@@y@ĵ@@0@@ @@@3@0@<@@@@@@J@@0@@X@l@@@l@Ӱ@@@7@@@G@@$@`p@@@J@@@@ @@e@S@@@hT@@j@@@Q@Ƨ@@0z˹@N@@ò@Ű@@@Z@u@@@7@@b@U@6@jȯ@X@k@@@*@@Z@@dر@@@߽@@<@D@@H@@n@@f@h@@;@@@Ư@@X@j@@^@t@N@@@G@j@@ܔ@@H@@@@.N@@T@(@̓{@@@(@Һ@T@@v@n@Z@@V@~@@(@D@&@ @Ȭ@@۳@ͳ@@0@<@{@j@@z@۱@@Z@@@=2@@Ы@,@V@nܲ@,@z@*@@@x@@(@ާ@@@@x@@@e@b@0@@@@~@Ȓ(@@@ڲ@E@V@&߳@@@Ҹ@>@ @@@؁@@@i@@>@@:@J@h@R@2@@ү@$@4@@@ @@@6@@S&@a@@@ݹ@۷@}@v@@@@@hl@8@2@@@@l@@@@@@rI@ó@>@@Mh@1@n@@x@@@@@@@@@I@t@@@@p@w@XΫ@@6@2@@T@B@@o@@r@@@׶@@@@0@ev@@@@շ@@,@P@@F@@>@@@&@.@ c@B@@.@@@@X@@y@@@@@@<@(@@@@@@̠@@@@h@6@K@@v@@ж@@x@&@@@k@ұ@g@@ɲ@(@@ @3@@<@ @8@X@@,@T@˱<@_@@ğ@s@4@w@@3@@4@h@P@@·@@@@<@:@@X@ޫ@(@@@@@ʶ@c@`J@P}@8@$@@P@W@"@0@@@d@@@d@,@t@@@P@@@d@ @@j@@ʲ@,@@@@J@ګ@4@Ԧ@ʴ@@@@@@@2@@@Z@Y@o@\@@@@Ұ@@@ğ@@@@ļ@@@t@H@̳@@Ҵ@@Л@<@@*@@@@?@t@"@j@,@`o@@l@@@͸@@&@@@Ħ@o@ɺ@>؎@@p@@@@8@>@Z@@@@\@@O@@@f@@@@y@@F@Xv@q@@@@~@H@@j@ö@@&@S@#ب@@@@m@@Z@@@ȧ@Nn@@(@@ʦ@6@@@@@P@)L@@|@ʯ@=@L@W@@@ܮ@@Z@@x@N@5@@ @@@@Բ@@@ڰ@@x@L@@"@D@@@P@ַ@uҬ@̲@@@Z@ʫ@֪@@ܩ@ε@@X@@4@@ޱ@.@@\@D@Ѱ@"@@H@A@@~@@J@D@'@@@;@@@"@@&@@@@@@@@@@ @p@@س@x@@@4@7@@@@@@ܴ@s@@@6@1@=@dܓ@@2@˳@9@@@@9@R@մ@t@@@@ٱ@`@@˴@&@@@.@\@@@S@@z@@@@@ε@@`@`y@@@М@@@-@H@ȱ@ܱ@@@@@&@8@R@X@@l@r$@H@@#@9@@@Ћ@@@~@l@a@@j@Z@`@@չ@@@ @@H@]@@@d@j@p@<@@@_Ҳ@d@t@@T@@:@@p@@0@@@<ڮ@@@d@}@f@<@e@ȷ@]@~@~@6@M@4@@@H@b@@ѳZ@ղ@0@Y@@@<@@l@@@4@$@\@.@*@i@l@@Rl@d@r@Ӱ@@X@p@4@o@@@l@@@@@v@ƺ@'@@k@@@\D@,@ȯ@z@@P@@ʩ@ͷ@@X@@@г@.@!@<@ɰ@0r@ª@@B@@@z@T@ֳ@@@s@@@P@@@@x@ @@@@@@֩۵@@ͱ@Y@#@6@@@"@`@@ԫ@׳@@~@ @@@@@W@P<@H@@@-@M@z@@@@@@@f@2@Q@Ϳt@K@|@@@"@ʷ@p@"@S@l@@@@Pd@Ԑ@{@@V@~@@@F@@@ޡ@ų@@@@*@@@@@@(@H@@@F@(@Z@į@@@@<@@ @Я@dr@q@@@@@j@@ɰ@N@@d@^@@@~@d@@@4@@@@@r@a@@د@@@@4@ڥ@r@ʩ@&@$X@Z@B@Ԛ@@@4@>@@@ }@@@*@@@@4@@wx@@|@@L@n@L@@d@@P@@¢@@@T@@@@!@ճ@B@@&@ӵ@@ơ@_@Һ@@@Z@t@@@6@@@ݷ@@@@@@@>@yU@@@f@ͳ@s@^@Б@@%@@@؃@ @@@p@@ȳ@Y@XJ@@@@Wd@0@T@̨@j@@@P@z@G@n@@@@@v@@@Q@@d@J@p@Iw@ʲ@e@p{@ɴ@fj@@֧@̖@̾@@̨@@@*@Y@6@t@@@@@@@d@@@,@@x@а@@@@ϲ@ @@m@R@@@@ڸ@8@@@ζ@@õ@p@wp@@@@@8@&@j@@@R@p@ @c@@Z@@>@з@X@@@@@@@.@ΰ@@@@@ĵ@@[@|@@ ȴT@(@]@`@ @Ӳ@@@X@@@@6@V@@̦@@p@@@\]@V@+@@,F@N@X@r@}@@j@,@d@@@ܤ@.@j@@;@o@¯@@@@@@@@@0@N@@@F@@n@ò@@@@@f@ @&@@D@@m@@@D@(@p@@"@ֱ@ؤ@@&@n@@9@@@H\@ѷ@J@@(@<d@B@ؕ@@@}@@X@f@@ f@.@W@z@М@@@@I@@`{@@ڵ@F@ֲ@=@n@@@@@7@@r@ݴ@ުbŵ@|@@|@@@@@@ĩ@Y@ę@@ڸ@&@"@@9@Fį@@h@ֲ@m@$@P@@@@8@@X@pƦ@Ȟ@6@@@6@V@v@@i@n@@ܯ@`@^@ @B@ö@@@@@ȱ@ު@v@T@ @p@@@@@@X@@@@@|@9@\b@Ѐ@@@@@ @O@j@@Ѳ@@p@@@@[B@@ @~@@^@@@9@­@@ @T@(@@@ջ@0@@`8@Ƣ @@@@ѳ@@@@B@:@@H@ެ@)8@F@@װ@@X@@@@@ f@@$@.@ޣٱ@@@d@޸@^@@@@@@@ @L@@ܶ@n@@@@C@@װ@@*@Y@v`@@ @b@8@7@t@ @@@$@0@@@|@@@`qв@@#@v@x@@V@@F@@x@lԱ@IJ@N@@F@ո@ @u@s@8@@@@Z@@$@ʳ@E@J@@@@³@@@L@@W+@k@@Sݱ@@_@@ݾ@b@@@@ڦ@>@@@ޫ@4@֯@@Ǵ@4@N@@@@@Ω@p@=@,ο@Τ@T@`@@%@J@@@ƴ@@@7@0@N@E@@@ٰ@ô@@@@o@+@@@@@u@R@-@@z@z@@ث@0w@V@@߰@8)@@@t@L@S@@D@͵@¢@\@@h@@@ڸ@:@@`@m@@ @8@,@8@[@^@+@`@@p@:@Ʈ@@ΰ@ i@@ο@Ǵ@@q@Ĺ@@@A@K@>@@Ĭ@@@@0@(@@A֧@@ħ@@@@@@@@u@@֭@@``@@dr^@@@@$@@@@Ӹ@V@J@Ѱ@g@Π@:@8deeehAL_kev(\h????dP@/@c ?r.@!ťϳ?\bv` ?돋@$Y,8@p^@l@r?>H@C6{@)8@ẑ?r? F@^afD?T?@l- @B @{S6?&G@ ra@,]l @|V@EjP@O V?h0+??ֻ?d?E@@kC4+@\_&+@$K@$B?O7@@KW@%:$@‚@& x@#Y?GE?"O?4:{@Ls=H?f/K@d#@xIw|(@"@ .`@~ @^oQ@M@Ar@ZW@Ao;~?(@]뜰?ͺX@@Pɔj@@N? @[ֳ@S5@$@E@K?姂[@`g?-$`@CpL@@` 4?@|gj.W@@Z\@jf-@3BS@0E4~!@ۊX@'?@^s`n@x@1@rʒ8@ <@J@`|,ء@ iT@~~)M@> ? @P|z@ϚO@j%@EjP@S[E@- @8#@߷ @ A@7uԇl@M?/U@P7@@~O?(?N@,XOR?b.t?DɚG,@ж.@Dw@@ӜT?HbK@=|@ʽez@,&6@UN{Jι@-@8'@X)@w ?P[Vs@T/@4_eHJ@$KAQ'?iI@OY@@7@xX@ ? 5 ?/]W@+ȅ.@$s@9E@i@ mB@l O@+@ V0bN@"&@cLf@#Y@( 0@b@`&1?xqZL@Z@ .f?` 0K@l O@ ?n@:pW?bQ@Cz@=;*H}@?mwj@Y3?!@Vl^n6@]Dx@Y@*;"@@pvk @L5@H#?Ҋo(|@pi6@ZaЦ@(=$?HKH@ CM@bp'@;Ȁ@ҶP諢@%M/e@0v ي'@4?2g@l^0@n=4?q?*ҳhO?ϫK}?46d?ZY^?Ar@J`q?iegv?䢵@ʊH?e(V@ ̯@T9ĉi?v1<@Af?T@r-?@]V@I@(XQ)@Ɣ}@ZV@_[?@*ecosd@St7@z{?̧?ol,?iI@?ʼn@+c}:@m)1@4S@Z9}?pAh?@'@x1!v@ H@e?ħJ@v;@ސ@0~6@^B?Eh_I@#H@co@՜r;@<?HKH@.%m?k0{?@?r2@9oO@X@)F@Ri@ 3d@'@աG@5@SI@Q|A?vKp@J`@wKy@v,0@H@m?v%?o-0@G5>R@ Ծ?? S@ht35?Y-@cMA@6's@rVvfw@7CT@YHs@n$ml@?.Xi@ C@e/d@# nk?5_%@z%4@Q/4'@*SO^@ר!h?p݃@Ajə?DJXL@ߏd@ F@2 @m?AA)@7YY@\]R@=?bp'@`w@dЦ?8@M]V@fM,@ _6@ ,@k/ @X5@xf?'AY@@ah@4F8@\{@[%s? @Q2=g@v FcHy?ĭ@ae@尠? @Qy@(~k?^ @A@ͨq@EB?惯@^03?*VX@Q?}?q@75@xܙ ?b?]V2@\ñӴ?(R@Tp3@bN@tAS@b8?i@(@IUЙ?xJbrF@\I0 @=Е?Ӓ??ƫR@eڣ"?yd?+?!yv?92@/]W@w ?J@iҷw?j%T@աG@A\,? )}|@DN @>G.?SV?3u @_9W?81D@i=Rs@Lh@@ K`@Z}uU?!M?.M@b)_@Agt@]@a@Y"a@0{v?&J@P@3@p݃@Q0@8C)[@ ^?/@lQ{?@r @N=@|a>@-?@N?Xq@%/\@qS@@Cbԥ?#˓?U@l`?r܁=@jX?6"@zW(@d?>hY@ ?%@h'#?r@%~>?>@O3@z%4@>%B@Gb@.a#?K_Բ?n2d@@&?Qh?DoL@"b@=e@h)@.R@ H@~%F@tb?-@ۚ?kju? ,@P{?@=I@G!?jVG?sVz?4ׁ@k@@dq?pB!@}:?@ey E @s8?t+:@! V0r@Ț`@4Kj b@d@]a +?9 K?wPj@w#@k%@0t[G?,`@eH(@@pKr@" ?ڳ@-MPy?d?RI9?.@q%@E a@t ]@e@> <@l?J@h8ena@2)?U6@[l@R?p0w?f)?fA5q@D@%J@µ$Qy@N@b?@rs,?N @Ry?$rw@@UGt?Uj@H6?Q/4'@5>?y?Ѱs.p@4;@h?RD@Ŝ1@fL@7A8??ޫVf@y.@W?BGaͷd@WM!Y@Œ@tf5@D n@hSul.?@A^& @t0Qs@1}?\S@/@#Y?Iw| N?3z͛@i&a@nUmzr@ "A?kkZ@|;?UJ;@[6-?@j@+N@8@(ā?)R??e@;/@N ?`v׈?ekU@)v?5_%@O>@9#JC@9 @U)!?Q@I @|r?R3{?H3g?gN:6@6N9d@03/]?z@r_q?~Hd@p݃@ <0?K#t@ja ǫ?zpҏ@p{=?_ с@4 Ӌ@O@4IbI??@zNK"@gsu?T@UwE?,Y@ZW@:@]u_@fLٔ?&L*?gly@מX-E?@_@D u @.~@?G @kx??X?R/l@1z??5@TE @x/d@]@Tx_@ qgN@B.@!@GE?u%]@Zo@zo@?/'@u x@8~M{@p@eRs?n⚩@5jm@Eδ@mw@w@t~@հs@-F@;n@/Jп?M֨h?8R*L? =?%O?k@4F8@Bh>?03*@ 4?خrD?"Ft\@QZ@Xk@?{@W?^?ڶ9ߩ?H r?us@_?0[w?t@yX?t+ߎ @6͖D?0۳@ݰmQ@qP@^03?1?{@ƙR?D @ S@u-@{@c I@Q0c (?V̭@4[@,`F@XvMx@tL'#xm?<,Ԛ}@V pAf@!?HƏ?:?gl?B:~@M^ I@lXS1@N|4@]W{T?JB?,u5.@6I=U@ S@pV铁0@9\@Y@V!@|bQE@k?@kP@?.@G5>R@zI|@ZO _@Eq@Far@&tC?Wl$@Z5堲@n"?4B(@c3?iI@c8C?,k@T@+@ bGH@W`?G@^EM@ vK@yY ?7/?!P@5!Rx?iNs@@B޼@3u @FgO I?Xg.&?}:K@6S!@& x@3pʩ@7?j<"?sK@-p@ k@75@bdncX@Ne@TF@0O?@?`Њ?#7@춰 @|R@ӀAO@'5 ?ї9ϥ? Йr@iJ?"|9"@//>@dO?@/t@o^Z?Å@yL?z??rqk@ept:@=@z@:?uێ@aߥ@U|@Kph@FGS@U5@oBH @HA%O@\b5L#@@U;yG@>w_@s!?K@1@ @xf@@U@x@28?&@*/L@4e?{<>k@#0P?ܶQ@}?aW`?Ü@Ff^@"S-3?Wj1x@U?r>+8@OJR?.7<{@R?;:e@s@aD@J'@3l?;z@ s@cMA@\L@H4=Kk?Ki@ZuF@GP@R( __C@Qe@^?Bϧ@2?Y3? b@+Y@nT@z 5T?'n2?HϿ?@ʑ3@إZM@sZ?yq?H??wF[]@ @ ~\@L^I@?cҟ@S u?[X)@ѫJ@?s1aD?>Q@s@ؑL?]QJV@t@DP'@8@V@$Z@VX@DZtq@@0]\$? r{?g@(G@#7@RR=@g@>U*M?*SO^@O[~K?o?^6S@O3@7-:Y@]@j/G4&?l~@\(@]L@S}B?Z @7FW?P%lm[@?0`ɵ?\@ ?T:=@&V@oIaf@Őm@>hY@@&c%@`t?_c@ BZ@z@Dz@q@ĭ@J@Xdljz?fAP@Őm@ 8*@IXك@tOp@ECk@ $t @ɧO@hn*y@^kƚ@ Q?'Hlwg@"1A @@EИ@Y.m@倸@ ?Pj@нm@$L@ M°?粇$h@w!g%?fv@m ? 3aE@=Ӟ@P6#@:'@\aU?F%r?`u?Q@ԁaH@8.@@ُ#@^1_@@?j"@ ]?0@iI@`,?G@Xm_u@K=f@g?w ?>@|6@guA@R/_?G? ezH@L?g6٠?P(@ Bx?4#E@}ӪL?e#!J@ -)X?tAS@@n덵Z@&9#@DN @}?D@A?Xx?;u`???\Gf?@y*?ↄL@K?1.#@(CUL? ?@])y@xCuΪ @aߥ@5;N)@iL@[vU@|?D@t(@ua?ͺ@%/\@ HV@6I@ڸm?X^޾@}qE@0fS?"̣@J kW@<8@{:h?UD@ ??mA8@&y/@Ѧ@,#?7n*@c~!@(X-TG@ o?՜r;@I,o?RV?=6#@C]ٺ?<ň@lcG> @,8L:?e?RGm@@tM7?%?>/ˍe@2y@?ʼn@ _@VӚdT@h@7q@A@zwe@%&@$?-p@0۩@00u\?@(j?c6@ ?Nt??Qm@>#[?V?=s 5G@U @C.@r'@&M@WGDK@?ޫVf@?$Ɓ@,4s@>*6@ß<@Y@cؼ%@,k@k*j?3l@扌.?qV?}-@ښc/?h?0̮ ?4.w;D@غ/?v,[@& @St@7Ԕ @)g`^@}6$"Q@*9Cp@A,v@)1tv@^z^O?tknG@,\@k$@Xni5T@[p#@e _?;i@x.@4w>@P@>Q^@3@##$W?D@.-@x#d@3\@G?h@ u @Ҵ?v塥@Pi4?U*~@ v@48EG?qo?BY?D#^@]^ ?eH_R @dS$? (G0@vF)?cDi??nZvW@j\@@iXW?XЍ@ &?n`?.~d?5? &UBa?ab@EaE?ĬƷ@rz(@dljV@TE @uS#@`D ?xR@@_ȏ@:sl@F0 @y{@gYG?UD@Ze@ʑ3@b1@/C5@ZuF@l{`l?/'[@hUM(@N\&@p=m?g`?B$F@EjP@rZ,@}h@Z@je/@"퐬?Je@6?$Ɓ@]?p4?m@4??@L2r&@S|@xtr@?wF[]@1f@J@.)-@_(Q@X w@ @ Kzs@*k@)_?,0@4e@r0@gV?R~?.Ώ@5؈@{wZ?yƾd@%N@sAw@BL@=P@@,&@ui @ ?EA@ʬT\@G@P.@rSB@,am@r䑉e@&@WF~X?k@fGs@F@!g@>Z1?iC>@p@D @p@B@zŮ@\(â?Ky>a@0 @W:?9bW@k+?G݀?/A@`m@¯?WL@#2R@:؜H@k6w@1o@7Ԕ @s@@y?B>٬? .@& S(?TgZ?pci@,`F@b=@z3?L$>?" h@xpc?}ا-?|?;/@G!?]@hUM(@G)2@7u@a@N@'Deh@v*@Mpt@Xc@8@G.z]@6\?X!?ě5x_U?"k?w"?U@0"?SHa@j<$@2~@i{@;@Ҽ?D?h|@322m?e?T9ĉi?}HX@?@n[@ R٦?~?23yA?>9V@}8@`@>/ˍe@i=2@@癨@ֵ@bbqm@Ob@5 P@|΂$u@->Z?J@-X@H3@"R. @|H~@LycC@tѐ(?@ʣaQ?=w@oU@V@Ff^@X]=??+p@@}@9? x@,6@?7%@>)I?y1U@^`F@0@m0y@We@_@9;bR@δX @+ 6%@yhL4@^q'ǫ@TD@g@ng?-!?5tXL?ҏ Y@RT7@` Z7@h&W@ɜx,@::F@@ab@H3g?ڎ5? @P@-!?"@Df@ @<83U@%2@&N4Y}@R=?p,~@.ITu@1*?NTm@b@ ؃?\W'? Q<@p^@D[ @.I\?T@R4 @>%B@n@%"W@ab@k5`?~427'@:E@i&a@ 5e"@j|? @8Wޟ@zwe@]T? bEl?{`v?, Ȩ@n$ml@4@ДB@.-@@-\o@-z@>M|?lB@cv@qSl@Q?YjŲ@1op?\L@ v@Dt@ ;@1<@~U@?\(O@ @Tf{?~ʌO!@5p ?fMH@ |?xW⦻?y8?$G@k@@5@,{@sAw@H{ @ʕ{?M1b@'IL@7Ԕ @XϤ@?؏@t˳7)@8Rl@rZC@W@)y?bqm@ڦx?~.r@Ja?&֞@hpc)? .`@Db'@_~@(@dװ@:f7@,!:@R@^o?pi@v$+@[?G@2u@ErC@׆q@&|A@eX'@@ImW@1'L@̹o'@QGU?$K@c @ܻa6@Wi@k:LEt?p@E@Ɵ@Mpt@yP?J-?F@nw @W@0r-@R6%@´5m@MW@8@]ge?"@4,*?߰#K?!Y@ԁaH@H_ c@kح?nKN@ z!@Էb@PB@7u@&E@T@UYʐ@ʱ99-@mE@&a^A@j?\3@| @=`2k@FH?|C}܈? ?n@_1@{x@CW} pU?J%<@YjŲ@2C@@VWV@P[Vs@`dK@sAw@u)d@k?Ri?,1??ᒈvo@7R?'!@'aM@x+7@B}&V|@nNW?BSA@hn*y@(V@Ŝy@ e@Y\@:r?]3T ~?BQE?v @4+I\@~H @J%<@ҿ$)F?1Xx@xf@@4@=aU@u;f??kX@Z e@s;@fʘ\@^ @Eh_I@N.|3 @$#gaO@j7 ?"E@̒@2y@@Z|?k$@ܯg?DkE? Lsh? :ƺE@M@ֳ @yq@=٠@@†?&@bP?XJ +?@EaE?}O@ԆyEZ@+k@d(\@Jez3@@`@k:LEt?6 \@KT?i5?`c@ڡ@?>V?,@9"?=Ԑ@,av@D9!(@b.n@My?EU3?L*V@?Wl$@:|B@n@6@5@Ȭ(?8}C@JĔ?Je?q@D u @CR @+N@@<@bR2w@7័@oI?0o3@3[@8r@6qr?pzr?@`^?lJHZ@l6?5?Om?W>I6@we @ kYcu?GYыo@'AY@h3 ?7@=Ӟ@@A?^IMN@UBY?O8M@>;@Z\-@j%?h@@Tka@J'@@߲T(@73@UX_@VB)l@E|'f@H~=s@:,@Rx?z]u?ho4?2?a'M@'4@-E?@>@FA@k4o @&r@):@p@YL!?`?P6 @l TZ@pG@⿺?sQ{@UB@T6?@ BZ@EJ3g@_P ?? ?*@b@r0@xCuΪ @ab@y@ȳ?qo\@M`@3֯@6Q@ ^%@VLs@ʮFGE@Q1@7@G1?pzY?70?2Z5?@*Z@Pqw1?GD@ß<@u?t@R-}Cw=@5;N?@JN7 @h?@e6$K@‚@מY@@0L]c@jLAC@Av]@B@ޢ2@l-@r?b?@32@i7Uz@0q@PLU@nP`@b\q@vS%e?<1@Y!?E\Й@Ts{@0\E@?RDU@ H@7c=Z@>@<=9h@.g[r9@@7o@I@@l^0@C@V'@}-@^@|H~@5p?X|[@%E"@\].@xՊۭ?|mG@][*@Fpȫ@p@^tӓ@$/@ᒈvo@wb@+4@ރ!%?ҺL4?7׌´@R#z1@d&@k @Ծo2?P@3u 馻@YjŲ@ui?LM'~1@K@' 9?# pn}@9t}@C d@L>Кb@4H^?h`??Ra @N @Ux@+ն@K?{@No+@:@OY?tD\JG@;C@M@e?xv;1?CϬ?JK`Y? ?2Mc{@"tuǒ? :|-C_@R?o*R?zyH?eX'@4@%g?&@xM?2Mc{@2wڑ@%:@yd?F+uu@ Ai @cl:'@0,Q@t@i}`?\J@%f?SJ?X. ?SQa@<1@Ar?s`9@LrhP@ ?A>@,c:@3U@^`<އ@4 Y@:!I@d\@o@(A%S@N(@&Wk@J`@^&ǟ@@_@*ŎơF@S?̓A @V.@> ? @+/ 7j@=ǃ@`R??=Ӟ@ n@=ot{@6+@h2m@rx@ViAa?,P@ɛ"?>h@ڽn?)8@ @=@?hadn@ȧD'?h9@*jSPv@&& @?EgM@,@P9?gei@{Z@7 -@tCy?fL@d1V@@FD2V@qXut@dQ"h@q@a@_@I@JX@~T@;?>sG?>+O{?8A?@*L?6^o@-MPy?u]@G@j?U٭@cmH?Vc3N@Z 7?&jp@4Z*@'?d`x@+@vj@+@h›?@ :ƺE@w^"@͒[@.TB?) % @ڼ%@m;-?H>/@=@wEv@xs]?ͺX@$@J ]@5>4?ͭVc@5-?v?404@؀@'/@,oX@A7@Kd0@~:?:bZ@$9@@2h?8Hm@踿#5?}-?j_k@d 1@D74@/$?,+@4Z*@Ü?,u]@MtP@dw?0۳@r|@ݺ@ @RZ+@kFar@º5V/@^v?Ӿz@G@7o@z\@膦s@{zX@Ŝ1@6R[g|?X?K=@Zd?LG@@ެ4@XЍ@5?6!&@X?#Y?n@3@Dh @T?`a@ʾ+@0?=J@7J@o?\NSd@itg@-$`@c@u{@\R?|;?{?s@z? }}c@6S!@Je@h!@,AF?e~"@[*?V*b=@=V@jS+@v)6@?43V@d,[Q@ri+ ?݂[-fj@n`<@hfw@[@>^@A@קwL8@{zX@n"' ?`J@j4 ?2}@;Ck@5H@ Wi @:F C@f;@j=?[o@m? +Z@@+ժ@ꧤ@Y30??/'@[uZ@Ұ?L6@U@n8@wI@i,?;-䶒?kO@.H@Dm@AV9>?3 @jW@4d;@ʌOt@2?0 Ji@}@s$@|cc@z<"?B\?0䋬@Lw?^@ 57f@y㭩r?VwJ*@pL @`t+"@d@Dbqe1?w{HL@f@LycC@ 0? ?n@`W/o@)+@c@H-i@?A\,?=h,P@0@j+@d^@ yNl?Pv0bg@5n?S\@(8<@&{: g?vr@%}x?=Px?t%z;@ K<@>+O{?(*?Fv@,@?Z@Fw@ǘ`?o@5`?lm@h9C-? ; ?y1U@d#ڡ@;z@^b@؆@? _@I(}!?r?شR4?1w@q?yY@{? @HV@?G?<6c@Ud?.9-*?P{7F?Pl@l@.S @ta#@\!L@0J@3l@u$p?:@?`]@WpV? '@ڭ? [+@X-UҸ@{8^&@!b@])y@h8ena@OP?Ar@ ?v:&@C *`a@Ra @[?G@x@w&ُ7?ھ@~g@ j C>?MuD@yY@=?4j?5?Tu@m?@Ak4=rw@v-6r?ôon?'eRCP?X?}?I89@d?vW,4=?J@"8.N@b?:@m,B? R|@߃.?o@TBx@|8 {@UeY@[uZ@No+@;aӔ@̃@1Ղ@'s@]*1?iI@&Anu@@fH 9@V{ l@?B@ "?<a@Z0CS@܍O2?9#JC@L5?pKXv<@itg@@t5W/@ p ?2랆@ݹ?Lkn@t.?^fب@4ׁ@¯P@w0X?@w@j#@ ~b@?Cݠ@CԎ,@b1@Q@@ @|i@@F@Sa:C@V88oH@4$ @J ʼ@Q/4'@WI@^ @,+@Y30?c'@O0q@do@+ `o?;#5@`J@fh@CK@W@mNRf@?@ H@&?@$&@ۑ?lQ{?s4@v1@0۳@4?V'@91I?Ux@_X0&@@L@2?-?A)Z@%@N?`?|x;7@03"?i[?F(m@m] ci?QNC@Ɣ}@dD 3@]?@ܶQ@~.r@|H~@_5!?FT@Nݦ@)S@vk?`9:@諚\,@|gj.W@qS@dR?Y?)~?2@3H@$ $~@X0?k@d?52~@%?u3Hf@AF@xu?2@+Pz?Z ~e/@{>@ٹ@ GG@dO?@[{bBA@ể@SE`?Gs?021,???=l@xpc?;n@C?V,@hmz@DN\?e@W~^@:qޤ?(oo@T1@W @|bQE@tjx2?'(N@ tHb@#/@j@º5V/@'@j"@.5B?@ m@.g[r9@N@b_~{@xrY?)i^@\Z?xwdF@|<@])y@OC ?+>OM@xJ]-@%(4@Sa:C@eZ?י?3 @!%,? ?.{J?1ZGU?s>J?yח@l@jQ ?9 ?`=vM?8Վ?Ȓ#r?#B?`h4 4?t!V?[?Ў?pf?p.2?SR?@^@?И!?0C1p??ѵ}?t+:H?ؓ t7?:T?|M?O?SP;?"z?@",?Ԅ?HIC?`wKu\?+?;А?_=[-?P'a?IQu?+S?8:Z?,THC?|K?YjŲ@pLu?ZY@?%?؏? M? 㳆?°l @2?.C?NN?7ޛ?PvY?8{tt?UG?L?>c%?PR_?׮%?k*?`@H1)? e^?D3O?(ڰl?Pط? '?Yr?0j0 ?PwLv?T}?@͇ ?*?8!?lc%?0JZ ?@ M#?,jE?G?7&Ո? eBݑ?!-D?eǡ?GR?'hly?Mg9V?Jre?-?B!?Q|?{wu؎?pi? ,cC7k?LWf?WM?rCPj?23yA?rGIYЍ?Ϊ*ɕ?CM?zqv@@S=z?%(4?/?P?LWf?HX?Q@/$?_L^?I?+z?Ϊ*ɕ?? 4?]*?h|?2K=?IEc?1t?.NV?zk?%(4?(s?0 ?O>]?s뤣?g?Uʄ?բO?Oh?K5?Ә?҈}?7,? ra? @V?%"?)XV=?KX?c?ն??rہ?m?FԟX?)҆?[mJ?Z4V?ն?rہ?y ښ? ra?҈}?,o?B!?e6?@7n1?C~ ?Ҽ[?4?O?{wu؎?aW4?ձJ?XyVR?E?B!?4Af?,\~?MF:i\@K5?ΪV?ն?0(??8zo?Z4V?fN5?)/?rہ?rGIYЍ?6''|?Y?pi?N-?̞_Y?̀i@Jwو? ~,?|m ?] '?NU?_o@?$2?nZvW@(@f@m/?`#˓?dع@g?OGp@]?fC?qFʮz? R:@8ݙd?pBA?~%F@ht35?4#E@$}}@@ĔH??_L^?4@ 8K@!Y?R?1K|?Zǂ?%"?Lt@b Q?3O?ƠB?@]̅?9@0G? yP?W:?c`?f ?R?m/?3 ?no?˙?$)DV?u ?xBmL?(H0՘?\_? ʨ?V0?(oS?0P?N?!.J*@*rR@̎%@8H?Mg?LQ._?µ$Qy@Px?b ?)/?NV?Uʄ?PcdT?U?؏?Z4S?c|3?^ %?@]̅? ~,?8H??@?fN5?V0?0Dy?D/r?fpJ/ ? +mq?P黶? ?y$.v?X?pvޓ? ra?8s\?8j?-?ɒO?B!?](?V?u ?q?Biޱ@2? ?D4?7?WM?l/ |?U=?ΪV?.NV?8zo?%}e?IEc?q?X]=??{F'@Ψ?Pt݌??FԟX?rZ?c?KK?i|Ϗ?0ys^?F9= ?N?Jwو?Pc ?暸 ?& @qޜ@Iǜ?p^j'?*]4@{?Զ@$?wr@$}ҙ?@Ⱥn@w@-\o@SI@ HV@rV@`,+?{ ?%O?ex?88XI?U `F@x}@pM@XUxFV?lTs?|K^K@.g[r9@]@N@j{?1@Ex @4t@k@3?{@]@ܠQ?$Z@XrpDR@au{?UZ@&Q=@\gv@lb7"i?ʾ+@+c}:@`X|[?;/@*s? ?tAS@v?m@h׿s@L2r&@xQk?Xw?6B@w?ͨ@x@m@@EJ3g@W zR?s@d:t@=Ӟ@L@\w@@qS@H%mOu@G$@@vbU?"@0]@$`tys8?}@rH@?@Bxqj@EA@t@µ$Qy@>H@U٭@Z7,?t ]@e@͒[@rJ`?zТ-?Vi?/C5@ↄ@e6?b'M~?am@HP}W@/$?rGIYЍ?u^ ?Mg?%"?ն?E|'f}?Bii?p;rӟ?B5o? ~ԡ?.NV?rANN?֑?f|7q?Ϊ*ɕ??2.#q?g?m/?N?́y#?֑? ?cd$=?_LOї?=sC?bbqm@_LOї?/?c?I{dK@ 4?#?Mg?Y?sr@%P@&q?9]? x?'@1? I ?1qP?u8Jw?/?@yj?zآ?]l@U?C3Oi@ _=@I?+z?ե??q?@m@:+?_̖?=Β?4? ͣ?LG@sQo?p*?@?@(?zk?ǰ/?*l@.:#?8m|?1?X5@7#?8zo?i|Ϗ?Y?Z4S?Ver@2 @0wg? y? ?b ?,baL?| ?m?]*?M%?R?o*R?=z@Ψ?2??@P?UB@?WM?zPPV?=U@o? x?]@a?\A@JҐL?džɯz?vQuI?Oݦ?KH?@:hS?q?d,i? yP?D+r?m?IZܣ?@6?VqBKH@@Z?:?{wu؎?~`}f@ uAX@cKE?L?B!T.?:!I@rGIYЍ?V0?@{7̆?C?F1??/$?~1q?[mJ?Gu?6 r? ا?WM?cd$=?w_ߘ?D+I@a?*D?dd?y$?Ln V@U=?%(4?N-? @8m|?7&Ո?wPj@m/?ٙ?t_)&y?ke@ O@؏?8B "-?zk?_L^? ,cC7k??.NV??;(@S?4 s)?c? '?bWt??zТ-?J%w?6 r?8Վ?=sC?#|]-??4?O?ֵ@p{}@Zug7D@ߚ@ ra?"%?m/?iVT@́y#?/$?W U*@p;rӟ?@}@1_95?# @xX@Wy]@/έ@֙tP3?SI@$WAg@ĝf/@ડc@Pֹ@W9?bFx{?K6Â@{>@"ng@Г.@@7័@ɳ*?[l@Fpȫ@ޱ3F@@+Y_@毐2@)k{@C@t@J C@G{@ӝ'3?@N(@@iI@G$@@8YJ?}lܬ i@&#@$|r@QM?Pmˊmde&eez Ni_kev(\z ????D0.@X.e*@6Ko@!^2@>P@Nm*@ 's@j@u=,/@L (@0@Jp4@6M骊@lqn@*vg@Ng@A[@蝯t@8Q@tu@^@ʃ@E ;@*\@ބJ@z8@*gz@R3@ ~v@Ҵ5@na'@:d=@Hg`@QKl'@\b@;g@c>@e@믲-@a8@A@,@, @.@Ԡ@1c@{;x@[@Ws%@_lV@@fLl@-s@)b@$\@FM@FCƣT@Y9jG@c>@ @ع@BSAϳ@C@@1е/@ v@ނk@V@"i@@V @^ @# @It@(@H~i@xw@YQ r@",(@L&@ g@RXN@)t;~@*@^@<4[@*vg@maL{@r/0+4@/t@Z@6M骊@@<ؖ@/`@Ws`@+!R@{ݙ@L Iw@P>T@@ #@QH@]"*@v@l8@Xh@C@`xq,@?T@B\@OT6@Z1@{@`㟾 @:@Ơk@f=&C@L@hhs@e@rZ@ Q0@d1@A@4)ݾ@@En@'@n@t@Z1@UT<@#@qc@ @Af}@qh@̀N(@{@Ԣ;@xao@u@_ @¿c@ѲI}@X+@ʎ.@&:@+k"@W6@L3@H@|y@J[@rl@E@U`@1@^#V@ބJ@x[@B@z%@/N@EtHa@Њ^#@c#Ա@"@4xQ@kI-@Ѓq&\@>7@]@L@UR@RP@i=ɪ@4:15S@rl@8YJ@e@@GP_@O@H@v#=@t!^@@V@ԄH-?-2@DfӶ@& ´ @O@QR@=@&!G)r@$r@$}@3@J@̇@Ts:@C"#V@H@ݟA]@En@D˦l@xw@栕Ŏ@?Yw=@m?@pĤ @+G=@W@JY+@N5@!}@j l@F2@s@Jw| @hP~z@qϩ&@# @ՋF@܃@Uj@+\@(N.@]@C@%@U?@CEg@Tq@MY@a dM@3w@@J@q -@9q\@^@ӏ<@v@@Ы@F2@-f:*#@n+b}@vb@*J@ɖ@ @A2@N*@^ꌔ@:9@@i)@H̺@Dp@.@6$I_@*@Sm(@Dp@L@:ȣ@{j@*@D0.@l.@e{>@Xh@"1A W@@4@@@ 3~@A~@#6.&@l/X`~@ +m@b'@Q@KS@ˡof@F@riO@9TJ@4)ݾ@(j'@% @t..@H.@ N@T@P=-)@ݜQ@j@_--@Ѓq&\@Z1@q s@3o@?N=w'@bJ! @y!@K%ZJ@Vs?L@ryEq@$V@*@8YJ@꾭i@i@Z7@@tMn@9nBk@tMn@ʭ)@Ql@E$sx@#;@\DZ@'6z@R^+\@/BR@!+@2@" @&OY1@r\@.;?lM@p %@%@ͺ@)1 @͹%@_lV@0|~@0;<@=@@/X`~]@ @n(@4`%:@ @e @t @`@_@j@@$ٽ@5h@VSb@׮r@y}M@a@ij@I*S̍@;zQ2@GG@u*M@ ?w @ W:@oWn@ˇ#gd@}?@kU\f"@i5@ @_eG@Z7@J~@&nv@m@BR@@{@sbp7@%2@LTo l@t @ @1@f=&C@ @rȼD@,Zg@H@]'?<@#:@ĭ@@|@G@Sܯ@J@3܀@K`@,G#@"@]~@m@҂@2߉@mͱe@n@FC@'<4@C9@C @O@ qq@@7B@S>@(:ܠ@m@Ξp@{ @C@"R.@.0u @Q@XW@ @^kJ!@b.@GtF. @P@4F&@Ы@FrVv@u^@fs,@wSP@l@]?@ө8@bFx{D@eD @I@Lӱv@@^O*@iA@v@B$C@F;@ -@0עh@o@c311@sE)@>j]@.);@'%@ u@uv28J@~P)@@eT@o@ґ@T F@):@a@o@}@j @HOC@Z8e? @jU @8+&@f-s@q@@2~w@_e#? T}@@ s8@֔s@F U!@!fR@Ow@Ԣ;@{eު@ԭ@` @8y@HOC@@{%@o>;@J@462@@ g@ Lɹ@ f@q@by@eP8@ [@(@,26$@zgY֦@C? @Tt@h›@ un@4)ݾ@;_@E26@uea@vݖ#@.@(r@oky@gQq!@6M骊@7@",(@n+b}@0@BR@b y#@s@@1d@q@74@ fL@BO @J@e@&=gf@0j~@ME*u@@ Z @[H@ @lNoZ@eD @@ا@@X>߻@1c@*@@Z@^V@xvh@q@@4l@W@M:@` @;ei@Gp/@$|gs@"R.@-L@KpJVv@@u@ 2 @fP8@`6@"%@oB@@#KA]@֤@t M@m;@rCQ+@@j@"@Xȴ@JN7@_&@@ C@0@۽'@n@DP3}@rZ|@[@o e@B5ʟ@XyVҖ@,@믲-@@L@Q@x?n|@p %@\@=*l @f@l4D@XG@~|ý@ b@%K@Ru@J?@Gz.@ +9 @_$@7@iIƲ@i @~@@{K9_@qh.@Fn!@W=m@c#Ա@@;de@/%G@S@9@ˠ5 @ا@NP5@e@)}|/@x@@j\I<@2,%+@4F&@<]@/D3@dg@B @N@@U*@\y$W@@u@8Q@3b @CR@,@9U>g@W@B!O@j@U?@ EB@xЃq@ eM67@^@h/K@^M<@FrVv@4%0.@(~U@ ?@B_@C?@ا@|z@U`@ϾMV@qo2@$/!f@t..@1@tN@@5ޑ@-@8y@~@9@7@W@[AA @`w7}@F7g@ m+@li@&G@|G%@fF?@XC@P؏^@0k@٦@F@T; @6ڌ@KU@v@p]1#@xkO@\y$W@?ڲ2@ @*sB@fs,@3@8Q@҂@&v@ ״@=@rGWD@$@VSb@2@4(@e@i=ɪ@FnG@k-@@iIƲ@\}L@ޜ[2@.);@*sB@Wv[@7W@H9@VNA@©j@ @D@W@SW@M:@@"@aVp@"B@:';o@v@_$@ OƄ@@xGow@,x@P=-)@6ѝ@-h@yjA@{j@K%ZJ@|i@9TJ@qBtG@@@x@)1 @gM.@B:j]@gC%d@x8@Ϧ~9@@a^+@ g!a@מ@dzp˦@@@e@Lcź@̪t@gld@*@t'@0@ط@M,@n@ٺ{@Q @:ǀ@ۑ@4F&@m@12@@6~֡?@8}3@5C@ \k@ >@'}@ C@ع@B@I2@%8@@j@=s=@k|@ᔹ@¿c@Ȣ@dP3t?~D@PR`L]@7Ʃ1t@I@@ݗ@ -@@5T@.);@08@@c8\@ixiyԞ@@Z1@9@23@Z7@8@LQ@`xq,@yv4@(j'@ @*@>~@T F@IV@^@% @@G7n@Ƽ80@S>@15Sk@kts@s@die @/Xni)@`,+@b8@Y@_J@pҏ @ؙB@X7@>.`@?e@K@~6rݔR@@:DsS@wb{.@z@}R@Bɸ@1c@p $ @##$@"B@0~@*@>~@F;@h24@b (@jt@-^@\@~@^q @!,1@SW@B5ʟ@;ei@@ZNO%@j&@@" s@Q@IA@~\@?`@53t@9nBk@e@4 Y1@EăJ@d@~D@3ho@8ߡ(@ۗ}h0@Y$a@O@U@Z @Q`@h@$e_} @Ek M@Zke@P@Nt?@(j'@&(4@j%@v#=@=s=@ak/@gu@8O@*vg@ 'L>@0@۬R@qo"@_d@hP@.0u @̱a.@/@ @u@Xh@uX<@1-t@\F@q@!@&OYMG@W+@tu@ا@>"=@xR@-y<-@yN&@`@$F@U@eP8@E>T3@TY h@LG@: @^O*@r?>@l?3@f@`;y@b'@ Z@g@6^@5ޑ@m=&@4>݊F@t@ @b @:[!@ :k@k-@xi@f(7@$I"E@%DT~@=@$9]@2^5@cϞ@Mwc@@"#V5@=@=¸@FrVv@1-Z@;de@׵@w@|,R#@]'?<@@`p@@7zF@(@i@d1@%@T1~ ?@@ޜ[2@",@noZ@έk@Jp4@-e@38@@Gz.@z@1е/@MY@XW@D{)T@hP~z@,7bwG@س@&@C*ֺ>@ [@l@R @ @@H@T@s]@:@c ^@(A&@޹A.@h`o @YmY@ @l@aX@,+@38@@ @ɕ@M1b@8>\@ ,z@<̨#@rJO@Fw@[@1@^@5D@3܀@PѢV@ Z @N@",(@D@pPdR@IHm@8@;^7@Rɥ@IX@:gT@z3ظ@@N?<]@ynFr@y@V y@U`@+V]@h@:Ҏv@iE@/ŗ @"i@@._MT%@8YJ@;%@aQl`@ -q@uz9G<@kTV.?@8@VIخ@Z +@Ug@4(@-y<-@C@(S@GE@hec@5W@EU@µ @^ R@ɧn@j=@8#{@i)@D+I@@%@2I@%^@~:g@yT&k@6M骊@t M@纕ʔ@+j0 /@B4*@>@a1Z@\ @"p@$@Gz@CR@c@hN?W@X.e*@O_*@/N@@҇@M%i@,+@ O;@x?n|@Xz@W&W @OŸ@0R@n!@!u;ʣ@W@ө8@ ?@U@rl@˟p@a@]ζ@ۓvY@kBZc@ [,@*@YS~@HN@qh.@9y@ؑ@L @-e@ЛT ?(A&@^X@ 3@vy)+L {@?0_@uR0@!H\@/}Th@N`:@>(@4 <"@G@/J#@BR@PѢV@:ǀ@tro@@ZflC @U@K%ZJ@0CP5?c#Ա@& ´ @@VKm@W6@?;@<@{os@)1 @ LJ4@ѷ@;/a@W@8>\@`*ǿ?Җ)@ZflC @f7l@lq@zi@g@p2@:ǀ@-y<-@e@@J@K4U@&W @̇@rGWD@wSP@0<@As @i=ɪ@E| @݉@hVO@qt@8+&@>q@6M骊@ww9QH@fP8@@WS7@{=@g@q]"@?N=w'@Z@$e]P@"iZ@s 34@1J4@Bɸ@" s@\b@Ek M@kx@{@P{[@$@=@L(m@9sO4@(n&@W+@ch+@ @(@<4[@GG@2p?FI]A@nq@5D`@Ϧ~9@ڄ@" @raI^@8@v@{;x@n@Xf,@$@C"#V@Os"@G%@1@,G#@ @ч@9y@%ÖÓ@5i to@J~i@k|&@a/F@f0+R@CVL@@ @C<@Y@P4@7@>;@ʨE.@maL{@/N@@D@1+o@l5@fcbN@Wayx@]ζ@/t@#@>DY@eP8@@#@3ho@wb{.@픳P@(^em@&N9@VLD@AZ@@[@;}N/@_G @U85@I2@ƽ@S@q9@F@XW@Ҵ5@N@*@{S@f@/h@܃@ۗ}h0@J@ 3@C @4p<@0@0k@$ʃ[@:ll1 @:KڞjV@^a@e@[I"@ 3@~\@<@ɕ@,|@!H%?l:9@Q{;x@- @A@>;@Nq@x?n|@Q{;x@H# @Q@j @EHξ?No@ B@~!?vr@{@fcbN@PXW@8i@:) @yR@! @;@2d+ͫ@] /@q }@{Y@,x@x@1k@`ð@c@qt@fF?@\)@T @D0.@ ?@6;@lv@BSAϳ@j@l?3@h›@^`n@7%j#@Ν?~u@M1b@@2@'@vFil@xR@>x@$r@ -@3w@۽'@cL|@5C@i.@ԣ @Ոc@t:D@ K7@x%s}@ϋ@m-n@>+@#&M(@"8P@HdĪv@=@a^@L @@ D @ FcH@ >P@@99@Tb@u"@RV@Ѓq&\@ʭ)@d`$@XC@Ey,>*@Ba@Ba@k55@&%b@V#i@F&;@ @ˡof@e@@1d@^}t@|z@ ) @- @&r@x @ s@v3 @DEA?<@'k@1@j @#z@ @4p^@80Qd!@hhs@48EG@?L@(@b8@\ @ =N1@w=@kU\f"@n@/:'@.@z'@Bt@)1 @{eު@fRe(@,7bw @_@EF @%^@0V@-@bx@ynFr@[b5@=̏ds@U@[1@+@Sm(@L@K%ZJ@:@>>y@ƿϸp@9@6X>@h@mͱe@$߶~[@oky@W+@ny@?ÂV[@w:@}g@tBC@@8>\@b"o@N{ @ch+@$e]P@,+@Q@}@#@,@6J@uzJ@S>@@R+@XI@D@%@fcbN@0{@LT@>I@t@@$9@C<@EU@5TրR @bt@ؼm%@Jvl*@X^O@2F@+$ @CR@YB@c8\@xf@m @ n @&T@?cpIU@:67H@pX#@Hg`@d]K@}ox?@@}*I@@k-@R@~:g@|:á@{@Ajۋ@T@R/@DfӶ@' 7@Sܯ@= N@ҹG@{[1Y@5s]@o+I@sV{@J[\3@@eT@1%@لj9v@vݖ#@@{jq@91I!@hVO@/}Th@!F@:yX5@08@PI@j@D{)T@Ql@QR@dI"@V{W@>C@~l7f~j@4f@ͥ@Y3@Ts:@e@瑚@)5@,@؆@ @3b @+Zo}$@JT@ Ȩ|q@c@=@{S@_eG@&(4@E_>@Yް@(@x@{Ίw@]Q1@b<@';t@99@{Ίw@ګ~@UlB@d`9@]@Y|@#@J@Z0@ p0@J!l)@cX@@ @vM@¿c@QKl'@_--@y 6@LX @-@C*ֺ>@.4|@~u@{#@N $7 @>DY@pm@ e^?j?F<͌@a{?`f2w?3E?݈8@ b$? R@CQA@@Y+ct?6?C?dᐲ4@$@*Z?iڥ?KHZ? շ?GYS?`[? 0?G]!R@[1@ͺ?2?`E,bض? ;zQ?Mz?@;z?| ?@+?֛b?F޲?@qV?[7J?/:?gld@$Kú?b4?)}|/@Gz@=?vY@YDw@$m{@Yް@91I!@X$Ǣ@D@u@ƙ@KU@~@;&u@g@S(fD@I@@ƐO@^@S'@ un@ @8C@m$4W@Jz@Z@@eT@!6֗@ uC=@RZ@0U@p@`d@*,s@z-@K{辷@@\@>.`@>ʈ @s@c|@ @`㟾 @$r@dVp;|@J[\3@nEɧ @b_H@=@P4@@\@5$!@imۛ@):@뢍@LD@\ʡ@ZflC @5@Q@u]@I@}?@KU@U;@m;@̀N(@:6@XW@ s8@15Sk@NwC @9@>@ 4G#@٠/@kyz @/}Th@NN-.@Wu@ԁ @04COo ?Z@?%K@KHF@@ɕ@*g@X+@1@dI"@Ms@yq@C"#V@u@` @ixiyԞ@l/@lqn@LXՈ@:DsS@$r@^"Y@}J@RZ@,@ou@U85@rZ|@P؏^@&@@h@S@Jw| @v3 @d1@\b@dᐲ4@B}Ŀ@U85@fL$@{%@@+0d@l]ũ@Ǟ=A@)@8D0?z}ؓ@m`0?Hr@ k_6@c8\@$@H@%DT@i@ @W6@"W@}R@M|Zu@<4[@|z@ѭ@c@Ξp@;g@*@>@8y@8vΕ@@N@v@[@@ch+@wԘ@~!@a/@l ez@Nj@ J,@͓c@oWn@k! @)QF@{@'@l]ũ@0P@` @͹%@R@hP~z@vݖ#@vݖ#@#oom$@e@H@fĘ@0P@$}@q@2@zgY֦@˚X@xu3Hf@&'$@'G@N`@XW@`d@ٺ{@5@k|@m@̚@d@t @J?@L@Dp@@-0@lwN @-@R w@۵@ OƄ@N @è@~P)@@i\K@:[!@a8@C@_lV@ .X@\hS֕@%@"#V5@b%0c@c#Ա@N*u$@H@@4ՓG@)@O u@c@µ @򿦰@6oJ@*$@v  @{ @͹v@hK @@'k@@>8@9nBk@š@o>@BSAϳ@t@eH("p@[G@`%-@ӏ<@Ծy@_w@r@ 0@Nt?@GUA@PlMK@@",(@XW@ܺ`@;do@eP8@,-}@p7-@{@KJ@Zv-e @s 34@\b@",(@۽'@ K y@(S@pĤ @4U@H.@"iZ@piy@vkF@@@u@ Fʻ@qt@ ]l@q }@Azv@ۓvY@?`@.@G@y 6@d]K@E)!XU@<4[@VNA@0k@zG@1%@yܝS@[>O@@[3@e@K @k@*vg@mKN"@@ʭ)@:^@{#@Qew@ @Jt*/@-@@e @ȱ |@kBZc@hF@ Lɹ@~:g@V[o@g4@ pA@P4@ '@1@FrVv@I'@ r1@$V@q@U85@x@;N@~y@5D@ |@W@c|@$9@e* @@v8K$x@ѥ$@@k;#K@0Qsp@@IHm@^`@Y=qr @Ȝ¥@@Mg'@C@D6@\C@URcx@na'@ 8@J@̀?B#Q6@Z2}e@u@ FcH@ڄ@{ @J~i@ >@*\@&l@K]M@W:J@tN@z'@nZ:0ʅ@%c@˪@x@eP8@\DZ@jDռ@N`@;ۤ@c> @fcbN@]@^a@VKy@"`\@0~@}W[@٦@^@(ZS7@ @K`@~ܱ}@=W@HN@-~@\ky@C2@%|JI@+-# @#@T @L@>j]@ tO@텸(E@@2:=O@(1@)Rf@y @H!@d@<@ͥ@JIŵ@ǩ@U@1@4ՓG@| ^@(^em@-P9@ _m@" @*@xЃq@HN@)1 @7@P@)@%d@@.ED1e@H@@Ъ;M@A͟@5!Rx9@D0.@ˇ#gd@?ʹX@Mg'@#@v:N@]?@E(hI@0<@As @ا@Ve%@S3@r@ʕ@oU=2@έk@@ Lɹ@vX u@pm@H~i@<@:lh@DEA?<@˚X@y_@ /c@63D_W@ى@@_M@й6E@k6(@^@:b_@8*ܗ@ң@~,@]A@6ᚖK@eP8@8 *@ @z@= N@rw@U@%7@iA@/;@W+@[I"@Eh@T @"#V5@>"=@BF@,bxa@D@w¦)]@]@]r7㏹@:Z@}1@)K#@3<&@QJ@SW@R@#@_d@_?:τ&@-aE@FѽS@\ky@bŜ@x[@MY@P0y@ni,@מ@e@"R.@D@|z@ȣe @K4U@fYc-d@Y@5HwA@VNA@Yw=@r@7W@H@m(k@0עh@H]g@K4U@纕ʔ@yVҊ@tMn@9 @]b @=W7@)K#@a/@ ״@DY5Z@"p@~:p(@+9hq@W\@|߮M@i3NC@0i8@v@dI@c@Z +@ߕn@N@H5Ě@hWE@$e]P@\{U@zp5@@5li{@m@n@j@R@rw@D@k@o e@W.@8Q@Gf?Ѡ@U*@.ԫv/@1<@PJ @F!^ @!;@ɸUW @gg,@$@&;1@Ve:3 @k?l@Xh@X+@aVp@ @Uϓ|6P@IN?8@6@ <@֛f;@MKo@@ј~'@wL@686@1@C? @2l{@U@ ["a@ r@ m!@G7n@qc@(r@V/{@*}@@X@ŬC9@8@Xb @&~@(@~D@9@#@u50@k@i\K@+ @?ڲ2@b'@$m{@z8@M%i@ 7@)@Zk @<]@ij@t@\QN@~d@D@gY@>;@J?@%^@N5@Ph@@QI@ɕ@@Ѓq&\@d]K@8YJ@W@'@0@{j@2H @`d@m@!@(r@zM@0V@\y$W@`bE@j @w @fO@@Wu@|DL$@d`$@qvR@70@:@iV@/y@@ؼm%@ Ӝa@\*@&N9@؍-I@j @Ţ3*@S=@k;#K@a dM@۽'@(@Ы@š@v#=@aX@m{@a{wu؂@tu@K'O@3<&@ 2 @o@^@\[N@ O@`6@Jp4@ un@ n @C/@t!^@|R@Җ)@(@>_@Q@/%G@Z7@vs:`@>-W?@8@a @: <@l?3@2އ@bJ! @R3@a @4)ݾ@l$@\C_0n@ FcH@W<@ݗ@)}|/@AҮ@FC@w?@m@~͑@ Lɹ@¿c@Q; b?vݖ#@QR@Gz.@`㟾 @-nHH@$@КiQ@Z_@@*TPQ@h؅@ @Ԧ@k@oky@$P4@؋W@t}zD@\y$W@PlMK@&v@CIs@-@{t@A~@VKy@S>@a)75@J(@T; @Ä,f@x [*@K8K@p_bT@@}*I@W!= @@!F@PxbE@]~@뢍@P4@@`m1}Y@8:E@r @c$@b y#@#@.n@bv`Jn@E>T@jWW @= N@QAb@m@DfӶ@M@/@fcbN@R@BO @;S@#(@8@YB@]Q1@hp@Vk/X,@t@6~@3ho@ @\b@ۗ}h0@t:D@H@HN@Al@Ϧ~9@٦@A͟@ބJ@Ոc@%2@@OŸ@A@acQ@y_@CIs@m.)@ ®J@ch+@>;@i=ɪ@^<@r\@"#V5@@k;#K@Dp@ڽ@ K@:Ҏv@i@ПcFc@B|o@c@eD @ʽP|@ @"@ S@>@r\@lG@Vژ@^O*@&3|@ip[[@{t@Xh@;S@S@(@]@Ja9@@Jr @FC@(N %@CV@Fw@@=@i5@=@rZ|@Lcź@y @BS@y 6@TgM9t@hVO@@C<@ by@@M~@Y@Mm@0j~@P؏^@IV@@1f@+?@y?@ڛ)s@N`:@ un@61m-@꾭i@ܐh@ᵦ$@Ss5@k|@f(7@@r݂[a@$ٽ@v  @=Е8@- @|^#A@(n&@ u@ a`8de,ee Ni2_kev(\ ????5#E@"@8YJ@ԧf @'p@Y@}ӪL+@>@{_@ݩ@8@@@(o6 @/@'`^>@g>@9@u6&@^P@3b,@@@Rh&@^a=@z=͑@ i@=-W@/X`~]@.Ȗu@keg@\@U%!@G"@ X($@wg @%@g@@sQ㔿@@O^7@DN@u-16@N/@l8@@S`r?.:@ou@Y0@̓A@B@,7bwG@̴X@nc@o`r@s @8y6PE@I6 @YW@@%gg#@l$ @2Ǟ@Kz2@ )V&@H@q@H:^ܡ@e"[L@ĐA@M@Ұt@@zpҏ@bYz~b@$z@7-@%(@y@^%@@l0@|/"e@0GQg@4@,"/@ dJ2@x7<@=3@:@ű'@_aB@hA@e䇥@TZ5@pm@d#kh&@"^@A6R@tǬ(o%@Ɇ@4?0@Lj@]%i@4uh@^!@.\t @Y}`@{H @{Q@R@D@ƐO@/r.A@Z6x@y7R@+~e*@ 7z@RN@W2@F0x=@/@`*G@3,i@FU@j8@^@j@^`@{@K1@‡@[L}j@.\t @b$@ޡ@`lgq@1ZGUs@}Q@*E<#[@pO@.@g s6@FL&0@"Yvw@Ⴭ2@Gk@`e@'"@@B޼@&v#@՚A@a冕 @ ^U@:qޤ@>G.@ڦx @O@{/@V_4@6S\@g֭L@ҴH@'@Օ@,_? @nV3E@`@ht@PB~ @P@*\@S@ޢ8@t["@j@q -@5KFJ@x W}@@¥@o @5!Rh@(9q@`L@ѷZ@9@23y@nV3E@'' @e?A.@ޅRX@Kq-@CB@+_nZ6@%\@y@'tM7@o@BR@-Qʾ@j2m3@ԕϚ@ND@[JL6@ԭCk>@DZS@P@ٺ{@rZ|@^%@܈@(@b$@0S@B<@ @< s&@m77M@ 6@JQ@j@‹+@AM@_P.@L (@n>@?L@s9oM@_9@fP=@8 @E8w@l5@RT@yp@6/@Nq@H@Ob@- @\pR@Rʵ@FsG @c|@Kk@"ƻ@K>Ђ@ikv'@@1[@=@0 f@~&ZO@.$@:GI@pMY@Y@t݌? @X餭l@z>\@c|@聏c@%@$P4@^a=@lKI '@@WG@캷"1@ڬU@ k~@ K 3@}Bї9@8/N|@ĸv@Rr?@hn@\Ɏ@@4)$(@R@,@P! ]?W@"y|1J@@L…<@sI@Tgt@#=@3b,@GAKi@'@q@=vn@j@,V]@.)o@@j+@r@T@K@RNjv @_G @RZ@j.@4 @o@|[ @L8OЁ4@r7@D6@!7 h@@9@?4@Hv@Au8@$@B>٬N@D@3<@+ZC$@J0/@*-m@J#@1n>@٩^# @#l3>@K* ?' @ Y@+)p@xBhN$@ yd@5I@ns@` Z'@zgY֦@R5@!@ @JQ@o e@FsG @ns5@^ @Ճ~@ei(@2BN4@A܋.@@iv@@#x`v@U^< @?@Dg!@[*{@m@WH@B<@: k@Z1 @kg{@+W@"@M@1Z{R@.'@~&ZO@Ь@"t@g4@Y@|@%xO@!w @@TT@r@;d@t M@<}D~@ҴH@VC@Nf{@ Cg@(@i@bA@p|@l\Zh@̻EeR@TF @c|@N@p;R@E(hI@9D@{ #@Ɵ@Y .¹@o@U`@@O^7@P@&o@tA}˜~@W˝`@jx@G@;@u>@ӡ.5@r);@N@˔{F@<(@u@]? @聏c@3@HT(#@D ()@@9@$0@(@=Y@:6UK@^ @!f@@UL8@F!ɬ&@@H.~@zQ#@'2@_nAe@?>׭@ո13@@ K,@ג @tro@>!غ@"q^N@xO/BY@9@rOWw,@zpҏ@;jF@bo@,ĩk@^x@~qJ[|@S @iv@@z!Ӑ;@@ @A@iv@-"@vɓ$@Zke@+q=@@~_mR@jdW@c|@Rj@84@i@..@x*;XZ@!@*fY @-IJ@Eo@'>x?\nPV@ x@A?]@Ăt@cE@1:O@@@ _@`*G@c._M@iN@Po@S@ŕi'@@o@ Em@%0Z@=@]9 @.@@@ 6@^[*@,X@=Զ@Xf,@Da?!/8@?K@6R[g@hs۬@!}@$B!@"1A@@Վc"@\]|mT@pҏ @T@{PC@Q@fݚ@Џ@>@O@@"f @q@J\Ǹ @7Ѝm@!@fF+@{ #@2߉(@$; 8@pWs@r7@q@E1/v1@1R@Tp.@f*#@(S6@FH81$@l+@`-3@] @<ܫ@RXN@Х@Kf;@[6@GuIH@OƝw@-IJ@#O,9@ W@ @X[ y/@ג @$4C@BF@mMP@V9mZ@ >`@]@by}@c@'@^Y@(@&& @>!غ@ x@H@П9@i5@`t@cK @-IJ@ J,@]wl@V{ E@ɚG@ZQ9T@ɽe@A0HR%@F@|k@R@S@ȶg@?@PD@֥F@%gg#@j@@Z@lm6@pX>c@dl2@w?@Xz@M+u.@ŕi'@; @vMHk ~@BF@SrN@? @'c!@#SD@Hz@ (/1@F<@l@އ(@k: Q@I];@7TD@ht@r@ w@ٳ@ZB. @0ww95@ wo@+@ X($@<(@u@T@<@$" @u@"eU@9@@_aB@.@`|@l$ @l9<)8!@D@%@@CJd@Fw;S@Hü@ u@5#E@.y$_@.sB@f@v8@D ()@Rizg@`ˆ@{@3?@:{@NI@G@;@.u@Wc"J@l~B@Pvy@l0@Tgt@>sC@, z@i`@Wcݴ@9@ sq@PJ@>y@76;R}?@VSH@:@6rݔ@@UP@6@u@G1<@$@,K@+,@B)r@@>@ʣaQ@^"Y@FrVv@ӮS7@K?@@ډ7@T!yB @7R=@-70@Sy@:{@f@8/N|@nc@"ɑ@Ն\@FL&0@Z@(@*3@]Fx@ڦx @ZDc@wa@:!ω@x'@Y}`@3?@'@n&@n@o@ډ7@g<@M6@*P@L@@ Y@ @a`gT*@٥W@l @\b@YQ@$@X@0m@F!ɬ&@##@Y@8@U&q@ډ77?sI00:@<}D~@ԧf @5x@/b8@dP?@6eKP@U%!@RO@=F"@VC@j@-IJ@GR(@1,p@( @@piF@m77M@'tM7@GK,@84@aF+w@Ll 0@1@a@FsG @`A@[{c@6De@Uϓ|6P@*1@x'@ђ"@J@1:O@ @C%d@;}@1'}@Y .¹@F@bBW@ _@j'@ѷZ@Bbq@7|@乾@ew7H@ ܺ@DkE@Tƿϸ8@%gg#@[L}j@׳1O@5yj@j5@@ oj@Kz2@-ic@4$A@u%]@4 @p:@:֔@/@ƪ@)@*a\`E`@p;R@2@֠yJ@7@WG@g@/x@a冕 @=\W@C?@N-^@R@?K@b@;@>G.@j+@#F-@4,*1@uN@j}]@}bS@Fw;S@@ns@@G1<@ĸv@&7@2-@~\@X@nI@#6.&@cf@Le?UG@G"c@)—@No@/x@ w@0A%P@Жp;?Aܿh @pG]@Qk0@^%@kۋh@X=@GG#@ո13@so@tR@.'@u@:V)='@@WK@R/_!@+ @@5ޑ@&|`@9t@n@-K@Ɇ@c@T @I(@+,@@a@&~@R@>@h@L @ @G|@,@⢤@nJy2@&7@7Ccc@ei(@eo@ԧf @Q@bm@8/N|@iv@m@N-2@xU@|-@:T;@c|@`t@E@q `@Zg@^a=@Z@\=@`1@$4C@f7 N@BI7x@j*@ W@ @Zr@d+@A܋.@2|@>Q~@Po!4c@wK@QR@ )V&@s{@nfn@w1(."@@\@3@< s&@U1@6@En@Qpgh@#B@k@Vs?@\[&@Ob@.V/@"@@L@<ԛ@P4{@]A@ko@E>@0GQg@b~nhj@`g@? @dV;L@d @o@L=^F@sQ㔿@M@pWs@2߉(@VnB@S=@?S[@~NZ@@1[@3<&>@*4g<@&C@2M}ſ@` cv?$6@ږ@~ @@L…<@JSC@Mb@\W zZ@Pvy@]NlB@0v 9@>  @z@A@GO@|[ @<ȡ4@yU@ Ih@[L}j@@kծ@ i@:|!@~&I|@4)$(@)Xl@a@BR@ N@@×@h@"ƻ@y{t@$"@Uoh%n@b,v@@g1glu@ۜL 1@j.@⦫\@.|@t^@"i@@ w@ @ >(@Y@q -@ԕϚ@Bj~@4*p @@Uu@Uu@Q@M,@|-@TZ5@R5@ da@*+@hb@by}@|Im@"*@:K@Ɗu@ |@̓A@N(@@@I_|?̻EeR@'@@pN`:@_T@ȇ>@#O,9@yP4@ :H4@M@ @u:B@?q@bT@Dq@ g\V@K@VK&@ȡ4)@@;@0;@ @{Ao@o 3@r~/*N@b$@]n@` Z'@ND@@L@sqe&@>@AH @|R7a@+~e*@@ͥ@~@|u=@f( ^@7n4@]@M6@b9S2B@M6@4,*1@$3(@Mlg"@2@S@hA@&C@Q1)@x@"P@S@9]@so@q@Kc@\f@b`@̻EeR@ ĸѢ@[@Qn6@ @vMHk$@ @@8qb@ sq@F!^ @%@8%@45Pv@vw$@3`@ʼn"@l ?@.a#@0oE@Ēr9B@rGWD@b#x@T@r@eM.4@!F@*-m@乾@Վc"@2@_tg@D ()@BF@Z@\~4@70@@6]-!@UZ V@g\VL@a@J@@A0HR%@`S(6@Ɇ@XuL@B@.\t @I@fnO@*ѷ@.@F@?K@yU@T@@Ia@_Eb@$jXB-@;jF@&@&@ĸv@G@ƿϸp@8y6PE@߀;A@V5>@O@d^@&B4E@O@S @{eު|@?L@=3@,V]@r)S@}l7f@b@`H@iy@s9̈́@H@lk @$"@Mb@.'@d&.@'@c@8t@p(os@0\@nfn@Bbq@cl@:W@xw @g,@ @@M6@Y'!@)@>oϘ@Gp#e@ 7z@̊YL@y}d @J@FsG @o@V_4@):@M3@? @ѥ$@7؍3@j'@\pR@2M}ſ@6@Vs?@П9@YH@' Н@$@b9S2B@ g@4,*1@@-K@rc@G"c@!@@O^7@8%@{/@No@JF)|@z@F'fjq@[5@z@S @bK_@\[&@h@3@Ru@Ǝ|d@ފi+@,숞w@ג @D=}@C"Ȝ­@:τ&@prd@S @˔{F@Ox.B{@F<@N@+$ @y @.L@L#ySR@E3@+k"@׮r@U@eY@Hc@cϞ@)xer@cE@.(w@^P@;@p!g@L!E@\@_;Q@$5f@TZ5@j@{/@ђ"@*@>@U q@B)r@@_G@7Zf@)FL?/@$,@*@~@T@a'@jU @!6@.(@A[@ =@+)p@"Yvw@:#\@{+@aWI@vԄ@ J@z@H> @ DOʤ@qkw@}R@C=@շ'%b@ k7@p.@n@A_@g<@ű'@G,@iV@%0N@3@M@WK@IOG!@@ף@G"c@m77M@|@=Զ@#=@V#)@MG@=3@Ƃ @&j+@RN@J:@V7(3,@XEnLj@^ @?%K@Tlq2@R%o%\@>&H@~D @u2@ӡ.5@Hǯt@7@6/@63B@_ٻP@iH@PC@@?U@U&q@vr@i)@U&q@1R@YCJ+@Kn@9@Yv@]? @ג @L>m@s9oM@Ld@a@EG@g s6@7f!@&C?@Zdl@:Bp@@!R+,@wN@Vm3D@{@ >(@n@9@\HK@ @cR1@^a= @>7@#O,9@?L@oky@Z?@̴X@ND@joK?<& @?v@q@@B#Q6@7@l0@Tgt@3}@tQ>N@j@ @!q@릔@Hz@U^< @)xer@:f@!@]pX @:;%@L]S@#@+)p@Cq<@ @8zFl@ @FsG @B<@g\@؋@za)@+ٱ@[JL6@1@CJd@ ? Ih@E ж @8Xe@d@8y6PE@_+@5'/2 @Q/I9@VKm@u@@l@M@n@v@{h+ @{kdw@NBW@vԄ@_zu@*gz@\@@&Ҩ@3w@dDl@{;x@M@֥F@Dmv@2@##@@EG@1'}@:ȣ@ko@R5@q@6-:@Gt@{h+ @o$@seY@@̙0@`1@لj9v@@յQ6@<{x@g,@_@Ku/3@"8P@P@pO@Z@Y$?^P@o@ފi+@:@ 5@؇~@v]N@Dy0s@Z@iE@S@r;!@'@@m'Yt@=@IN=@Cٕ@#l3>@S @hpc@Ǝ|d@.@>v@Bn+@@! @VC@E>T@ X($@D@%p@*a\`E`@SzQc@қp@tې@xz,C0@@lm6@M/@9ӄ''@ >(@] @|Jj@XuL@@L]C@캷"1@Y .¹@E8@Џ@ W@ @!Q@\ @bV5@Ni@'iYRM@T@އ(@cR1@@2hA@GK,@k! @}Q@ @xao@d&.@ m@t矅 @2-@%@pC׼@:,n@)J=w@TF@> 2]@`A@ sq@-0 @k@p@YX&Ő@3ۃd@ND@tY@@&@=٧H@i.^@6~@Y .¹@z%@V2V@@N:6@`1@; @]wl@bȥ@߶~Y@g s6@3?lwE@Wcݴ@p)@T@ο]@̻EeR@]@Os"@v@u@,tH*@j'@QU@@2hA@ns@քY .2@NFa]@0H@hq@U"@zlˀ@t #@M6@0@@NV@٩^# @8sY@E@ e,U@aWI@H|@ű'@yB@ysV{@;}@7}@}\v8@@@LjE@ܕwE@3hm@"(@2]>Hp@1OF@Ɇ@"^@+~e*@'@?2|@Kf;@L8@*@tA@ \ñ@A <@nc@Ăt@"@جD@^X@?@5?@+ @+)p@M%^@#jz?Kڞj>|@q ޡ@z _\@Ǝ|d@+!|@Vm3?ka]@mͱ-@ג @OF@e@G"@Nq@wlT@2 @ٿ_ @|-@x'@r?>@HOC@t@O\@xGnr@jx@&@0A%P@'@ %@a,@fi@9-2@8%@d @xm2@@@ k7@T@J^@B@F%r?.|@Q9@9@%ckle@91I!@Qn6@eM.4@O)9@gn@2d+ͫ@#I@>@t #@3@uɽ@nI@9Ma@@R@Ƃ @d'rs@SG}H@@?'@-$@(H@S @h5@@i.^@,`@}ا-#@q<=@Pn@a@$0@V@)J@[Q@x@pW@jW@o|@ihx@ eM67@6oJ@3[ @>@|Jj@*@(o6 @ʭ) )@pC׼@%@oIP@]c<@i@*;XZ@gn@cK @@_G@i&)}@)K#@4'@+&@|ݭQ@uL%@? @0@G@%p@+(@p@g@0r`?@$0@IBd@1'}@k6(@63B@)3J<@^Q@,@PB~ @3,i@94vӛ@^O*@FH81$@{H @<}D~@^!@S}Bї@2M}ſ@Wa@u7@/x@X=@a@X^O@a@b@wH@N7@@G"@f*#@:l@Gt@;zQ2@@%@>ya@7vɓ'@T<@Q'@7Ʃ1t@[@l\Zh@G@wV@Z@>!غ@9(a@h#i@J#@K* ?' @ԧf@Os"@u@K@ n@֥F@4F@~ @ Ȩ|q@e|@Hü@T@+JB}@ld|@ިF@Ӕ@Wf^U@Y@\Nz@hREL@$" @U$p5@o@'p@U@G@ _>Y @#&@BJZ@[AA @( *@2M}ſ@seY@Վc"@4-+@C@j%@*{D@AZ@!f@@k@а@PB~ @քY .2@qQh @O@2BN4@lZV@U@ o@6R[g@u@x'@̦TC@Lӱv@@9@B>٬N@a@U@d @Z웠`@9iІ:@WK@Btbf@ @=Զ@闈v@D_ @в@a@p@6~Q@0@@ =@so@t @g:@|DL$@ẘ@Hb4@.@d@i@@L@l ?@}nD@#=@(S6@u@48E@LKQ\ @ ˃@Eo@X}\v[@^`@O@~D @y@Y@!Mb@] @0@kR@1@3@R@Au8@Q;>@lwE@=%r@Ы@о"@k[@@$J1@Dg!@s:@+ ƈ@}"W@|x #@S@5G@k@O(@[6@Wf^U@T6۝@#KA]@>6@@س@?4@jY@-k5@ei(@_@@xb8@$jXB-@+ @Sy@6 Q@jMNH@E@Vm3D@A?]@##@)w@5[y@hREL@"$T@68Chi@ **@ rh@,x@M3@K,aj@SrN@@NV@TD@3@jvt@n&@>e@^a=@RZ@'C@\[N@ 8d@,@m@jX\@TD@@J#@⦫\@ wo@Po@>t@9iІ:@%ÖÓ@4$@o "@Jvl*@'@+`L@%@@i32@? @,@yo@.u@ikv'@nC1@YЄ@S@Gx@.$@DQO@mʆ@4F@:,n@᭘$@y?@-e@vMHk ~@8\@($գ@f@U@JƷ@a7@c@?嫉@gM.@Q9@>9 @f`X@g:@ @]NlB@(WN@{h+ @;C@Hm@lm6@#B@n @L @m @wSP@*$:l@q%@+JB}@|i@#B@=Զ@`5!@!3 @N{ @Ne@@=F"@"@i@2 @r);@Z@^%@#K@ʭ) )@⭾@*e(@ؒ[@M@`A@<ؖ@t矅 @,@`gT*)@>&H@iQ@z@@0A%P@fݚ@I@a冕 @@@9@0@@:,n@s{@ Q$@>$ר%@VN1+@tې@1'}@s@O@n&@ K,@vMHk$@CϬ0@z5UG@!l@olj@~D @r@`m]@IOG!@_=[@Cq<@$3(@+~e*@3[ @`M@p N@suMI@m@Վc"@`e@3@TE @@=Զ@Ff@d!@r͒@^a=@pKX.@ Pj@6gE@@L…<@pO@>"=@!}@5؊@6@جD@G )@\HK@ @ X($@,i@,z@y#Ne@j8@!DV@q5@֎=6@6S\@@ `@S}Bї@ǽTDž@ѫ.@PJ@E @F<@X.e@u@@B7@ @ ܺ@VҊo(8@sOkl@;4,F]@x@4V+@@$B!@K* ?' @)狽@uɽ@$jXB-@x5@ү/@qkw@+@7Kn@" >P@"ɑ@{/@.E&q@;[@yyG@@‹(@4F@H.!^@Qj[`@ `os@o$@Z@ oj@I@W@,|@-K@~@SG}H@0@)<@E™T@JG@EG@E™T@ح @^[*@Tb@͓C@+JB}@4@@y@BJZ@܇@x7<@O)9@ rh@$uzA@J?g@b?2c;@fnt.@M+u.@tǬ(o%@yY |}@ zS@;ώ R@TZ5@FL&0@h;K5X@ !B@Gt@Cٕ@ !@@M@~U q@- @-@~NZ@>@_iS@kMG @F+_}@cE@eo@9@JƷ@@;<@%@ΖX@@ش@鮑 @Ұt@3l@*^f@u @@d@@q<=@-OM@g:@#F-@%@Ӥo-&@}ӪL+@Q@*_.@)1 @($գ@K* ?' @f( ^@ڦx @h@j$@| 2@nI@n&@:!ω@3@}=_\@@2Ǟ@U^< @ȇ@Y .¹@_y"@@BF@-ic@<_@\~4@{@7n4@Pvy@A"Z@̟%~{@Т?0 @7P@ʭ) )@(o6 @7f!@&p @fj@AZ @?L@JA@k@5x@@&I?g@ W@ @~d@Pqw1(@,`@ع@y#Ne@Xz@8?j)@.@?q@}@"](@]9 @֎=6@֦V@YQ@@sbc1@mi@ƽ@П9@1"@^Nw6@#SD@ :k@bڒ@]c<@zHBl@ Ӝa@RZ@)J@8sYD@@$J1@"](@z5UG@PJ@[W@T@ B@S@XİØ@S(| @nqy>@,ԝ@ Fʻ@Rj@XA@cK @,i@[*{@Y@乾@;@4F&@@v @iv@jGǘ@ )V&@m#A@e@Gz@/@b$@v? @E@!r@͹z(@އ(@LS_ @B@$jXB-@'@`H@uN@F@?h&g@ѯ@:{@@1r@ w@s@1;@$" @Q1)@|Q>@bՐ@ 7z@ |. @tې@Y X@Xbe@{+@u@׎@k@䃞ͪ@?q@%ZM2@ךR@KO@/]b:@ٿ_ @^z@@^ *@VDU@ŕi'@Ճ~@w:!@9-2@XyVҖ@ۃ@t:D@^@:@ݤ@$B!@xŝO@WL[V@ۓvY@k*@m@ `os@3-+S@Y X@E`@ )V&@^@.Ȗu@5[y@{PC@(@2Vu@RZ@ĸv@ "zU@W1@%gg#@G#@]%i@B)r@YE$@Dmv@|R@'@F^ @+X@seb@:ǀ@KAm R@JƷ@@j2m3@(@%@q%@ZB. @e@6~@bsa)@7?֫#?C=@(H@Yu ~@U@DQ@2-@ DOʤ@@*sl@60^@Hm@@d @/D@1>@:qޤ@@J1F@3|Ux@\@@WYʃ@~7ݲW@T@@;@:W0@=@X@,@캷"1@l@#l3>@8+&@aW4B@QzK@wB@Li@) @m2@$0@ W@ @*Nr0@@wK@ 9@@< @9@u`7@/o@@ eM&@F<@2 sD@g֭L@M@@c._M@G )@КiQ@vɓ$@ yNL@Ń@%@:@gg,@IMR@Hz@*g@' @_+@ g@LYH@"B@? @6~@b@ Q$@A6R@X` @)3J<@<ړO@9]@bz )e@Wf^U@SC@/ @>@_+@EG@#6.&@)r@m$4W@,@Đl@23y@a`gT*@C=@,X@Rcn@tx@ !j@z@x(@@Vs?L@aWI@(N %@@O^7@E3@@ #@d@usU~@lk @ns5@Gx@OP;@'2@ )V&@=@അ/@B=@ X@$0@'@M+-@o@p;@+&@=\W@A?]@md@i@F+_}@뢍@ .@}\v8@I@ 5@? Ϡ@=3@d!@8Dh@VA t)@@Sem@+q=@o`r@@0D)@Pm3@AX@ܪ5gZ@+-# @{/@"@#@G|@ `os@J`@TT@C@^[*@fP=@4)$(@er@Gp#e@_zu@<}D~@'7@@H"r @ @X` @=@ɛ @ aŔ`8de/ee Sn_kev(\ ????է@!Ѻ= @ @ʱ @v:Nv @v$ @d @J@Z@s09@^RkP@A @P.a@/`nI @[c|@T@֪ @ X#@T9- @]o@y@2! @m\pO @t @\c5@/x@Hlw]@e@T@3Io@=9Tx @B @hn*y@lO@oSc6@|Pq @bb @Hg+K@9υ @ⵦԀ@ @Ǚ@ @J(V@D@ ZH@L&}k @&I|@t) m @d^Qc@ wҁ @$h'\@88S@¸ @ @xI@3}M@ vh @%+u@Nbk @1| @J'5@A@) R@;4@?T@gC@JF@avD @)t^@h @h^@>@! iI@X;, @Ms&@@fϏ @e@] @LP @'7 @hx@'}*J @XoB@N1@ 8@! @1 @xrY @GXi @e@١@ff @=Ŕ @&qG @̈́p@.@ @h @^w_:Rj @=c~@Yթ@i >@do-@BDœ8~@1r@XA@#@#@Og @v5@|u @P6@ @={. @t=u@t{@D|̬J@l [@cϞԤ@SUh @]%h@&_@+pht@p^,@pOG @~ @(%@C:eN@;@8e@: @Db @% @hbp @r @xa@b @=C8fٛ@=X@ުPM @0Qd9@yUg@4x"&@HbF: @[" @Sc @bl@1\* @H-@t[G@G,w@mT[@\Va3 @ ƻ# @'{w@`w@-NB@y?ǚA @ lD@<!Dx @8@I@Y" @ e}@WDp@U1@߄B@ݶJ F @R=@ @ @RςP @}C}@@@ڏ@Y @$WV?w @O@[@t@_G \L @Qhxs@Ia+ @%@ @?@z@3D@ 8)4= @.@C(^e @= @dQ}^j@6Lr@є7 @ؿ @%@ IJ @mw@@j@}Rf@nN@ky@qޤ @'G@9ClUO@Ŭr#@F Uů@‰@!˂?b@*d@A@6@LAm 9 @/)6@7*@d̸ @k @$Mrv!T @:@f@18Z @dg;@gR @R73@ @@7=n@;HV @G=\@ّ;? @eX Ջ@j,am@lO@@sS@1w@(d@_q@} @O=@S3:@D@l@S~F@O-l@iEp[@ʖ^@@&XL @dm @sJ @4($ @h @ƚ6k@ K8@ Q@E%'v @]j~^@Y7@[p@G"d5@эU @nN@}L @c @)]@|i@s?ؤ@t3' @=@93LmI @zp?i!\\ @Vo @fq{8'@} @`@=(F@q }} @)F@wׅ @%"d @H I @7,8@@R @tp @[@2{ @sw# @#4F&@(<@6@@ - @@律V @<ڭ@Tw!@ \k@oSc6@ӆ3I @ o|@S @є7 @O @>  @ѻ @T@Uh @o1= @Ғ}Fؖ@7hT@ @ڡ@ o@P>(K@%@%E @㊋ @g @Ux @.e*@Ֆn@90J[@/%ui@Qv5l@j4u @ V@wA @[E@'" @ @ܑV!@_?*bmF @8 @`R @֪ @ Mæ<@z0H @sڮ+M@O VA@{F"4@%k@"t+?ba- @Z @@mUa @*mqL @&Y=A@ :k@5 @x-|fv@7A@F>x @q4GVv@u U;@Fǩ@Wޟ$@1ᇄ @mdh@Ə @@ J @>D @:@] @w"3@0@e%a @d|N0@&t @tr@6() @8w @-T@ԦJy@  @u @\|ip @&4A@@(*@b$  @B@ e@)@PC@q)@~78l@hQD+@j6 @Dnd@`k @T 7@>@vlu@@JjWWE@Hz @܍O @ -@v @2@u? @eg@UVh*@xUb @V@* @b W@Ьl?!|C@Z)@h @˻@X @M=,@{}H @O VA@V@G=\f @ 4yl@.$9@K@&\Re@DOʤ^@.[i@ȓk& @*>ڭp @YZ@xD @ A @4 @V W@T@;+h@U?2c @qmw @Lc t@`,e @p@ @@L9x @u @ҟ @^8@yZ @0P> @I@ؗl4@"_ @yN @Ek ɟ @@V]8@j"@:$ r@JaL@枿@z#@(?N=w@i @r@NOUo@{ @.ڈ@m@S~F@Jk @#/kb @3z @яS @P>(K@%w@9J@ Mw@(>@=* @&@FzQ_@ @%@qG!@X3@\(@O@@w}r@ =T> @csz$@Dq} @fZN@ @t0K @yK @< @O2(@ ƻ# @]`@r@k@?E@*mqL @=+6 @VVWr@q@@5B] @V횐@;G.I @fee @ZD|@Hr@  @ʮjF@{V@r??{ fX@Ҿ^ @7㡔m @d(L;K @}iƢ9 @i @Yh9 @e @0 @W6@JY+c @\+?@?T1@.g@/>2 @* H @܌<|@|]D@=(F@d2n@LD' @ !B@Yy@k@.so @ިF@OȒ @Pf @B @56ߗ,@5R@.ڈ@u,_ @_& @֩M@k "@0o@.R@A]I@1 @S Ln @M@XLg?r@P L@@*WӸ @6ִ@L8 @ipk@nkT @qM&@}C}@@>2gW< @ @Cb@h"lxz@+- L@W6@7P @\ʾ @1 @I:O_ @lˀ @@hh @;@>>n$ @nc@R @EF$a@.V/o @w@x귅 @n @o+@@UBֶZ @\% @ٜ9'@R0}+@"I@%_> @Z/ @&D n @ @25$ @1@=8g* @pzT@/ho@`8^@_ZG @BД@!0@ZD|@1w-!G @k@5$!@X@jNI @Ü0 @U@kx @ &@z@jn@,D@Si՘ @0|D @8.@J @"ƾ@r@ Kh@ug7D& @K\"rU@4.2 @Y0GQ @Ȝ@أ&Y@& S@(=$@kL"?a@8m<@Ɵl @ @6S!@®7{ @.9INA @[/@ @ᐲ4 @zlb @~ @2z$@b]@ a7@@lD@0C @?Na@Wr @, @yA#M @)^&@Q]@1| @X\ @ . G@@9R=U@DHL@j 12 @jV@PW@PU?@<@s'u@i2U@f=&@eL@@1 @޹A.@ (C@"'] @ϳ;G@G@ [ @`.e.@1֝@g3 @*ç@VG @S@z3 @6() @z3RJ @f @m=/p@Ac&Q?@UD@/VO@2 @܇ @Bł .@/V@t@(tj @v @ʵ@ @'IL~?Rʾ @ f @k @ّ;? @C3Oi@T"?@iΰI]@ @L泗h @[,d{;@VG @f+O@> v @x @Lĸv@ @.] @ʱ99-@IîR@ԡf@eknN@%dN$ @J(V@g @.[@VT@7hT@ x|{x@@3 @}9i@P&o?+=w @~f@?T1@j @>>n$ @K@Q2nU@!f@c*@08@} @f$9@纕ʀP@蹅@u!&@w= @7=ޚz @ Mw@,'@S{/@|2@ *@JI @&|A@o6g@u @I݄ @i,k @@fϏ @oBY@Hz @V yN@}tgQ@4 J @ӓC@©Ŗ@❍?@諚\,@<;ώ @ X#@@K|wb @/3 @P@M]s @zc @ama @?m @,N @fee @0 @[v@r @(RH?@XA@h6 @A @ܓu@{';@N_@65E @nT]@!@e @J@C| @./@Z8Z @r e@2F| @Rla@S @| :@w]@y,>.@{Cr2 @ i @s01\@1ᇄ @c`x @#z@2PE@nV3! @oGH@  R@ @(@I5B @@GXi @xƓF@U @%k@]< @c`x @?@G@SUh @H@NcO @=c~@A<@ @z _x @P"x2@ax;Y(@3 (az @ʖ^@ 7*e@xw @/ͮK @ݪ@=  @ 9J@go:@'G@I?N@@v@}4Ay @kasĨ @Z[q @R.Cҍ@[| @p28;@.@VN @4ng @pA @l TZ8@0T @3@ٹ@kuh@>/@3dᐲJ @h) @U6@1֒+ @{io @t5@ +@ֻkg@OΛ@;͸W@1GE @= s@t @` Z7 @M@BH̢@j`PK`@-@?@[@xrj@I`c@پX @3CUV @ @=h,PAT @|0߰+@+7@ *@ `@Z>; @2i@k @V @v5@B!O?DwZ @u @~k @59!!@A6& @e @kh^it @a @oBY@`w@g\X@Y: @SP @ !D @o @2%H[@Y: @W4B@޴@'O??@@Wi @R&5 @[i}@2u/4 @U @GhW@ݻX@l{j@ @^5V@SW! @|@(ZYG@km9@`S}@Rk;@Z@' @TXZ@up@W'@ &{@>W[@Þѱ@Oqd @N $7 @{Qx5@6@@ݻX@%I(}@7c @$h@It?{`_ @*MEW@"e0j @͇ P@ )biO@ﳀNx @zI @.1;0%@q @'t@(< @-x> @u?$@p; @~h @aI@d,SE @$R5 @I@a@;)@I$@/`nI @xI@Q1?KW\ @=@r凌 @ @B@ti5 @r m@Lȼ@5!1@<6^@0@.1;0%@oSc6@b @/E @?3?J @9?q@O=@U @Xv?B@@q@.,KH@yBe:@~@ 8@)c2  @JZ!@Ye0>@ L/ @ &(@T"?@T]v>@43D @h @iP@L @~Td @4|+@ 5@-O@s@.b1@P E@B@)ԉj @}n@$~@lm @p@6}2@/Uc @8iua@,2@(=$@y @_E@.9INA @4@l,@Qɨ@Te~>@KWx@`I7L@^e ? @FcH߸@$E @iP@u @,4K @P ^ @_G \L @&@7j@Z[q @):@[O?#3 @6% @( @`kZ6 @e&b[P!@\d= @܇ @:Fv @6ִ@|mO@rF9=}@gR @ [ @/Uc @ : @_P^@ٜ9'@?4u& @6|O @ᚖW @ʹ@7 @5C@?&M @yY@1 7 @i @t1Ho @6Ӂg@"? S @nT]@N@} @pN`:@G @f?@e@#nlѕ @!|C@(Qj@({K9_ @x`( @eQ3 @M骊P@b;)ݧ@t{@|Pq @P}@M@}M\]@w= @,'@]< @> @=>Ɓ@>k#C3<@W @6@ @7EkC@ƚ6k@|F@k @)ԉj @CGG@ě@Q2a@)@.Y@2%H[@ʕB< @6 @9'm@m@b@x\TR@g@1 @^e ? @:HI@VObf@[@ug7D& @$\@P@n)@zEvJ@rF9=}@|x;7@^iN^@S @7g @̲' @3hm@;@7sA @[@4@o1= @ @=Զa @_nZ:p @B:@BRk @i2U@ ֤U@Ft@A~ @@?d-@J:@UK\ @S#O @h @[*%J@h) @!@‚ @@Q(9 @y @ @Un@+[ @n]{Z@] @vYF@/;6 @j]c@|=otW@fq{8'@ߔ͖ @(k @ޢ8c@xXq?Q2nU@]/M @=C8fٛ@ʐv@> : @@F @Pp@(H @-T@cost@/  @rnO@G{e@Jub@O8`@pYm @&)$ @ja@G@s'u@I?3 @lA6@z:@;v @6l@0NN @sc͸@m(k"@Gq@,B*@_u]^ @,or @3%@j 12 @KT׻@&)Y@ɇEQ @v j @Z[q @= qH @:e@WԻӨ@ @*mqL @`a@b6@o[0@f @FI@כ ` @1Up6v@A&9@`.e.@nc@[s @8|wБI @0T @ւ(]@0Qd9@q% @@n @K @g!{@n@'A.b@f-"@9D7Vm@% @V@ o_@Ʀ(@ftQ>@?@#3 @jzG @[n @,#W@o @JCX @<{x@NR> @3@ @P@{;@p28;@zܣ@O@wl~p@n,( T@UZ@a4@oX@`7@,=?1Ww@^趡@o[0@ 2@+n @cxg @Mh( @R@{ @D54@ >P@k<}D@rH]|@rd:@j !@7BE@ZB> @5S@;Y @]YX&@L @Pō[g @p]ܦ@<4\ @tZ @JP@R0}+@= @<w@LhXZ @m©@#fF@oצ @l@n''B@ @Y @"e0j @n @krB2.@G; @e @P.a@yW@,Q@ @P@&@o@]@G"@ @`@O @h3 ( @Yf3@Gx @8\@$̉@ Q$@ƕģ@"_ @ץڃ @R0}+@ts/@/ho@8Ҿ^@V O @6 l @P' @]@4($ @bz @͵t@ Rd@k<}D@K @NQW @Kh @R=@fV @$} @m @@O_JB@-T@ Lu,@r@@h9@~ @C.@|:e$@, @ h @wc@2ug@~wn@*'@J:@D;@@ &@I{(@h@xr@`@X/ @A,i@p^,@$a:@! @@:*>I@ @64 @љj@09f @@$J @#P @}Ǖ@ٳB@Iű @MY@z w@HJzj @΁O @_o[X@jb&u-@? @mR@̼ J@{O @ aO@ M@0#a?@Ȩע@|ȀG@懶 @@f< @w @ VC @@ ' @'@. @7@@nQ<7@Ҥt @<@_#I@H,ν," @ikD0@U?Vz @Z3:Cw@X{Y<@k3F@ @ @ h @VObf@K@^ @\^oQL @fU@^ @J~iˌ @%C@%k@1@-JK @+Y`.@@|o@Z%;@s#ш @Ǥu @'@Vs>V @ PѲ@O_@?T@?zU@Rla@ $}Z}@laq @/%ui@h @-ʤ @1@Fǩ@xO}^@no@?k @-O@zv@~^@IbI@ڏ@S~F@E @Om @A, @\@) OC @~ƈz@ug7D& @޴@Gɫs X @'o@(f@^R @#c @AL @!l2+ @e#@wcAaP@x5KF @3D_'@c9뼪@1t@G6@_>@w"3@Py@!Ѻ= @RV?M@y:\v@ @ߏ6@ j @~-@~h@\ @+3@X@,~@Rt @E @2Ok? @\䞮@'@ @st @a.N! @)' @`vd@s@^@@E @K @ks @*d@6@'}*J @E^ҽ @Jub@  @|Y3 @Qpg @w @|,ء @-A@bpk @&7 @$k1@&xA @N> @8^@Ja9g @Dý @= s@C@܍O @@s@_ |@?]$@o Q%@ @@I47e@©Ŗ@l% @{FzG@ G< @sfB$ @'+V%@L ?8z@?> @T@. @G"d5@OZS @ +@7dY @;do@Q1I@CJ7; @'o@\hSF @ ^>6@@%C@ƒf@2%H[@9 @^[0 @zN@g\X@Q@/%ui@cF4 @[s @1o` @8&0B@> @J @TD@s#ш @Y0GQ @<` @gs @~78l@Tj(Z @d|# @l @D/q? @K87@ɗ @f$ie@ V@1@nN6@#>F@LF @Z о@3{3@́@ S"@r|}@s@Ѓq& @ǯi@c@CBB/ @;83UK @=uQ @@H81D@9 @䏳4 @f @ `0 @Pjz @_P@)YW0@G{H @БE @gdt@q@ɽ @aM@2O@h @h @C.@hϨ@0 @~Td @‧@:eu@Sd @q߅ @-| @L`@t @-@ N] @VVWr@^5V@o~& @s/c@] @C@NB ! @6,P@Q2a@%_> @.@s:c@E"@wY]j @̨C @Lz)8 @)E@r e@'Ls @XB @Yթ@'@7@-~I @@BXv@u׃I@XR @ Mm= @72@u1r< @NC @Bvf/ @O}:@bo @^@Nx @h@'R@״+@6\] @Tg?rpZ@=ա@0~ @Yp @C9@x\B?kn; @B{r# @ֶr@\@=*l @z} @nc@vՅ@ⓩ  @"e0j @p ƕ @9vԽ @3TvU@IJ @=ա@Iޟ@tyŌ@&ƍM @A\M @hU@- l @w @`vd@%&q @{+ @{sn` @pJ/ j @8x@m1 @pN`:@mR@/ @纕ʀP@La@nT]@4x"&@SĎkP @ I @2RoW@YZ@N@=*l @Gʳc@wޜ[@1GE @nQ<7@?[ @`i @qE@@.ڈ@T|n @k @J@nN@s?Kf@QX- @xƓF@˾;r'@y@BQv @@+I@( @ipk@䏳4 @6Lr@@l [@mg @`eM,X@C?@1mIXe @3G&@ @.g@[p@gi]Yx @"\@\4@m\!@ : @ E_@(tj @Sr4J @8m<@uj@;q @ڜ/@s%@9T @i@`@DR@v|T@?  @(@ޯ]5* @ש@@ubE@~>%B~9@oצ @;G.I @2u/4 @oj@%@ @/JU@_l @a @5@VMf @L!@2R充@oV@9чx= @* F6j@D Z@?  @[ MY@'+V%@Z8Z @[$H@v0@觓F @/l(8 @ʋyB@{ b#@.Bg( @4(@[ * @AҮ@wc@؁ @gp@ !B@yms@ 0S @ձ @EBw@krB2.@dcu@k @ AO@NR> @8j2 @*rq^@!@Aȸ @T#f @*9'^ @%@죫@KR> @qM&\@@N @p@, @0T @lp@C@f*ě @@|8b @R.Cҍ@h @oIaf@@*׀R@܌<|@6` @F>x @ż @Xܳ @@Z@0-@i2U@Cb*5@% @"c@7@~C\@G6@Kw2Q @3Lm @ ^@xw @l5|@H(@X{Y<@ o1 @> v @}]4@ C@d@mXf @1b@tw@+8r_@D|5@.0 @Y#} @Q-"C @<;*x@.u;@n-@-ď @M4)@GA+ @*m@c4<@#Q@} ۪K@$K#@p3 @0 @6X @L/@/ @0HK@.u;@vD @ J@ɛ @[< @609@?W @+j@]^ @;(A @.ڈ@e.E@Hܼ@@(?#' @2KLa@t¿;@dK'Ȟ@[n @뙟 @sk-'5 @ @@ts/@mw@"@<7@f녇 @1 @3iSu\ @] @]H @G@6H@{V@L.V@~@թ @$@0' @aL¶@jt#8@,V @Mt" @`*@* K@Q50}@@~@c@lON@8\@<ޮ @كc@0! @ֶr@\@s(K@ZU @ @@l@v/Q@ +@s/L @@dbӒ@yms@t  @nX H @b @ż @?|b@p]ܦ@D@߃.1@4u& @y@ @HV@( @4@ҍ b @?Na@9@oWn@[z4@R @+!@w]@Nf?@: @ HE @K6J@I@a|w@I/Ű @]TA @ăJ @: @l@a@z?h@XЍ@4O @qP@OΛ@ݪ@ @j־%E@6mg @N4?|SQi@aA @ }@Ӹ71@s01\@܇ @V{}RZ @#/kb @;˄ @ @br@pf0 @Spa @4@[@j D@m4( @ ;>@sw@T @+?"B=?c[?A;@f @P4` @c? @˻@@sڮ+M@A; @gISͯ @&@:vP@ Mw@ڏ@r~@| Vju @sw@1ᇄ @\^o)@ 081@dK'Ȟ@߃|u@Gs?'@ԄH @UX@7A@t,@ub@V@$Ѓ @@х, @qM&\@KT@rA @=ˎ @*ç@љj@2[@f^V*@1@ @hD@F Uů@}W3 @~~(@hx @+Y`.@u @ @:}k7@%\M@8c=ZA@!@";&%@5^ @y% @Ѫt@u1r< @ S @ZD @@|ku@k@L&}k @O9q@n @SW! @?x @TI~ @w ^\@4lJhD@X= @ o@CF@/VO@Dlz @zx-@FzQ_@ca@, @7 @ם?H(@w9@{@Ez6 @w@`@ /wm@J&O@{G 1@Ge @淞׎h @b@!{sn}@cjɰ@Wo@?v@O^M @ . G@Μ?@)( @@Ӻ  @I`U+@?k @Oyܞ?@L6y% @ @' @ cH@@tV?!vn@Qc+ @ 7tC@_( @KMɃ@ٍ, @`>N4@Jub@9"@ O! @\NSd@\e>v?'@ɽ @ -h @\@խS@ 1@"2@[p@R ]%@@aę @Nx N} @c`x @PU?@cjɰ@e^@{F|o @W*bm@ E-n@Xc{@{;ӕ@20 @v0@ߨp_b @߲T(@CH@sX~* @MbXI @-.D=3 @WC=ؽ@dF F@?* F6j@M" @!P(U @ª0ls@i>@^kJ P@i!\\ @O` @1^@ :8@3F@n]{Z@@XvMx@pZw @e@3D@ @yP@>[{[@eN@cN @ːt @ǟ&@EF$a@QI&@ϕ@_{v @-@t>@˃OΫ @?+z @â} @3@v;V@hX?YY?Ԩ,@xI@@M @-S]@+t @I7|@}]4@eD@( @KP@&Z?˭Z@ Z+L@ZvNk@l@6MDd @]-I @oGH@@3?xeeee͠AL_kev_Hist(\Mb`????@ AAAB4B4BhB$B0BBBAA0AA0AA@@@@@@@@????@?????@@@@?@?@?@@@?@??@@@@?@@@@@@?@@?@@@@@@??@?@@@@?@@?@?@?@@@@?@@@??@@@?@@@@@@@@@@?@?@@@@?@@@@@@@@?@@@@?@??@???????@???????@?@?@@??@@?@?@????@????????@????@????@????@???????@?@??????@@@@??@@@@??????????????????@?@?????????@@???????????@?@@??@?@@??@??@?@????@@@?@@???@????@???@?@?????????@@@?@@?@?@@??@???????@??@??@?@@@@@@@@?@???@@???????@????@?@@@???@@?@@?@@@@@@??@@?@@@@@??@@@@???@@????@@?@?@?????@@?@?@@???@???@???@@@@?@@?@??@@@?@????@@?@@@@@?@?@???@@?@@?@@??@@@@?@?@@@@@?@@@?@@@@@@@@@?@@?@@@@@?@@@@@@?@@@@@@??@@@?@@@@@@@?@@@@@@@@@@@@@@@@@?@@@A@@@@?@@@@@@@@@@@@@@@@@@@@@@@@@@@@@?@@@@@@@@@@A@@@@@@@?@@@@@@@?@@@A@@@@@@AA@@@@@@@@@AA?@@@@AA@A@@@@A@@@A@@@@@AA A@@@@@@@ A@@@A@@@AA@@@A@@@AA@@@ AA@@@@pAAA@@@A@0A@@0A0A@@A A@A@@ A@ApA@A@A@A@@pAA AA@AA@0A0A`AA@A@@0APA@@0AA@A@ AA A@AAAA AA`AA0AA0A@A A A0A@A0A@@0AA@@A@ A@ AA0AA A@A@@A@@0A@@@@0AA@@A@@A@0A@AA`A@@A@@A@@PAA@A@PA@A@@PA`A`A0AA@APA@0A A A@@A@@@@A@@0A0A@0A A@@A@AAAA A@ A@@0A A@0AA@@@@@@A@@@A A@ A@@@@@@@@@@@A@@@@@@AA@@A@A@@@A@@A@@ A@@A@A@@@@@@@@@@@@@@A@@@@@@@@@A@@@@@@@@@@@A@A@@?@@@@@@@@@@@@@@@@@@?@@???@@@@@?@?@@@@@@?@?@@@@????@?@?@?@@??@@????????????@??@????????@???@????????@???@?????????@p?eeee͠Ni_kev_Hist(\Mb`????????@@@@@@@?@@??@?????@?????????????????????????????????????????@????@@????????????@?????????????@@????????@??????@@@@????????????@????????@?????????????@???@????@@??????????@??@???@???@??@??@?@@@????@?????????@@@??@??@@?????@???@??@@@@?@@???@@@?@@??@@@@@@?@@?@??@@@@?@??????@@@@@@@?@@@??@@@@????????@@@@?@@@@@?@@?@@@@@?@@@@@??@@@@@???@@@@@@@@@@@@@??@@@@@@@@@@@@?@?@@@@@@@@@@@@@?@@?@@@@?@@@?@@@@@@@@?@@@@@@@@?@@@@@@@@@?@@@?@@@@@@@@@@@@?@@@@@@A@@@@@@@@??@@@@ A@@@@@@@@ A@@@@@A@@@@ A@A@@@@@@@@0A@ A AAA0AA AA@@`A@ AA0A@@AAPA@A ApA@A A`A@A`A`A0AA@A ApAA0AA@APA A AAPAA@AAAAAAAAAAAABAB B,BBPB@BABB$BAAA4BBADB0BBDB(BBBB0BAB,BA$BAA$BAAABAAAAAAAA@AA A`A ApA`ApA@@PA@@@@AA@ A@@@@@??@@@?@?????@s?eeee͠Ni2_kev_Hist(\Mb`????????????????????????@??????????????????????????????????????????????@??@?@@??@??????????@????????????@?????????????@??@@??@@???@????????@???????????@?????@?@@???@???????????@???????????@@??@??@????@@??@??????@?@@??@?@??@?@??@@@?@?@???@@????@?@@@@@??????@@@?@@@??@@?@@@@@?@@@@@?@@?@@@@?@@?@??@@@@@@@@@@?@?@@@@@@@@@?@@@@@?@@@?@@@@@?@@?@@@@@??@@??@@?@@@@@?@?@@?@@@@@?@@@@@?@@@@@@@@@@@@@@@@?@@@@@??@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@A A@@?@@@@@@??@@@@?@@A@@@A@@ A@@@ A@@@A@@`AA@A0A@ApA AAA@@A`A AApA@A@@AAAA@PA`A@@APAA@AA@A AAApApAAAAAAAA@AApAAAAAAAAAAAAABAAAAAAAAABAA BBAAA?BM?cv9?2wh~?y?tY?O N?>^?*?D9?:Ib?JX?C3h?1?G:D;?K_]?bT?HTݢ?9U0e? 3=?I3w ?-QF&-?=?hO?/Cr?,b?I&?U?t;? 2?'-RA? sc? j?X?c?o ]? 7`?P523?U?nTx??_ {?R?(ԧ?R@%?G?fbvvj?QLP?5?)?4Y?wNG??_0V:? ]?|?įw?*$7?0c?G ?f2-?N uP?!Xs?? D?nMf;?7r=?L?w8i"?TwE?zI'h?n%#?v8??]?F3`G?H>?Y]b?0?Y??t`?o94?( D=?2nb?C92??Fd?ՕoC ?uE""?oܐI?e.vq? `?Ӣ?VQ?IBK?lC?cw:Rp?Wѝ?ep?WM?dq-?&F`?˘n?PB?&i,?5=?sz? ̛E?BQ[?pB?aq?"T?r ,?k?zӋ&?̓C @ U@Ph@n@~@* @$SIN@+>P@^J}@!o?@I0@:_|@q@@Cyl@@/3@n<>@;n@YNXN@@@ҏ @ v @P쪺 @pig @WCU@zS@Rͪ@d>l@6lg@rMU@Sg@pUb<<@x2@蚽pTG@;kt@Qݶ@ |@jKZ @nT"@<Fl#@?-$@P1ڴ&@jYGN(@*@WDV_,@1k/@|)1@02@>+f4@7~D6@ k7T8@=:@x\(M=@O:T?@r *@@a5 XA@!G¿CB@8 B@Bi:8&C@ThgIC@y`B@Wڂ\A@1*@@w?@jRJ(*<@UoN9@/B5@|vgl2@@eۏ/@b*@*%@ ʻ @7@?t)@׋O2@jgZH@W\#@k}?Աz?rO?{zu?gm?34B&?F?Curve fit with data subrange: Ni_kev_Hist[1993,2659] fit_Ni_kev_Hist= GaussTail(W_coef,x) W_coef={1.5031,-5.1293,38.323,4.9693,0.04099,0.029264} V_chisq= 336.638;V_npnts= 424;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1993;V_endRow= 2659; W_sigma={0.432,1.88,1.11,0.00185,0.00142,0.00312} Coefficient values one standard deviation w_0 =1.5031 0.432 w_1 =-5.1293 1.88 w_2 =38.323 1.11 w_3 =4.9693 0.00185 w_4 =0.04099 0.00142 w_5 =0.029264 0.00312 @O?83j9j͠weight_ni1(\Mb`?????????׳???@????????????????????????????????????????????????????????????@????????????????????????????????????????????׳??????????????????????????????????????????????׳???????????????????????????????????????????????׳???????׳?????????????׳?׳???@????׳??׳???׳?׳???????????׳???????????׳?׳??@?׳??????׳??????????׳???@@?@??׳??׳??@?????׳??????׳????@׳??׳?׳?@@׳??????׳?׳?׳??@??????׳???@׳?׳?q@׳??׳???@׳??@׳??׳?@@??????@׳??׳???׳?@q@׳???@?׳?q@?׳?q@@@׳?׳?@׳???@@@?@@@@?@׳??????@q@׳?bJ@@׳?׳?q@׳?bJ@@S)@@@@5@׳?S)@q@bJ@@5@S)@׳?q@q@@@S)@CT@?bJ@bJ@5@5@CT@@@bJ@@@׳?Qwo@@bJ@@@CT@@׳]@@@Zf@׳]@bJ@w@׳]@bJ@Qwo@׳]@Qwo@Qwo@CT@@׳]@bJ@w@5@CT@@׳]@Zf@bJ@bJ@@Zf@qĜ@׳]@|@@++@@qĜ@ES@ +@F@qĜ@ES@F@uӷ@tw@@P@@uӷ@Z@׳@@@@e@@@oE@@B@F@@C@uӷ@@:b@uӷ@@uӷ@C@ES@@@qĜ@e@++@F@e@S@oE@ +@@++@oE@{@F@oE@@tw@tw@׳]@@bJ@Qwo@bJ@w@Qwo@w@@q@Zf@@@׳?5@@@?bJ@?q@׳?@??׳?????????[hkkpw(\????jv>?@(B\/BQ!"NOOQA&Rz kz kͩaexpwave(\aMbp????K7AI],4J?;օ$/J?eD)J?SNbm$J?LI J?z/J?6bJ?qp J?6p J? I)aJ?j I?@I?hҥiI?OI?pI?P|I?,2/I?(bI?G$טI?R=AOI?+V|I?%I?|uxI?/3I?-XI?g냫I?XL[iI?BF(I?bDI? VI?pzkI?R.I?zI?VI?~I?DF{I?9vI?슌xpI?k,kI?%6ID?QJ/D?8C?))C?B C?[C?pgRC?xGC? }C?C?knC?S"]C?HLC?=C?tF.C?cdQ C?D0C?xC?iuiC?jeC?uaC?{7 ]C?YC?ihUC?LQC? NC?SJC?i!FC?N/BC?s>>C?1ĄM:C?ؠ]6C?Wn2C?G.C?j*C?%&C?w|"C?TC?ܑC?"ZPC?C?&4-C?<YF C?lJ`C?&{C?IY B?9B?淟 B?B? B?_4,B?D݁LB?(8mB?VT3B?*3B?bB?qB?BB?+DB?}kB?oB? B? e B?7P B?O{8B?G8cB?{B?&漪B?lٚB?TB?`\HB?.ixB?S>B?5AړB?(3? B?uj@B?\tB?;qJB?NJހB?Ox}B? KyB?󣻾uB?9XqB?͸mB?)/jB?MjjfB?{bB?kN^B?#6. [B?6/^WB?&&SB? OB?t5LB?&]HB?S!DB?ІfW@B?ݩ%=B?i9B?7î5B?:n1B?3\:.B? l*B? 3^&B?6#B?'6\B?O2sB?'sB?:}5=B?B?!{ B?ƑF% B?sB?c[B? A?xdA?A?j A?c\A?dhGtA?kEA?}ZA?vZ(A?_o9A? `A?A?ujA?!OkA?hKA?JRY"A?̛<~A?GۿA?B|9A?NA?KA? PWA?jA?aRA??{A?YNޢA?8غBA?#^A?"3 A?"#rA?Q|ؐA?N];@A?)aA?JGDA?53zA?c!>~A?XTP{A?j'wA?x(tA?]tpA?>mA?|riA?F>eA?1sRbA?u"d^A?hz5[A? tWA?aTA?mlPA?MA?Ǫ2MxIA?|SEA?neBA?k>A?>T;A?iz7A?VPG4A?-ϭ0A?2<-A?Z)A?o5&A?dWW"A?N0A?aA?)b.A?|A?jSU/A?r A?3 &3 A?~ A?79A?B:@?2XC@?N4-@?vQO@?,@?5^@?t8@?q@? @?j@?FSi@?#@?*@?g/@? F@?S08@?t8Oe@?Al@?@?@?S@?@?xҳ@?5g@?-z@?{%#@?۴d)@?-/ @?jY@?Rs@?qh??/rTb??O[??ƞU|U??0O??\j\H??AB??kע;??>v5??9&/??߰(??+O"??3;??pޑ??Dq4??9I ??v~??^r%>?y×>?A w>?5!>?y>?wr'{>?2)>?>?]&>?,l=>?`7>?M>?,@\>?gUV>?\9Hͣ>?:>? C>? s>?T齊>?FF}>?:[=~>?J!w>? q>?',ႇk>?UCMe>?(J_>?uX>?)R>?AqL>?|8=F>? @>?P*9>?r3>?~Fz->?ŒPL'>?Is !>?IDo>?Q@>?P;0>?n{>?w%U>?(E1=? =??=?Ύ=?H=?c=??8F^o=?pS=?ʺ8=?nDS=?C%=?s%6=?F+ڲ=?wƬ=?Ⲧ=?͉=?<8=?|=?§r=?e=?1Y=?ظEO|=?x)Ev=?=p=?&7j=?T1d=?H=-^=?_~"*X=?7B(R=?-Ɯ'L=?1(F=?C?_*@=?bI -:=?1FN14=?66.=?z=(=?pE"=?(1N=?X=?gd=?cq =?}l=?2YXe2;?,,;?\{C';?Ǵ!;?S&;?;?J't;?Z ;?=;?xXr;?̘>:?ؚEe:?dn:?v|Ǹ\:?#:?;X:?[:? (Y:? d:?o!^:?2N:?+7̙g:?:?>u:?*6:?~:?|ؗ:?Oܴ垝:?,:?{E:?< ֠I:?ڇ:?wk:?a|:?0w:?C'r:?"l:?(OETg:?'a:?C~܅\:?Q W:?._Q:?3֊XL:?+OF:?-A:?&5<:?-+86:?[Ycx1:?T,:?pl&:?A}e!:?#J :?Eݳ:?s\:?N'K :?in::?G(A]:?[s_ 9?]9?g9?#B9?Ⱥ9?=ϋI|9?֘3/9?9? Mx9?M]Q9?OW 9?,f9?Wt|9?@&79?P 9?Cql9?Uo9?ĵf/9?[o9?9?5Vnt9?@89?&dX%9?ySÂ9?:%}9?'?Rx9?ߣks9?1Bm9?rh9?V}c9?IJ^9?gFY9? BNS9?wN9?E'I9?U]D9?=1?9?g};:9?49?@|/9?W*9?d%9?V> 9?m19?ud:9?H9?P 9?jEN9?q9?FS8?58?o8?ym8?YDn8?Cۄ8?O~M8?J!!8?T,8?o8?k[8?A]H8?68?b%8?[ 8?08?2]8?H g8?+8?l֛8?(h̖8?gÑ8?Hv8?68?.,8?fh}8?sx8?Zgs8?n8?L瀣i8?d8?Ų_8? +_TZ8?ZyU8?"ާP8?#XYK8?F8?5ZA8?.<8?FM78?#Ш28?Xg@-8?Ww(8?$8?X8?1'8?m 88?-MI8?DD\ 8? p8?vw͓8?\Qz7? bb7?AK7?^67?!7?7?537?P7?'n7?E7?F7?Ok7?x 7?q7?5`[77?EC\7?ku*7?n7?zФ7?W[7?G[#7?끎N7?dgz7?f>7?yՇ7?҃7?=03~7?vdy7?x;t7?Bo7?j7?A9p1f7?ݲ-#ga7?xp-ѝ\7?_zW7?IS7?jqGN7?SI7?wD7? q?7?D7;7?vv67?*17?,R`,7?n7(7?-z#7?97?֦7?ZŌ(G7?FHl7?=rI 7?$7?Gf7?h$6?><6?")KG6?"P6?5aK6?в<16?;#6?s!6?5##6?8ʚv6?W6?2- 6?&܄t6?]J6? "6?d\{6?>Բ6?yM>/6?W6?o6?3 4D6?k6?6?Ca6?>76?!$6?'26?6?PuP{6?m=v6?'[2r6?;3ڡm6? S=h6?kVd6?E_6?Y,[6?IV6?3\R6?ttM6?,WH6?mSD6?ښ?6?6;6?'duʩ66?826?N`e-6?!)6?!ո~$6?4gIG6?Nn6?P,6?Eb6? 6?7Y 6?656?\ޟU6?}4?ט1F4?q4?Jۉ4? -4?{Ms4?4A}4?CB4y4?pCt4?ú.p4?R~l4?,Ph4?&#d4?Hl_4?Rƞ[4?AW4?ʓuS4?ULO4?W#K4?fgF4?jB4?rE>4?<:4? f64?sC24?l!.4?Gg)4?Ц%4?ٓ!4?j4? &t4?7d4?ъG4?!+ 4?Pz 4?z4?T,-4?Zy3?Vt3?8IR3?$3?l3?]]X3?5j E3?ig23?, 3?m3?!3?x3?A3?[-3?;ڄ3?M3?ސW3?c3?T/]+3?.F3?S3?63?t 3?{3?_lw3?8 s3?q3?.(o3?! n3?g5m3?ʖGn3?hEo3?]q{3?tw3?Lxs3?ƨS-}o3?rk3?a؈g3?FVc3?"aŗ_3?V)s[3?1W3?7@S3?]O3?aQJK3?a^G3?YݑC3??3?<]<3?& 83?zA#43?s-e503?8G,3?uZ(3?(n$3?QS 3?TkV3?ey3??3?j3? 3?s2?Ҧe2?젎2?d2?HM2?Q 2?*092?вe2?2?Ԏ62?$2?s,2?)RYP2?}-2?Zڒ2?[2?G\2?oN2?צj2?=$~2?hvRz2?#5'w2?Ӵ9`s2?![o2?pk2?*]R h2?'Hd2?`2?u(\2?GɤX2?|o">U2?gdy8}Q2?[2M2?I2?lHt?F2?g,B2?swf>2?J ;2?߭i(M72?r ~32?^4̘/2?6 u,2?Mg(2?fy$2?+䮟 2?cooB2?>.32?ZOI2?y $2?q2?Lv 2?l 2?Q#]2?[n1?1?bOO1?,1?˅ 1?=JEH1?~œ1?1?G1?eM1?X_;1?)yN1?v1?$9J31?D"R[1?u1?h1?ro1?Bͽ1?K+1?kk?1?1?bJ1?1?V$^} 1?62'p1?,uӠ1?=71?~1?ԺS31?ξΎh1?eώ1?o {71? 1?Y 1?F4Ycs1?9(|1?0@Iy1?!\u1?"r1?Fn1?: j1?O*ng1?c1?j N`1?,2\1?\?2Y1? U1?ysR1?@"N1?gK1?/hwG1?ÒC1?e@1?CJ<1?|TU91?D51?QcH21?⡦.1?k$?+1?<['1?iJ8$1?P 1? P41?װf1?431?w1?%&41?[ 1?mЖ91?f1?^SA1?0?WfK0?00?T=X0?=0?h0?l~0?Nx{0?0?+0?f0?t]0?t70?X=0?S0?p?U;0?fY`s0?0~90?ƕ0?e(0?׉50?jfN0?d0?'x0?l 0?[.E0?Em;0?)CGӠ0?Fk0?Ah0?s0?۩90?L]ԏ0?2q0?;7y 0?rK+0?`GI0?+:~0?71{0?9'x0?vt0?T4jq0?swv n0?hj0? Sg0?:q]c0?_`0?iHB]0?bWtY0?;V0?e3G7S0?i^O0?ֈL0?i]2I0?Wڼ"E0?(NB0?8)4?0?;0?80?r;50?icc10?"酪.0?L;I+0?$1'0?4߇{$0?9As]!0?L-0?(j0?piw0?n,0?#m0?iq 0?P#N 0??=0?0?$p?v0? A_/?:[/?&H/?7/?q7/?,'/? e+/?/?%/?4.S/?{s$/?+祲/?Xް(/?C>ͬ/? Ӕ>2/??/?4qA/?ʩʋ/?vGBU/?gR~/? 2nx/?Ügq/?L$8mk/?e/?k^/?8xdEX/?Q/?+GqK/?`1 E/?j>/?z<8/?01/?Hu+/?)0h%/?c,/?m?U/?JA/?zoM /?5H@/?p.?{%.?E7.?4.? ֮.?^zt9.?o.?E.??G.?={.?.?><>a.?pA.?(ά.?TO.?:8@.?l/U..?Xl.? t.?7v3.?;?.?~4z.?wt.?-Y;n.?>h.?#Aqa.?zV1[.?L6XU.?Rځ"O.?mgH.?L"B.?9n<.?_>bX6.?)0.?+).?zm#.?ˈ.? s;x.?^1O.?Fj' .? wV.?-?{͢-?8#-?3gs-?蔑+S-?04-?F.w-?-?5-?-?-? -?^~-?&ci-?=rU-?^:(C-?>1-?R/+?N)+?Ь5$+?+͏+?N-+?iMgv+?Oh +?6!a+?\+?9Q*?q*?,nE*?4;*?d(>*?_7*?xf;*?*?%=*?*?dC*?3*?"N*?A/յ*??[]*?Х*??q*?ؽ*?{Ȥ:*?*?Jw,*9*?|v3*?KamAo.*?X%)*?)"#*?3X7^*?2Ke*?!**? W*?? *?vL *?7Y)?Bn)?xk@)? A*f)?"*)?;@)?Pl|)?w*0)?e)?M Hr)?&S)?y͊ )?pW)6ƾ)?k)?21<)? )?f&­)?v)?b6)?⻋)?8^)?I})?l_'B)?-i)?Lw9)?Pݕz)?ɽ^u)?Y(p)?C8s1j)?AKe)?`)?TZ[)?S-8)V)?%bP)?K)?!lF)??pA)?vD<)?Vh7)?S}1)?`:,)?Yݠ')?z")?͸LU)?21)?E )? )?Xs)?,Ъ)?%݋(?m(?(=Q(?e=P5(?(?O(?q8,(?S(?c(?l(?(?+9u|(? j(?X(?: OH(?c8(?p*(?|(?H(?(?y(?~*(?-(?z (?YҺ݄(?ܽ(?"z(?مu(?sp(?Lk(?2f(?F]a(? \(?y-W(?XR(??i=M(?H(?1C(?&|>(?bIn9(?95(?v 0(?&~ +(?Qͺ-&(?8F.%?&sb%?=/oK%?8dۨ%?VBl%?5) %?-˷%?oN$%?̸%?3N%?o%?h{%?US%?{U$Ԭ|%?bFx%?As%?i$D}o%?k%?N Ccf%?Ub%?ww]%?LY%?_юe6U%?nr=cP%?^E{L%?9& H%?иC%?Hi?%?ċ$;%?W6%?RQ_2%?p.%?s)%? Z]%%?SSi# !%?ϵ%?.i^c%?%?q#%?GEYq %?}q"%?j%?E$?/o;$?H$?G3$?`~[$?$?t$?~$?n=$?V$?%H&$?n=p$?ZL.$?`RG$?f$?R`ck$?f/@,$?,4)$?t$?9 t$?a8$? a$?(à$?3$?`R$?ˬ $?o$?r$?1z$?衦MF$?MʸE$?*z$?/ɯv$?=ZUr$?|On$?. j$?j e$?]a$?tW]$?5N˘nY$?u̾!DU$?jQ$?"urL$?DH$?9 ˢD$? |@$?A*:W<$?C28$?QFe4$?^=/$?AZF+$?L''$?A#$??ri$? J$?u-$?6$?8'$?] $?&$?\$?tR#?Pvt#?Xq]#?{/BG#?a21#?5f#?n #?K#? #?UB۲#?!P[#?)س#?~|*#?Q#?I}4M#?~#?s r#?aU8h#?׃^#?dU#? M#?Y~g[F#?V=_?#?%H`:#?n5#?_@1#?!-.#?C=I,#? *#?,*#?W*#?[oBU+#?ګ$-}#?%/y#?P53u#?Oiw7q#?&Dxv1"?+M-"?L*"?|[L&"?8-""?rH"?Pa)"?1t"?>0 "?-4Ӫ "?14h Z "?+"?m|"?QtHF"?&!?@!? t(:!?eЌ!?&:!?ud4!?!?Nu:!?&yV7!?[63!?RJ0!?d,!?8A)!?u%`%!?ws0;"!?!D4ƹ!? > 8!?V !?-A8!?= /!?: !?vy/ !?..B@!?5D !?K׋H ?3 ?hS ? FR ?ta ?K ?lMr ?0 ?+ ?00 ?2 ?( ?4j ?C ?& ?2\eIa ?Do3 ?#0 ?8 ?l&ݤ ?NHԃ7 ?jʶ ?0^ ? ?5! ?QH ?܈" ?OGM ?5' ?'~ ?hz ?Q۲ ?0M ? ?4 ?bL(# ?++ ?x_ ?=| ?pRy ?!?v ?]}er ?FZo ?a %l ?Vh ?9b\le ?n=b ?Jx^ ?\[ ?SX ?DŽȪT ?RQ ?EKM ?KBJ ?I]tOG ?poTC ?@ ? !R= ?# 9 ?,_ꦬ6 ?"Z3 ?m' 0 ?J, ?AZi) ?u& ?@I" ?=~ ?g*1 ?݆՚ ?  ?@O ? ?:c) ?Bi;?鯞4?pϥE;.?.*'?o?]x!?̓?E筺?z]?`z5?0?LN?A$C?7?KK?oa??{QNT?plf?@ȵ?6*uh?Zl?:Cѵ?Z9? @?k+?j{?TAo?9,?~)y? ?nj}?]k,w?l,Fp?j?Czd?JCB^? X?_h>Q?ABK?kE?6i9??9?2??<6\^?UQ?o?et̽? Ƞ? *?UXj?e?5^?X ??`?a?m?2H|?O?8=%?B;?&?u`l?mE?{6͢?I? zݶ?e ?wG?A>?oEa?9?ת`?R{Ѝ? [F?+!? J|?V?vv?imp?>Nj?E&d?._?W?_Y?S?7kM?G?i>/B?)f<?MB,6?5L0?X'+?7N%?Yiۋ?sh?&!H ?έI?Sj?2[??@?ioW? ɝ?O?\ =.?w?9^9?#!w?E|\???4P?rK?:?yU?ܤ}-E?ӱ?)_?%5I?G3?/Z?~C٨W?C?)3?jpz?+ͭnt?M1o?Dei?ac?sx[^?1mMX?(S?~M? B'2G?;scB?`<?<>c;7?Ǖ1?92),?^K`ڇ&?& ?K'1k?w??&+S?E ? ??rk?:}w0??l%?JJd? z?Ɖg?Хy?Pl?S!?>N鱤?)?u?cG5?9oֵ?o2E?bpϧ?LT{Z?ww{?s?'>O?Б?0o"?o*?ـG|?v?W}[pq?nS3l?R{f?f5a?k^[?YOiV?bQ?B|K?e@F?i@?rS5;?~ 6?90?f,yf+?f &?-%ӗ ?'LW??;FR?Q ? ?9?y|V?\ D?sF?d?GNEk?½?0P|? 1?9r? Ş?|V?r4?`^ʻ?6j?6+B?|W?IG?ÔT}?j\>?I'?$TfÑ?r ]?9fL?=E?_S|? w?;=kr?5m?bh?Nb?(]?.nIiX?™9S?/D N?) H?:C?>?+W9?S.4?} /?8b5N)?E $?Ӑ?bl+l?H?3&?B ?b??M?'?yl?1Q?.\7?]?=?Xj')?d ?*!?-?wTD?0d?v?@z?[k?ZsOH\?PN?+)A?-ڢR6?+?."?6?%*? ?)D?^}?{w?`!r?Uvm?+h?Hԓ8c?x4 ^?5/Y?Ë́U?ܮSP?'K?6fF?R,A?t%<?nD/7?4Vҏ:2?Ho}F-?_1oS(?da#?r>\p?]'W?PMT?"OU?JX ?\?̮c?7l?WHv ?Z$?F,=?.xW?Wr?VT?v>ǫ?l@?.%?N?*?,NL?d={o?"d&?}0?Q9ޭ???HRD-?FV?G? D?t u?א?eWV7? ,2?ea?I+ }?t/+x?1s? &o?ԦZj? ise?RG`?\[?T3W?/lR?,dM?!aH?yD?5x}Y??/N$:?a5?H]1?`TU,? {'?"?x{?!wa?z"[?oc&?5 ?;Yo}?!%?7z?3\?yb?u?c5C?8?ZM?$3?e`?{?xr,?:D?+t ?\@-?D|u?t[x޶?ڰ7?G-;?YN?wok,J?Om?~[?@4e?[2qő?#&?ިbˆ?X?_O?$OҴz?$Mv?ͽq?e^l?mRh?3Żc?ka&_?rjZ?jU?A>kQ?]53L?~IH?JC?r*??d:?6?1?,?Ln(?$o#?O]?`F?LV@O?B?ǺE ?*3\i?Ŕ>?4μ?; ;?E?<??s׸lA?)?I? :?ՖU??5MIe?|lNx?!x?t?%~?T??<8?FKȪ?-X?'~&?bap|?8\?5??ٽ8?΋?{we?"/?͕~?2S/z?%=u?|eq?iJm?p-ih?m'?"?zWA?֬mC?<|?cn?KBP ?k ?v?IEe?2c?Ꮿ?<<? -7?9//?cY?,^?&\z?{Fq??:J?i :?D?Kuփ?KsC?!? ZIŷ?`ق?ګJ?͹=?ibӦ?HS?Ρ_? '?KPV?a|?O? _M?H@?+<?в(|?Éyx?9VPt?j p? k?mI_Pg?ICEc?_i_?=[?7W?]R?x$N?f'tJ?WpF?otIB?(#>?N9?5?2A1?7ΐM-?s)?$+S%?8_3!?yk?3O?> ?W犞?K ?NRK?wtdl?6TS?Z;?xƸ#??@Ͱ1?=~?(z?"]v?. r?gn?$ *j?4zg??@ c?L0_?9[ q[?; $W?Tt.S?BC9O?EK?}RG?*h3`C?n??z:};?k7?(ߞ3?ڎ/? +?P V'?,o#?v3U??`'+?B?4Z?Y[s ?h ? ?y[X?p?T?pT?=38?!K W?Nw?1C?aN^?S?t?<$?EH?#gn?v?-L??ڹ ?b6?2`?G]_֋?q?|(m?3[?{%@?|.o?3??2ƗϘ??3?>f?ř?xB΅??v9~?d1cpz?!v?.QYr?}o?rgSk?Og?gc?dw`?#B\?VX?,T?vc'hP?ac%|>M?ЦTI?qE?QRB?QwF>?밪`:?*tb 6?L}3?؈aZ/?qX+?jb'?nn1$?={ ?PЯ!??um[?ֱG?n ?;B ?"?o?{0?T? ?z>%?* Tx?Ю*?!W ?Nv?W0? 2#?~Lz??S ,?\?y=x?;?gL?@`?ۇCR?D?$Mǟ?uko?I)Ϯ?#<1? B?k?"Y?g½?$aL"?t?/;L?[V??ر&?~?6':?y=e|?nx?=u?jq?n?Xkj?=Sf?ec?ݮtc_?PG\?X?,U?ʹ0Q?&GeN?}iJ?NF?,HRvC?>ד??qe<?=vB8?14;W5?1?ZL.?,I*?ijD'?Ͷ#?^^? ?oս?v\=?;?SY=?ED޾?Ŗ@ ?Z?f(G?Y?,@P?֡e?=2\?<?c.j?cQs?\&|? ?SwQ?~K]c?}d?c5??y?P?ky?Bo?U>?K/?!?#F-?@ 9G?6ڴ?Rlo?hdP?l?}0?8ȣ?=*`?e|?p&?/,?`zƒ?h+Xb?a:w?GG?68?Lց?u~?Wݼx{?9w? YvVt?_p?p渚m?H=j?{f?dc? e*`?"\?dN4BwY?,kV?E7CR?JnO?NL?H?\{lE?{B?PB>?lPp;?t8?`}4?Fz1?).?֤*?|X'?y8;$?y ?U?ģ(S??y`ż?N~4r?P( ?` ?a:?7 yN?Tx?Z?"I?oȾ?ChH?F xʱ?QmM?۬Ѥ?3JIUW?2 fFޗ?cf?k "?J {?3oH~?2֔w?Wi#q?yqj?qxlEd?G>A]?xflW?\:Q?!=J?\>0D?D=?z#d7?Q@1?> **?<$?d?f}?c ?ga ?ᤈi?4=?ν?J`?u% ?A2ʶ?٘)c?C ?-X? Tr?Vq$?0V׾?鋌?B?3?H\?D4l?ޓ_U'??}lp?j`?e ?4y?Is?Oim?Iy.g?`?nZ?8T? PN?-kjH?;2kA?ּ;?:5?p X/?_*)?ur"?Z ?О?B ?gmW ?|1? ?C& ?[ ?H? ?кT. ?^e ?2vG ?y+ ?p ?`? ? > ?Pƺ ?*i ?a⛮ ?`jnO ??u ?>Dd ?y: U ?$rF ?r9 ?>, ?KLr"~ ?Rmx ?RTr ?T<l ?Oyf ?3._ ?FY ?ytS ?"4!pM ?OG ?A ?lS; ?E5 ?a0 ?? * ?$ ?v ?3y% ?Y0 ?7&= ?;J ?6Y ?i ?{ ? ?e ?W4Z ?2 ?j ?} ?zkI ?CJ1 ?D'M ?/ j ?W ?^ ?|>fʧ ?X ?~ ?ɟ4 ?0NZ ?0: ?=݈ǩ ?ǖ3~ ?=Ix ?,Z)s ?-Vm ?;Մg ?C ?t7!9 ?pZ3 ?+- ?k' ?F " ?mvI ? Ɲ@ ? `e8 ?] ?įK ?F. ?@ ? ?` ?7 ?C ?Z[< ?@| ?4BZ ?:eb# ?&r ? ?+x ?qG)g ?˭d ?o ?93f ?ex ?BVH ?Xmo ?zʍ ?Ep& ?y ?I| ?/?Aw ?'ҡq ?Ҍl ?mff ?$ls` ?_z /[ ?Ҭ9U ?qiO ?fJ ?D ?:? ?9 ?4 ?i>. ?} ( ?KQb# ? ?F ? ~ ?q/0 ?=g ?y ?yb ?h ?}Xj ?"& ?y ? ? ?s ?' ? K ?f5 ? f ?ڔ@ ?ǙU ?JjF ?C ?. ?[ ?Mh#DD ?mљ ?^ ?싰 ?ik~ ?XF_ ?~ ?)645y ?Ôs ?z,{_n ?8Hh ?O0c ?4'^ ?ESX ?^\S ?kM ?QH ?4C ?xJ~= ?C^;u8 ?g3 ?- ?Q ^( ?,# ?D^g ?PDQP ?ڛu% ? ?lCM ?+R ?y ?u9S ?җ ? ?c ? ?[JFV ?ɼ} ? 83 ?(# ?p ?%+Z ?ܬ ?8θ ?=3h؊ ?G ?\ ?8ţ ?D: ?kF ?F ? ^e̎ ?lX ?}V ?W ?zy ?fTt ?C?xo ?ճ=;Cj ? He ?e_ ?WZ ?yU ?$ JP ?E4~K ?E ?gh@ ? ; ?c!k6 ?X9B1 ?qZE, ?_& ?6! ?-p ?m>` ?3]` ?h> ?Oh ? ?+??1']?G+?sn?"T?k;?P{$?d ?+ ?CbD?"?I?{7j?^ҷ4?f?갔?Tr?5-f?:FX[?ϰQ?B]H?@?9? n3?29#/? P+z?ܰ(u?t&p?H%k? 'uE&f?9J'a?J)\?gh=-W?1R?TC6M?d=H?s4DC?t1BM>?_9V9?e^~0a4?Cl/?.y*?ֲ%?9p: ?Ť?R??mu ?.H ?u +?9?{4-?AyoE? ^?q$תw?XI?r? ?,(?d?akh&?<G? ͥh?^C?3ஹ?{Ӵ?*m?+?xYDG?}o?j?}×?u?߷?hI?"!Mx?&?4z?Zˑ v?{Eb?b|:??9$6?61?Vu-?}Y)?$?cv ??#?MT??t~U/?y+ ?ސ? +B? ?}ɩ?^?Bt!?Oe+?sT?ڟ;:?Z?Z?p.9h? #??k?,q\?ǭ?-N۽?œ?+ ^?kQ!?,?/Y?L8n?pϑ4?$c?~×?%?6V?˶ ?L?=6L?eZa~?یRSz?["v?Cgq?zLm?-_i?5ee?T 8a?c ]?X?y^T?ݍލP?~9eL?Km=H?v>{D?b??g#;?7?pY13?l }`/?׌>+?o'?eu"?z"$?P?$\?3>?aKi? 0N ?d3?}~?JtE?(?:d??",?*?@? ?X?̭?`߸?Mִ?NͰ?b]Ŭ??!????䴶{?q7֭?OM?4?L Ԥ?^x?p?5?N?v;9|?x?Zt?.7߰p?Kԟ l?Ў h?d?{`?lL\?*X?0::T?!P?qL?ϹD I?ޞE?'$A?n3=?5IPC9?\S5?m-e1?Pw-?o/B)?u%?;P!?;?<$??Y ?_T%?> ?WX?"s?/s?-?ٰm?*Ԑ?^m?WES9&?\F?@^h?Q20)?g?d?<8?W}?~ʋ@?dg?T ?ᤈq?B`?*i ?u|k5?n`?T?QNu?D^?ɩ?ZF?&zv? ֧?_8ْ?? ?d1??%˭s?Ӟ?[i?8O|?We&Lx?D1.t?p?kl?0i?u le?a?B]?ba "Z?@`V?L:R?_1N?ko|K?\`G?a ТC?&??4)<?5nm8?HO4?g;0?ګz(?-?卆)?T%?>՟"?XOa?QB*?c?SFB? ?̵ ?S+?:Pz?B?򌘍?k?Ͻ?z"?d?[xX?:{g\ ? c?\̤?_?h?>h?&g3?uu??(w?7,?[:궈??etC?Cb?%??>\b?Rì?,%?wu?#ө?N?@¨7?%E?'~??.:M?%𒵈?Ch?w?Ѝ}?AL^z?VPv?g87s?xo? l?> زh?Q^d?aa?stl]? lDZ?1ѿYV?5?*S?9ĴO?P*yL?3JH?c.D? vA?=?a.f:?mJ6? Y3? /?N,?_(?I6G%?n>!?jAC?¤ ?gA?]?P C?+ ?Z7>@B>)>>mBX0>ue>{&#>J> >zd>->»>>2ԡ>c&>3<>z[4>mp>9HH>=K4Ӏ> `z>;s>[l~m>Omg>A`>q5Z>vS>0j`M>B=F>Hj@>q~5+:>5l3>bjc->yr{'> Sڠ >ƇA>ޒ/>5J̆ >=b+>DiF>wx>fP >>93u>5">ѳ">,~>/>n>'Ä>`G>g>3˳>4Dk>0=%>ذߛ>U>X>> F]ւ>6|>iZv>Op>Yi>5{pc>uo]>yp8W>qFYQ>ٿJ>B+D>L)g>>68>i2>x+>9B%>P>sT>e5+>$<  >$'>Du>e!>Ko>#L$M>,>L0, >̴>;7>0>᝶>'PD>"q*>rPk>RFT>IY?>5<+>^>뗾>`\>:k8>JQٌ>ŏ>!<> z>f@t> hbn>@9h>iPb>J쥖\>=ݓV>*iPP>N[J>~D>>>G>he8>/2>o.Rˢ,> Jԩ&>C >>;D>aj/>:S>|>AA>G >]P >ID3>7kG>V]>1t>6eA>:s҇>o> '>">>/_5>:"/V>*6x>1r>Kc<>'>F5 >.2>SH[>}AÅ{>oQu>To>sZ9 j>{tx:d>tp(j^>; iX>R>m{M>K6G>هLlA>~|;>qR5>ši0>xUQ&P*>/ m$>E*>>Uq>:F>8? >jX>[jU >~P>:ԕ>!:V>Q|$>dxl>)>>8pN>>`ܧ>FN:>@ڈ>Aݷ>sH1>>@?ۦ>P2>>n6>2=>>a>'R\S>Hy>t[t>ATsn>T4:h>}9c>)]>7X> ~jR>:L>/Um[A>lI<>0~6>|U0>$[+>Z%>uՒ%= >?Q>`#>mท> >qr>{B>nu>(= >7t~k>>*e>4>(Sd>J}>Fg>F>o>_qV>B] |>m>~֌>#>c>=h.>PԻ>Wg^J>xڋ>Rj>Q>{>`#v>p>hIOk>e>e@`>[>@ U> ~OP>krJ>zE>p)@>C:>Ik5>FK 0>C%N*>FU%>Ux>h>zGSJ>U>gq >H>TB 7>{R> PQ>O>}^>.N c>- >_>gi~>Ol5>M1>t>]>w8>ӵ>7FN>M>! >̠>9Ge>nZZO>Vlc>b~֋>񣥫>a>bH2<)|>~ v>ؑQq>/̘l>C/Qg>fb>H\>6BgVW>.R>[M>0S-H>rC>2v_,=>kQ8>SH3>Q胒/)>7z$>>b>a>d _x>3r$W >c6>">Z>˱I/>h>Aܠ> :G>Kq>w Z>?#C>jH->*w>tl>f)>B>| ϸ>؅>+d>1Eף>/S>Q׋>}d>qw>8"o>V;h>a>s&\>UX|>gvUw><&Rr>6#Qm>Qh>^Rc>!g?T^>k&WY> m[T>= `O>cYqeJ>YlE>Ayt@>u};>6>1>1C,>p2'>I">c>(>5>7w>9G >E5$>89>]bO>uf>.~>`t>>]I>Bz>!>$>z D>Oʑl>1>M/ʻ>>">vL:>3ta>+h>Po>ܙ>u"><^g4>p4a>`J>Tt]>;l|>fwx>g Qs>yo7n>怸i>vzd>@p#`>`Z[>ГKV>5:1Q>^DM>C?H>br{C> &>>;XU9>֚W55>@5t0>^+>/&>xC9">dD;q}>e>a>݆N>< ><- > ?t'> 7oq>^#o/>"H  >(V>RT>_3>n[D>ny>Z>:>vo>>tȧk9> G>_|>e@>`>(9=>P>8m>x' >E ki>ټȕ>32)>>Zq>b>O>~>f3z>f=;u>25p>rxNl>߂g> c>5 ^>oL.Y>{zcU>+IvVP>F?L>g=G>SC>S>>:>܈?v5>ZVT0>-RX_,>q)L#>rP>|9b<>nY>D 0>Ҿp >Ӡ(>|;>$>/鶣>$O#>0>/&>c>,->lYD>Xjd7>7w>TE>.S>8}W>>_l>>>3|>w>Y T>aL2>j¥>&dT>@>&z>S!\V>֢v>?~9>CFmІ>GpCh>~>sy>F.5u>.ϟp>wll> 4 h>Wc>n_G_>GMZ>j8!V>T)R>uoI>D?`E>lk@>:_<>E/8>Di3>+JW/>~+>ŷH &>vW">IR > W>_>T1z>vO >Xo>!>$>K>w;>^>FxΦ>%]>f>@f>j>rׁB>2>>FB:w>P65>><$̳>%Set>5>c0Z3>g>?ez>jD>t 9 >\Н> m>S&`>J s*>3 7> b4> >@W>'#T%|>w>C s>!)1o>d1dk>c 6g>34c>U^>}j_°Z>_ V>[*\R>S&3N>< J>eE>&4A>ڮ.=>#)r9>xLN5>rj+1>QY -><(>T$>zAF >h->m.k>)wCN>1>p5= >U>->)>E>z>2 > qm>uX>¿D>ŧ1>Re>> >b]`>>s> 5>QlQ>#>㨷D>Wv|> >WnLg>" >?"}>aav>l%q>{$l>Eefg> d>$P!b>,Y`>Bvt_>`_>k1`>ba~>ldz> Agv>zDkr>~pn>uj>1|f>*^6wb>U^>=GrZ>ʞ7'V>R>]bN>)$J>F>ۄB>n #i>>\:>7>[3> uI+/>uT>+>sauQ'>4e#>NEz>>hY>Z¾>>#y >h >pc$>n?>[>Ex>ǖ>k@^>2ɿ>Y >n>Ǎs7>'4Z>!}>>S>!S>M>O:>\2b>>~>0n&߶> ^9_ >R`6>v*c>X𧽐>>TU;>*&>ԵN>N*GT> Y>`Ÿ>a[p>N>uf>JS}>Xbwy>?)(v>ݡ`r>pJn>ߠj>ag>(}h>Jc>`_>R[>xX>7T1@T>JCP>6ɿL>I>bforBE>mdA>{^,=>6/ :>:P6>޾2>{x^.>^g#+>k'> H#>I1>QTG>e윒>Y=>eޠ*>w >Nɬ >YU>qc>8>'>"VV> g>i#>mP>ä>(4>eP>8oV>a&>YwW>`y> Ŗ >SIEe>Q޲>)X^>y>\t׼>J5>*t>B_<>$U>50붪> >'{>`ߟ>C>7騘>>vGu> ܍>|D>WDZ>)<>y_=>H {> Wx>{9+t>kU1q>A:m>e j>5}f>bzKb>޳ ^_>D"[>AX>mVT>R%(Q>M>WpGJ>!.F>aNMB>2S)v?><;> g8>!$4>Z1>7u->sqQ*>&>È9J#>">_G><ʤF>UtZ>W:H> >P^6M>zNZ>|U>Z#>:Y`>dZ>m>>6(N~>c>ګP>t :>>^3>,>:N>g?>f#h+k>?>b >)>XS孾>ĭV@>n2zӷ> Qg>>>E' '>V>gQU>>ͅ>;>L\>fM/T>y-Գ>I[ꋋ>2<(>9lƄ>02Hd>e~>$v`z>=Cw>Ys>"p>zh(m>6i> of>iFpc>,졹_>ɮ_\>L Y>bSU>SvBUR>N>.K>C+QH>D>A1A> :S>>_&8:>;V7>Fj[4>+ 1>O->+yi*>q6'>;d#> ~ >f0>r,s>ܹ>yM>1>J1 >Bp >'>!>rui1>uƆ>0a>5Ǝ>g[>-.b~>21>$"Vs>ՠ>Im><>?m>p>˻0r>)t>;q|>rՏ>,R>h>T۠>D-}>%jv>- Jp>ki>plc>\\> nV>N7)P>9I>cDXC>u'<>Kr6>LQ (0>$h)>36e#>A S>ʎ>#uI>텾{ >ϨΒ>7R o9>U[>iM>H5>0j>]\ >Tr@r<>)&> 2$>$TmO>>ʰV߷>ܶn>@x%>,q2ޤ> 5>X$S>D>4,͋>&> 듅M>A9y>5r>lwl>Nh\f>Kx"`>H]Y>E@S>~M>ZJG>iA>SXd:>I \4>#.>2/!PY(>],">(>?>`>#Iw >6'Ga>HjZ<>>E>8>Ѱ6>ؐ>LL+y>]>G"B>Y~(>SQ>@)> u >߉fέ>>Ө>-痛>9>_Yy>j7Vl>i=y`>U}>(+.kLw>`>+Dq>^q'=k> n_7e>z<2_>|!T/Y>ۗl-S>â,M>.Y,G>pn.A>._1;>Jm55>qc:/>|q6A)>H#>'2Q>3K\>Nsg>ot >m>k3 >_X2>>]>=D>:b>t>]@>=5>4N>0Nj>HJ~>>#²>K>&><^i&> J>Dn>lvȔ>@T>ϞZ>] ~>=8x>I̗dr>v"בl>ɴ1f>Y `>h y [>oVfRU>O>ѹI>MC>=|>%>>=]8>T m2>,> '>I!>$܆>j>G>8:G >CЗ>]j[>VE.>e.X>sZ>G>51> {>u>X>'b>+L>>eIT>.W>bX>.2P>,֦>xCS>7V>~XyŰ>ʺ >g>D)Ł>uˆ#|>#v>* p>[aȶEk>u콨e>"= `>/~>rZ>=nsT>ӿU@O>I>U3D>^~>>A8>ZחW3>")->rO5(>r">*W>ah_>܋>/Yt >3H>$b>m>KeU>27]>4#vL>> H>C:>!H>P9>uL>-Ӵ>;U>s ܹ>"bc>qF>)|pu>3$>>`>6>&+!6>qiƈ>W>7Q}>ߐ}x>5Ms>? m>s?h>b>p]>hm X>yNR>>BM>0]G>>} B>;b4=>Cx7>1@a2>yP->p'> g>>D> L >V >y,D>M>Kן>^N>X&>p>;b>E>?>'p>uU&7>z>ߔѧ>a>Ż>ز>[6>aT>*>$ԝ> ꢕ> &4X>n>}FA> NV>d1m~>u/5y>ts>e)n>TIi>Yz_d>И5,_>lA+Y>VpT>O>6odlJ>A>E>VM–@>UͶF:>@5>C2 ӓ0>E7&k+>mD&> !>?>O> ̲>cH >h6p>q~P>F1>@3>*>>GQ>aT.>̖ɏ>ɧox>H b>L>siҢ8>s%>w^M>^a1>v> >ի>YȦ>R0>CgJ>l>)>kɖ>P>zD>+~>Wٵ܁y>@u 3t>}o>A|j>AĶ\}e>&R ~`>HA[>GV>U;Q>#L>p:/KG>ٜB>7,m=>O8>K3>C?.>)>_w$>ޠJ3>&>G׏>6(B >22 >RӭF>]f[>!q>݇>6܎>sZ>R>>J'>۵]%>kC>a>x>uchc>#>>Hg >ls^/>,6U>{>W㋣>ܙA̠>Vd>+ >pTL>:hy>ͨ>=MՃ>y>@W5z>K'gu>:M"p> Nk>i<g>=`c7b>Pm]>ʎeX>N{S>AQO>\QJ>cR'E>"@>tE<>0;9E7>c"2>sH->lP)>R GH$>_8x>5?>vC>AZ>2 >^C{>9g2>duk|>aU>#q>$`>^|l>e4>tL>^>:lIM>\HA>h~>Ęu><??>}D>C=Z> E>z>XC>nxT>7㠰> >\k>88ʗ>|*>ܦ> tp>?JP>l>|r|>e/S~w>vr>NfLn>شi>O<e>iЏ`>[>6i`W>1y+R>g?;N>-BI>*4E>Xb@>i8;>PPo7>T2>@W.>#z)>T_C%>wlX >3>E>'>gP7>cny? >>H4>*f> |>k">5B>j> \$P>Y1>a >I)>8kr>$6>>(kG>=>n[>lR>ON.t>r>X>,R>>xy@>T@Ҟ>,e>d>E>#>$\M>^Q>m>}1X{> ~w>򉋸r>~Tn>YXi>"Te>S-a>FF\>&ԶmX>~ T>FO>LeTK>@hF>PB>0%C>>9>Ya5>c91>5,>6t(>I8$>a2>pq<>3N?>Q>$J|>M >rP>*> [d>Qx>m>(>YB9>A'?>^>b>>xO>T͓>ճP>44%>.>p[>a1L>AI >F>ϴ>%>U>.AU>Ϛ<ߣ>P>7m>4>5>!>{ǎ>i~>]>N*>JҀ}>8y>g?)yu>;]>dq>(84m>L\i>'d>qV`>܃\>xTX>*T>3`<P>ٙK>LG>B*3d?>1?;>(7>$X2>ѱ.>H΅*>;&>.r">=R>C{|4>C>=I>Mhr >t >6L>g>4Kiw>6_>-I>qx3> $>Kn >/:>ԛ>,>|>\>c)t>#>K”]>wx>9l>Aqta>$W>M>fD>c(=>D&6>:/>Қ*>#&> Z">}Ju>b>V">dz>ɕ>9{K>ͽQ|>έ )"x>Ij%t>ҨJ*p>/l> 5h>IUD`>GL\>CWP;VX>qf`T>Ph^`kP>#*wL>ƒH>*D>a@>}Sg<>gr;8>o4>]N0>:],>e1)>˴t%>+.!>C>RFY>Zp>q>Wj >I >">\G1> >ʣ(> %F>Vcd>=~l>Ѱ?A>=Q>K>{>W *>LaLN>2^r>@>i>>\>#R  > 55>^>X8>X賴>j J߰>#p >vB9>-Fg>Ur>Xæŝ>S>&'>ZkY>nWŋ>0?>;Ȁ>&(>nW^>{>cIw>kt>*noT=p>3wl>ߡ1wh>N9&d>(a>2lue]>AxlY>i_uNU>n^b R>%X:`N>K/ؠJ>ɫ9F>_$C>Ig?>Ni;> i7>@N44>yz0>S,>-|<)>hQ%> l!>>Vk.>y>p>0w>V[d*` >Ak~> >]nlM>%u>jp_>'fzA>g.V>:֡>O<>)l>tJ> =>XhE>b>ޕ?F>&۟>\wf7>[RU>M˿+>0= >9hk>1ɺ>8)(>Uq>>?- H> ª>tֳK >LK˒p>}q1ԝ>懿X9>'Nמ>>W l>@Ӌ>p˒0<>e]>lOG>먭y}>*VMy>jQv>Br>J+o>R%k>MBi/ h>"8xd>s`>Z]>3Y>yQ?V>R>|ٞ&O>K> v0QH>xbD>F_@>mv=>39>h6>ix 2>d\/>}+>TL)T(>$>勁N!>6>VrK>rf>K>w>ѿN >K>+T>˩>#}9]>ޟ>dh>D]>]w>X>M>>>eX>$m'>tHh8>?>I>TccZ>9s>~.x>A@>#>*>>wv>Kw>y >%H>U8>UϤ>m/dg>`>>Y'I2>'L͓>Yh>&Ӽm>Ƈ>{U>>zUS܂>{>uuc|>,ux>kx7[u>Fq>1KΞn>nAk>ٹ&g>*v[d>j@.a>/]>zZ> !W>n5ٯS>lqP>,M>.8I>.nF>k#C>f?>Kq<>ve9>-5>z2>)/>Lh+> (>UE;%> !>}X>7'R>_>SL> p>Mn&>x >῵B>/L>6L> |>A>%M-e>V>?t0S>Q>%RjG>:P>ԁ@> >?>;>>NB>ԿƦ>RK>n91rҙ>#PZ>, >Pn>$>hy>P~s>C2Jl>g6f>Jn_>\Y>-R>/L>NHF> ?>S9>_Ʀ2>,>{j)&><]>t=6j>mI^ >Moӯ >T>8>^@*>dZHJ>'>m;>-ɈoL>]H>vl>td >t>';5r>\(>#Nb߭>"W> Q>Z >r*ǔ>1k>?C>w!>f{>hu>HJo>6i>b>Y\>SefV>{y0P>#I>GqC>}T=>|e7>Ɖ51>_+>L$>NǮ>FWC>'P[>,3 >RH >O>G>c>%}>+}]>L>>)B\ >ю>K-=>% >wY>*dn> >Oq>E]>$K>9>v)>|>q >&"@> >#`Ty>yp/s>d'm>|.Qg> ;a> j4b[>'U>S+`O>0_7I>#&IC>=>7>;z1>3d+>%>+q>.>!><` >,ES>sw$>@Y4>tE>cW> Zk>0>,v>Įy>T>Ҩ!>2>4>O1>৅O>ldo>'t>> mԝ>TpD>y>/4HgE>\Dm>?T>z>Y_a t>$aeo>Fi>uc>Oĥ]><-W>t4 R>qh=L>%trF>@>~ :>B=5>[`>FR/>*)>=#>d>'D>抄>U >7mL>npJ>p>R.?>>3 b>3>N>1XDA> /ȍ>(v>.N*>Qz> c~˼>>K7kUq>ū>>hƒr>Wʚ>>$>)_~>*Pډ>S@7>"~>#x>MTs>$ɮm>Z_06h>X{b>Җ\>TFW>6ЭQ>VL>>.~F> @>ᥞU;> 5>GZ00>Q/*>pi%>l\>j>Yg>-b>TR >,fi>oA>m>bvr5>j >m->䧫>З *>MĪ>zq,>C>b>1>~>[F<<>'ö>K>!-ԫ>2f^>䠼>>60v>H >"r>_I?">n )>/E> Rz>lu>bp>dj>/e>t_>pbZ>TT>*ETO>zm6J>D>o4s?>;;X:>ٵ4>tX/>4))>S/$>2F>`P>л>c|?>,e >PÔ>G9A>O>68i>ZX#M>s>گ> b>X>>;P>?9> >S >#f>!> $vޯ>VC>O#[>>ʗܚ>yϙ8>(Nea>%>>q|Y>Vx{>.UAv>* q>鴗k>@4Rf>qna>}3;\> C W>@ jQ>nL>_ ~G>44QB>(n%=>\ٷ7>2>v->(>nZ#>"4>>J>= t>vT ˩ >y>~j>~kL>c/>n;Ph>:Fx>>Z>mo>+>Ps>BZl>0Z'#Y>xF>ՠ4>u$>>!>˅>l>>>o a>Wי>-`͔>uj(ŏ>yP>>m>>sӮ{>÷v>2q>5l>j단g>b>ܔD]>|X>ıS>N>sѽI>HsD>9?>B8:>c5>-o0>3+>5'> 3">}p">i2>mC>9m 6V> }i >w }>>A~]>>>8K>7s >(T'> @D>V:a>T>4E8>xU>%>,>>|&>2J>p>Erc>/>> s:>5#}9>ld>>o6>[m>{R>"RK|>~|w>'s'r>_Km>9ƪki>4wKd>)Z_>쿮Z>U>)Q> cL>G>3B>.>>U9>韥l4>8G/>GM+>V&>!>Lk>!">"g>8u>g?x >N>>2>ﱵ>hE/>Mnoj>>>b>c2|U>f> c.<>oI>b>2J>Q_E>Л>AM>J>>Ww>BX>y>>DXn>b̙>F{,>>Vch>P>t>b~>!V}y>[t>ZJp>LMk>eg>4ʅb>{]>&<^r\Y>N9.T>6P>uK>\G>*yB>\a\=>!:i9>[O4>a P0>R+>k;'>">(*>;r>.v>|*> >fqZ>̋ >;>+ >t΋> >>~>!>?>pl癠>+G'>߮>7b7>]>S3%K>f]eֿ>]3b>[>\yN}>z >j[pQ>7q->t>+.Q>i>pqx>\H3>/vY>L2g;>ə[Ӂ>>\`7l}> 3y>ᣢt>;41

jk>)vg>B9Dc>:/k^>wSZ>q(KiU>@Q>oN8M>.H>#!D>ߒt&@>ʰ;>=Eo t7>3>(.>: n*>LJ&>PfV!>Pq>U`D>)xC>, >kY>8!>tEB>j>FaS>6_>>$U>>1=>``>@U%->+wm>aqr*>H=>끪W>KPd>_($>>۩$t>~h>ˌ9,>:

  • D+w>b{>+B> >aUҔ>X~ڵ>a#e>M^ 1>.Iq>o>~k℗{>zfw>c(v5s>7wo>ssj>2:Ψf>{b>}PO^>~b#Z>=U>X{Q>HOM>S~I>|RWE>0A>;#x =>‹8>4>\ 0>},>s\(>?A<$>7 >ZЃ>g>2> >(BѦ>t >tp>kAW>,tj>>v:i&>2 @>1y>o>|>8Q><5>˳Eԕ>*Z>\gt>VK`d>U>G>Zi:> .>U">2>xl>@ >`\w>sq{>D>̕8>6S>A> ݕ>Tڑ>C؍>=.؉>yCH6؅>ف>R}>7y>u>\"q>E"m>J>Si> e>Da>xu^>CԇvZ>(GV>4i"R>@W.N>:J>KeIQUB>#0-d>>Hs:>6>2>O.>G*>!&>pCp">e1>!dv ><-#>[:>u{S>êl >ЄW>W>0@>5>L> Y>5?2>/Q>Lr>M>!>xn>r1E>&v{L>v#SD>a%j>*>%>T>dL >& 3>.C]>눲>>{T>r>z>>]Lm>КQ>Q Η> >r2>",4e>>J̈́>I>w9}>E py>$Y[u>`q>OoFn> dTj>}If>2b> b_>0|D[>ZW>NS>NP>uAL>~&H>D>ˠA>LzI=>x,9>d5>x2>^.>kD*>&>rP6#><(>\^>0V>*a>׍>S| >H >`>uԵ>߼W7>]>%><,>>χ>Pe(>ۈS~>"˝>+>(Br>Ԧ>D5>V݂M>PND>HE>%>[4>Z;\>&*>ȩqj>> Shz>)P/$ۭ>ߝ<>\ =՞> >Bd|e>ɛ>)n/>ӄ>%>~ c>T*ˉ>@4>gǝ>`>OHs{> w>wSKt>?p>੓&m>kLi>J#f>!tb>4c^>Eٖ{W[>TW>[XİP>OP%M>S߳I>OcF> ?OB>IN >>cv;>xg7>oi4>L0>Q2^->,)>g,+W&>S">jCR>V>JP>pa>Ҳ/Q>%c >BT >>'[>J>%e>>zN[q>>d.>*, >>6B>__>2>V >vK>da>Uŵg>C>>I>%>59>̺>\_>)>ZO>*>%B>MjJ>ij>y>>S>IF>4g^v>}>K3`>~5`>(TT>0s>izx}>C5L1z>.v>Rrs>Php>zFl>ލ~Zi>^Cge>Wb>|GH_>*|?[>xX>̓@>DQ>N>Y_6K>$sG>25D>b6A>P=>Ʈ :>O=7><3>0>( I->0a")>Ȱ&>?\#>5| >e>3t>?)>6/>kY̓>&|J >j>  >퐬>;p>S>C2>U:-;>ͱ>})>97¡>0߾>pZ>̺> >m>n >&>>'>|t>.(>}>3m;>;Ƃ>FS|>r.u>chpo>fi>׼ϒb>CZ%\>;+|{U>VJPO>]IhH>0B>vH<>c٘5>:nQ/>(>z]">[->>r)ir>͛ >>϶ b> >8e>9ȉ_> >d\> >0>voz>7/.>8>b>S:(Q>Q >o=ĝ>3>t<>}>*W͹>ߐNez~>{D@kq>Ķk>ьe>MP_>2Y>;^NR>unL>t+yF>UPF@>x:>/x3>7!->r҉'>5\!>7L%1>H<X>;m>V>cV>p l>N0=I>%j&>>겥D>a1+>8`>^>s>=d_Z>3$B>&)+>em>/>p/>)۠>cʚ>%ck>lnY%>l ;>D:P>L+|>nv> `Xxp>M~qj>fkd>^^s}g^>*VdX>AibR>VaL>OAbF>qd@>g:>]S:k4>p.>FVw(>d9">U><Ԫ>K8>e >>ɆK/>}^>Q=>>>e)>Ɩp&>n! <>rT>ncZm>9K'> >Mπ>Q+=ݷ>->KR>l=>7`>o>7pBꨔ>*ώ>OOh>} >H}>isw>N(q>ik>t e> G+`> ,\Z>AT>qN>5'-H>+C>F(}ub=>y7>1> ,>8؜I&>=Z >SG>-`>BC>/ >@>He1 >RJP>+>7>ב&>-p>M>CL>/<1T>->˒ >_B>>H F> ;>Q>>Ӆ9#?>0Q>3>+M>^ED>(>EeCe{>?u>lA%p>\rj>_d>,hO_>Y>.ˁT>ԐFN>VR1H>@VC> t=>J-8> J2> -> y'>!>w\>!>n#D>'՗ >g.0>%>; >05>#>1*>ڃG{>#,>Ll >zK`_>9A>B>nDd>=> H#>Ӽ>H!3>msOݼ>10G>fdӝ>c`>r>J~>2>WC>R2}>:F`w>5[r>[N؋l>oΣg>0H b>} &\>aTW>;Q>$гL>Bxm*G>HAA>"/i<>{6 7>IkW1>7O,>0&>ԬP!>%/y?>;Gqr>'>M9 >ZA>MjՐ>R=>@:>nT>Bd5K>#T>Q>v8c>[>ԭ>Y>ʻw<>4|>>@Xj>U'>-}X>0>dYf>b>">p>L&>E[fj>/>u{>}>{SFĄx>MNMs>7n>]h>c>f}^> DoKY>>JT>ߗN>YD>qac?>8:>5>dq/>F~%>"wp >iK>:'>u@>O >4>c\>ŝԄ>ٰXg>JJ>6//> i->>-B>h>=>e>M>y>g>uX-V>g| G>Ǯ'8>J*>̠v>ܯ>>*M->~Zz>k>\V,>5m> }>nmx>8/s>ݍfn>wFzi>гxd> | _>:Z>q?U>P>`K>x 6F>#3A>Ӝ<>V8>3>We.>q˛*)>eCd8$>ز0G>jV>/g>;y>| >Nq0> >2>?>'~>EG,>pG>Sc>B7>s>p6>]>M>r>nB> gf>yzE>6">Rש>M>4D(>6j[R>4NV}>&>Ռ>m_r>2> EFb~>y> 0t>Exo>++k>E6_f>a>i+'\><,X>`LuN>I>{ D>(@>] f;>6>i(1>lX$->+e(>-#>u}d>/> y t>7+>AE ] >'WJ>Ԗ禓>j>N (>$6t>>8F˿>Χ^>Aմ>ZKY>_"Q>d>p:>y١>Lk>47O>Bk>|9>:\>(>~>tq>Á!Cϛ>d.>)x>f~> ywQ>~b>/R>>; }{>cv>|Ir>s~m>($i> p2d>3j_> Y[>]V>@yo2R>ԠM>;tI>b~ D> ?>"b;>l6>زI2>~Nb->  4)>£$>r9)" >CB>,>GJ> >#O >uZ>%>^>xR>lJ>rI>>?5>n >2۔>w5>]g>Θ'>|~>L|:>dW>Q>ڇݸ>n`k>>TI>J>&mժ>OX<>nЙ>c>{0>q>~5:%>ʼ>1`BU>@z>h,!v>v$r>~"m>i]i>H _d>ϱ`>-c9\>/'W>M'e{S>),O>kJ>{eF>j2" B>'; =>V9>@4>)j$0>iP,>$'>?^W;#>=^R>d>M>ck > T > m> >-M>s`c>hZ<>Xn2>!D>Ễ`>7>[X>w9#>TWG>G>ƀ>ڦ9~><>PH>ž> \}>ns?>ˈ>y`ƫ>?T>11P>OH>A=@ޚ>OŲ>?\o>֐9>vK>=υ>DT>_ i}>#h7y>Su>Lp>Íwl>?yh>ͅKd>Cs`>n[>WW>A}]S>tO>1LK>攟$G>{B>U>>Fc:>Վ6>Wk2>qI.>']Ef'*>H7&>!>G6>}jR>#r>y!Xo>[JS >01û8 >]>oY{>JBK>E>>f >i5>^N>Ytl>gY>-QH>.x7>Ru'>!oG>t >h>u>Y&>iXػ>iη>;>ų>ѱ>u>s>,> >,O>h>r뗓>ΰ>ϔ>}>A> QL>BG n{>Tk`w>$s>o"o>(@k>HUg>j[c>SD2_>[> [OW>;S>8O>nGK>DG> D>S@>Q:)<>4*98>eI4>0s[0>c"m,>9(>^$>nk~ >/V?>h>>*>̎ >N7 >qQ>pl>4>R>> 8>']>ǶL >|^A>fb>oO݄>E>>V ^>h->`J<>Xc>/>Oeг>&c:ݻ>>m>(i2> .^>O"I>Eo>-R0>(Y>ZD>[[y>{>`yؑ>VN >>>l[>s>`>rJ~>ˢ{>pLw>s>փwk><2h>HHZmd>s`>ëR\>#Y>_bU>ᢍQ>5:M>\7"J>cF>WB>n>>',;>IIq7>-3>\;/> C,>֘(>'u$>J!>Xkvf>A>O&>RϘH>5>s? >|1>:݀>(S>ٯ!> )r>$(>>@k>UJ>ˀ>܂wk>G.>\r>q>>򸡇$>n~>xW0>L6#6>gԒ>:E>;tN>90Aa> >Fvm>}YfΫ>w0> %>9>a{Z>!}>%>Ҟh>fz>PGZ>*}‡>r,,>&>}>n Rly>Nu>,xEr>ID%n>Y8d>]$q`>Rw\>e#TY>~rLU>:R>߲ N> ,#K>SG>gD>k9@>R:j<>Ԩw9>15><[j2><+.> |2a+>'b'>JZ$>ܴ >QPAV>+sQ>'U>.g>/qV># >_^[> >b>cf>~Rm>TދH>"3z>?0Q>4Ē,>M9>>|t'>o&X>z>>*e%>PdgX>Xh>Cu>Hʇ>>CRx%>{r>8I>&ܸ>= o>>MQ$>.>]KNŧ>ZNo\>PC>iCɌ>#&>Y쿖>Z>>7ّ>V.>Σr˅>j>{>SȫD{>HOmHx>,PGt>%ъq> -n>}2j>l@sg>Hd>ۼ`>Hb]>_Z>N^V>qWS>P>±*L>(BRI>ViE>bԎB>*?bT?>+v<>Q8>•Z[5>fl 2>xd.>hi+>yw<(> AK$>vq}!>"0>mE[>$S>K>qJ>WH >m >bJ%>rgM>)>h\>>M>V> v>Sٿ>kӿ>%̿>7dƿ>L㿿>c_c>䲿>ɨg>륿>p>i >ո>/ >s Ǔ>S>x>)';r>Lپk>H]e>^>&(X>_MR>8YK>D6GE>~hSc>>=Zz8>2>m]ų+>\t.R%>->k> 4?5>d >}>J $>g> ht>Z>!>eaȯv߾>m_$پ>>i1Ҿ>i̾> w6ƾ>(c鿾>V{.>{S>yv! >.b(Wæ>(IM|>L7>>b΋>Mp>:W0>z>@At>!!xn>0=G=h>"cb>~g[>v`U>^^O>#*I> B>j<>RtN6>~d0> 6*>L $>.;"D>>BBԊ>½c >[o<>>!>^>OJ>>X4y>9yro>Qڽ>A('5Խ>ν>+sǽ>>ϻ>FbK>eC> {>}>2դl>A̖\> M>J3@>;3>"x(>y>:K"Js>m>!g>KEa>9#[>qT> %!uN>)uH>vB>ϫt&=>v7>Ͼ1>F+>"<%>އ>ў(>3>)9w? >LSXM>`\>צk>\}>?/Z>P>
  • 1šݼ>.׼>N)Ѽ>̼>1Ƽ>mM>;&j>U20>Ϩ>~ɨ>\뢼>.F>Q3>hDfX>+>H˧>C> my>[p 't>0Sn>|gՁh>y:b>~{~e\>yW>EQ>yK>Qo?ʮE>M?>:>,'JU4>!(.>S4(>Ѻo#>sC>7o><14>H%& >AEE>E> >э>y bY>l}>Ƚ>- 4޻>!zػ>s\%һ>Pͻ>+Eiǻ>u$>y >R&]>>o>ai\>UZ{>$ >HKe>X翎>Jv>x>}>|"5x>+'6Er> l>#H{Zg>RuOa>SUJ#\>܎jV>Q|P>rYK>?۫E>`-@>e::>985>Zt/>Ӡ)>| T$>>H8>Ak>|!>"*>Sd>,>x@>-z>V> s>>$pܺ>{ֺ>9[kVrѺ>B;˺>Pdxƺ>mC>'>Wt) >LњJ>yU>?i襥>ٳd1>>@uK>ڏ>_ ~j>j>>0!z>3A"gt>a %Jo>@i>/v=yd>P_>RTY>3F GT>~.N>\nI>vD>O:>>fx^9>n4>Z/.>^G)>#>o>(9>8Rd>㷊> M<#5 >ɪ$>Qb@>:>o>s嘙>:?J>ҙ>e޹>cٹ>?Թ> ι>?7ɹ>r?Ĺ>>'XF>xϯ>P@o>Ң,>pX-꩹>>ǖYi>*>픹>k>et>ͲE:>̠>4v@fz>\%Uu>PZp>`%k>rye>"i`>h[>x[V>ȼ+Q>K>\F>2JWA>#hv<>"L7>gW"2>(,>n'>!>h">{>mQb>&?>$:>NTv>>m>Hp>–>淜>Rf>E~K>872>9]>3۸>48ո>HZи>˸>BƸ>t#>X-L>1Ty>~i>x[>|jdN>*&B>J^6>u,>#>E>t%j>e\>{U >U{>S\v>Njq>g~k>f>b>(9]> X>< S>naprN>I>iD>5g2%?>~\{.:>3u85>W|D0>]&>r'"l!>8{>UO>_F>J >J> \>Q7I>w\><#>q(>3>uL>җ#g>Y>• ܷ>%s׷>.Pҷ>hͷ>Rɷ>2O<ķ>^>J3>js>1̰>O>֙>-SB>k>gy>nl>펷><>hI>x>@~<{>Y[v>* r>F@m> Zth>3Ac>s^>4TZZ>u.OU>hVP>3xK>FєF>9B>v=>wĴ8>K3>4C3/>,t*>Eҥ%>Aa >uyj=>:A>L>y;>(V >oI>=>jDB3>gh3>=m>1K>nApg>;;>n߶>5Yڶ>G(Wն>kJж>iR̶>)TǶ>8¶>gTU>d>ii>[``>`L>+>$s>rѝ>{0>%>?>RR>H_Դ>BMG>A|}>*x>` KHt>o>fk>!zȀf>a> U]>X>w&.T>oaO>\G K> ~zF>6:_A>~F\=>t_8>46>B4>Jq/>[,+>:U&>[좪">-> >Ƶ> }j>K)+{ >>>-nru>:>ks>nP>`u>ȫI>~jz>`?v>%wm޵>O ڵ>t-յ>~Jѵ>t̵>*ȵ>;juõ>n?>d̺>iNY>wni籵>Hmv>_Z>O/>_bH(>">1!O>崖㒵>-,x>8>d>xf!x>>7r|>ͮSqx>] t>jnȧo>C[Dk>Ao5b>Iz^>PhY>`\`U>aQ>DHL>OBIH>7C>wm?>h9;>V.(6>\2>r2.>[dm)>K%>A 3!>XM>5>\;>|> >E&L> >]>wȝd>3>>O>,8<>`ZQ>,=J>L#gܴ>+Z!ش>l7uӴ>ķϴ>}EW˴>%|Ǵ>U =´>}}>{\U>4 >]ٱ>ҹ">+Q\a>Y&>젴>Dv>9{>AwC>X >횉׋>ʺ颇>n>;>'q {>+]`v>r>!Bxn>E}Ij>of>a>O]>6Y> ulU>)BQ>ZM>BH>|9D>a5@>\<>4;Z8>z 74>H0>W?H+>&%!'> ,Ұ#>`ʖ[>Ir>wT>R8>S@>eN >G>h޵>> >xF >Zn>pY>LD>01>Q>F ޳> /ٳ>ճ>'ѳ>&rͳ>ɳ>Kų> K>}白>[W>aۚ>|>Ԑt>nZm>jf>YOa>,\>cX>sU'kU>71S>eWQ>mP>HQ>R>-S}>=cVy>5Yu>A^q>6cm>k'hi>ęoe>+wa> ab]>2~Y>kjU>-`&Q>|rwM>: I>H5E>$-A>$=>\H9>C5>S!2>H!".>y4*>>͌H&>Կ\">%.r>2>>/h>|> +G > )K>S>8>H*#U>cWr>HxX> $>Q(> m>K>&XD2>9fUܲ>Xxز>2Բ>4в>'̲>@*ɲ>06Ų>8R%z^>#ˌ>hh>m ܵ>n{>3>b(`>x>>`잲>*_>hM>bK>*>>䋲>:>xbM>q\0>&|>A)&x>#(u>_R=aq>߉m>؛i>zf>$Kb>63^>VxZ>$W>VGnBS>n O>WRmK>H>X~ED>H-@>0<>89>kT5>H{1>ʎ->S(*>%[p&>gY%">pG>WM>F>d>1~0>q} >,|>x,>Yij>vǺ>٘ >~A]>i>ʐ!>W>BC@Ҭ>u>YbX>OIܱ>Mٱ>zK`ձ>=ѱ>e*α>nʱ>ܘƱ>c}&ñ>>lIự>{@> ԟ>.>uG`>gS©>%#Σ$>ŵ>e|랱>zmP> J>XM> >oRB錱>uQ>>mMe$>@E<Ҏ~>cz>5ew>K~s>tC?p> l>ii>$Me>a>km^>WKSZ>QW>S>Ż8P>L>%3"I>cE>sB> ]>>3C:>5x7>1U3>hl0>e&,>c)>b%>g)߲]">>izZ>>c>=!Z>>\ >* >\b>O>c"4Bj>iq>PXu>o>=F>4O >V >.>P^>>2>bܰ>:ĨeJٰ>pcհ>ReҰ>r)}ΰ>p*И˰>hȰ>՚İ>e2%4>iRƽ>&t4X>H׳춰>Ϋ > >Ƈr3>S@> c'ץ>:`n>DX>p+џ>T-o9>Ӕ>_n>rt >L ٦>þC>Rჰ>of3>8v^}>`:y>_v>G^s>{o>zEl>h>rLe>^@ǐ1b>R,^>IY|[>(#X>v,T>HJsQ>8N>*J>uսoG>sD>(M@>Vr=>E;:>c6> {3>w*0>͝,>S)>3%a:&>/V">)ڞ>xcQ>=*?>n>Rn>ɜ$>% >>*eʛ%> kv>>B^>X>UL>v@+)ܯ>w R?֯>sѺϯ>~v7ɯ>g@е¯>PٜO5>yt#>X]K8>QOȻ>t2Ș@>/ƛ>~dr4N>2֎>a>9쁯>Oy{>+߁cu>ɖn>߬g'h>Ta> 7L[>MʎT>lɉwN>|H>ZoA>~ZA;>rI4>էy.>ވ(>N!>LV>BqTS>c>]?> l>Bd>R4>0:>'> A5>ۮ>?uծ><+/AϮ>/Ȯ>}w®>"bY>q>ů>i.|>i5>X@I>Ք쫖>Th>͚ '>惮>?˾J}>\HZUiw>Q,q>?j>H5d>GHzD~^>X FX>4aR>yXK>s0E>0^u?>lC9>;3>16,>)ɷ&>%aߟ >`>_7>>*>(>>W(>NY y>L lW>qF:6>73X>u!ܭ>bQ֭>"&Э>uʭ>YZFĭ>+6t>!e]>25G>&3>zk >w>s>r>,>?nӇ>ȁ>0{>Kqwu>wo>ڥi>Lf"fc>g~)-]>P/W>PlQ>bK>ݗE>x?> 9>;W 3>p->5{'>޺!>;>1K>TWH>MS > >!t>D% >&P]!> c4>qI>6%ق^>f(uڬ>%Ԭ>Cά>"v}\Ȭ>U0¬>N>'m>85>;ڸU>Vw> >Y>󽙬>3㓬>\ >0>ΐY>:Qv|>NBv>! p>+37Pk>OW6e> f_>jY>!S> ,2H>zgB>\<>q!6><0<|1>yK+>E%>s>>&2>@>h>>>5I> e>4 6>\n'>Xe>ߛ*>k(ګ>AZQFի>ǎ#ϫ>#ɫ>R1ī>>>Ը>'>u|> Kѧ>`˙-(>6{[>ؖ>~3>EzJ>ꅫ>lHH>Vz>Bu>ʘgo>i>Jn-d>^>ĊX>f@Q^S>(1%=M>m5N/H>a6B>.=>~5^q7>j1>}M,>$&>B.!>b>ՅI>#W>]4Hu>PR>hDe>>{_[>F;>3~KU>wު>`S٪>ءӪ>4/VΪ>kȪ>, ^ê>hb㽪>$/j>>${Imz>j O>h.O>ˋ;m>wY >Qc7> yƌ>? W>Y聪>?{|>G$tw>Oyq>?':l>*f>%1ja>w\>/A5V> @9Q>ӣK>d,tF>؍{A>Ď;>ڡgT6>b}0>J`+>A>&>Z6j >m>i 2>>ݡ > z0>ё>>nT8>J>T6>mI>ar>51۩>e֩>7ѩ>N˩>;Ʃ> +C>k. i>wQź> u>bI2>Q'>AoȰ>q|q>fsC3>-v<> >B>E>J+; }>n"pw>Jr>x# hm>)u3h>4b>bw]>>rX>xkS>^muׅ?I>*EC>>>@@9> _4>p͟7/> 7*>91h$>5C>?>̆Pz>kϸW>{F0.6 >cx>Ćr?>*>z>,^6>X>*h>ǗO>y7ݨ>~\f ب>̓] Ө>]_ͨ>llȨ>@Kè>ip>&ͫ>I?>^+>>&>Sr>3s*g>X\>sR>nbJ>þwB>CY<>6>Yn2}> /x>6|,s>)A+n>{E*i>&+d>E|M-_>_0Z>tw3U>w8P>GBV>K>Ps%EF>՗LA>sU<>j>_7>_~j2>w_qv->w99Y(>iID#>2>#>?>l_> Q >*j>y(v>~7@$> ;>X;T>]m>x>= >4 ާ>rE٧>A:ԧ>Ч>.$8˧>)YƧ>7,{>„/>Y"1·>k1粧>P+0 >--4>V+?(\>F0+!>> ڕ>>W2>~`>,I>w}>fx>2x_"t>7Uo>] j>S$۽e>>¥`>؏fk*\>Sl+bW>zR>*l{M>9LI>?JD>?>dZ6:>t6>S]C1>9,>eg'>^N#>RGUK>d>'#> ~>!b >F$>fӶ[> k>>IX É>>#>Qdq>XT>5=>Aaܦ>&uצ>=~Ӧ>RYΦ>wɦ>i4Ŧ>|IZ>t>(& >%yd>6>j>E$w>pԟ> `2>B>D4>K 9[S>lqs>O2~>mz|>:hz>WPhGGv>wq>nm>PF~h>W.c>J@4R_>ԘDZ>*V>RGQ>.nM>ފuH>)C>%W?>m:>v<6>r1>$->(>X$>> >U{>|>ߗp >pE>(LPj>:p>j |g>t>Wh>=C'>M'l>2R>Qu>pۥ>vץ>Mӥ>ۺΥ>Oʥ>(tť>8.>ׂG>UhG>3ճ>^c>G"BE>Hӛ>m>O>^x:>ىΔ>c>c>*>TL'>o~>qDUYz>Ou>gq> h+m>)xh>Egkfd>>`>{8[> "0FW>>WR>8N>'AP-J>tqIE>vA>2K=>WH8>=>k4>nr0>

    d{h'>q#>$>mHm>ھ8O>ȁ$8>AKz > * >Zܒ?>iV>,PB>ve66>jJ>@a>̢0>^N> Te>Aޤ>5٤>;Emդ>?sѤ>7%{0ͤ>RȤ>=Ĥ>+l>b->a>>|ys>n7>gUX>¢>">?xO>qN1+>Hᑤ>̗C>Nv>+NA>B^>D|>Z x>ø7yt>*|7Ip>Oߵl>,^7g>JZc>_Ǒ_> f[> B0;W>^,S>D_N>pJ>kk>F>qB>+MK>>_&:>ܹ6>Q1>S-> j͛)>~+!{%>dL[!>~fP<>K,>ڡ>hHj>a >!D>D>5{>?b>v9TK>`4>> >a>H>dߣ>XӾۣ>hף>0ӣ>]kϣ>ڜˣ>xsǣ>fã>/Q#[>7P>F>M=<>h4>,>c&> >#>zL>v> De>ߑA>LA >&J >ל >C'P>{>19w>|M|s>hw,o>>"k>_(g> 0c>G 8_>@[>AgJW>ۙTS>-j_O>kK>WxG>ThC>7Ք?>;>$7> 3>Gƺ/>+>MT'>q۲e$>tC% >:>OahQ>8h>@> W >8KL>>T( >m>98!>ck?>C-^>TQ}>r[>u.1>p>س<ޢ>>_r%ڢ>G=rI֢>E3w`ѓ΢>w/ʢ>BXƢ>I â>> 2>[>Zׅ>>ܯ>du >??>6>P0e>&M >{mÜ>ez>%>?W> ڊ>>_(f><(>ǜ?^~> z>v>ss>B} >o>Í7wk>ιg>*c>-Et:*`>[3g\>eiX>{ttT>ZU"Q>pbM>zyI>:f/E> 'B>!j>>O:>-6>83>N~/>Ok+>B e (>+U$>y3 >I> 3>K>WՍ>>-Wf > ߴ>Gp(>#i3T>H>)>>?$H>>!>:GD>Vt>=xFޡ>6&ڡ>0X֡>.gOӡ>h6ϡ>̡>_ȡ>eġ>>4^ru>Yӹ>T۩2>b'>%>HT>O,F>\*>H@z|>S>W ФE>,HCU>Ԇ>W tx>E>9uI>Բ>gi>*Ƈ|>M}Yx>b֧_u>q>v:n>_ j>PwR2g>Gw(c> S_> Dj\>EjX>JOU>Q> 97N>@ GJ>*"G>=|ߏC> l@>1<> k9>&y5>/A^1>qn.>r8V*>9f'>nj#>jӦVa >>^>q!>1e_>hL>ob >%nu>9dah>`>q>]B>I=}>w>>)V>-1L(>g(>>=ޠ>B>ڠ>*Vנ>^Ӡ>1tqР>T͠>ƊMɠ>L Ơ>Zm >  C>ՙ]ջ>*ch>D>ˆ>y~%>WU{>!R>t9飠> } %>d>Ȟ>M>璠>10>1H>q>ҹzY>Nj>ߙ~>Z#(6{><'iw>=Zwt>߲q>yRNm>Q^j>g>*gc>!+zK`>=\>Y>M>V>@*lR>ƢF$O>nCT8L>?3H>E>f7B>B>>X;>Q6=8><4>a4Gd1>2I.>-<ܵ*>Bgc'>ؽ[$>DY !>!!{>hs>Y '>_]> i%>r:&H >6^ >SU>Ton>4'>suL>eĆ5>hl">I">4e>ߟ>v ٟ>ҟ>[J ̟>'Eş>Gd>d>T >Y=>z>51 >U>p'>.>>DE~>Ay@w>H bq>tc9j><d>w^>/.W>.5?Q> J>ͻnD>>>7Q7>b>1>3*>&z$>At>O>+%^>) >F >PNuM>{)>t*>&wH>x>ޞ>'&O؞>᪱ў>)h˞>TbLyaŞ>>zɸ>j>"56>R%丹>K񨟞>Pd>_b >-Tތ>e1>j?*]>Φz>@js>Ӟeum>|jg>L^1a>Gf =Z>q%aT>^ʌN>G!zXH>|n%B>彧;>%5>./>Je)>89#>6a >c>֫> >l>xG>jL#>d>jۼ>\z>"ߝ>kٝ>eWfӝ>`K͝>K1ǝ>>>jי봝>1֮>"è>H°>uD>G5>U>s>'6g>c{m\~>JTRx>_jJr>,1Cl> 3=f>q8`>HA4Z>2T>&1N>Xܹ1H>zJ3B>i5<>.96>?>0>3rD*>6pyL$>W7U>-_>\j>`v >dc>V9>*G>0>? >r> ,U>kݜ>cל>?5ќ>ceO˜>[jŜ>>䣹>~x³> $<>k%>P{H>\odm>fƬ->KKv)>4Wℜ>v0 > IJ6y>E!bs>~m>{h+g>Qa>U \>V*NV>P>ȵJ>ZUD>!?>52Y9>Y 3>$L->C(> C">37>(\>ۼ>,y@ >$TC>>oW >:4$Q>j">A>)>LSwtݛ>wכ>: қ>ujZ̛>"諩ƛ>}y><8 yK> a>>>C;eF>8Й>P>7L>j'^>]2!>› ]>>gCX}>뮨ww>Aq>:\9l>0^Ŝf>a> 13e[>0G)U>ޕ3P> ׻'J>E>Xp?>19>F.>I4>e'.>͍')>$#>4i >6|>e>7de >2`N>gueS>u>̏E>\ T>z;<>%bD>pqn7>Aʸۚ>#7֚>VjК>:G#Ś>> D>uʺ>z.?Q>E0ٯ>)-b>jڝo>Iy>}h>ݮ>Y">>C>gwH~> iy>"As>qn>*i>,ۇc>[^>% X>MĐS>-N>.sH>\hC>]z>>{4<8>K3>*->(>7#>a3>|>,>:*U >q>?,>\L>8">6>wxM>$Dh->]I>ݙ>/Oؙ>#1qfә>wrYΙ>oNDș> EÙ>t G>I>Oҽ>Oz>8>+Z>ӟO>̤y> b5<>mw>mÉ>)񘉄>?DP>yoz>^t>'o>7ͣuj>BYAe>`>$GZ>G8U>0U|P> MK>?Y F>@>;>zޑ6>Xs1t1>K,>F*$'>gcf!>!>> $>>p >M&O>X@/>lg>&>7q>%>#|>z߅>$~cMmߘ>k"J?՘>B)И>4Srq˘>Ƙ>0؟>OXx޻>U8ζ>>հ>d,>U>}>Fx>Svy>ۑ{q>@j>Кd>*{_>g[z>:}Yu>Zo6Wp>d,mVk> Vf>B Wa>fc5Z\>(]W>:aR>Lu0gM>2mH>ptC>KVW}>>†9>Sn24>rĥ/>~M*>,P%>/ >>N_>( > >-A1>#F>`]>7ut>>;.>k(6>^D>8ۗ>rWqח>A6җ>\9U͗>H2vȗ>%~Ǘ×>=[>gݹ>6>(>!N>mq,v>,9>)9?Ȝ>e>~0I>J>,)Gx>3eV> 8> {>r48v>MEjq> l>g(YNg>ac>>^>tSXuY>bT>O>U2!K>]p\F>[6A>p <>Z8>@J&S3>(*$C.>NX)>cg%>0=bnY >m>L!e>{T(>#^;o > (>[>#I> >{;>?',> z>\>cOiޖ>4κٖ>gB Ֆ>X`Ж>V ˖>^ ǖ> ӥ`–>1ⷽ>Z>?6i>$Nï>Z>Yz>ƿLס>PX15> > /I>T>,@>.m>hu|>Y|>w3qFx>Zجs>B1o>Ac{|j>Ke>՜Oa>ne\>.'X>/AS>w/O>ĐpJ>0vE>"mJQA>!Z<> 58>9OU3>C/>^w*>V3 &>irq!>b Ɯ>q>>}՞f> >0.[_>0rJ>ڳ[>/ :K>[>o1>q_>h>5f>X+ݕ>Ƿ3 rٕ>EAԕ>;ʀЕ>'/ ̕>Ƅ5Ǖ>Õ>ːG>5>&µ>1:J9Q>h[କ>ה]gp>R[>Ԥ7>@$%>WE>aaܸ㍕>9z>pf>z탘>XB|>?Vw>"ws>6bo>z#uj>?Mf>*a>~9]>S5+Y>OlT>D?oP>ueL>䵔G>;`ݮZC>|uT?>p.ަ:>rKN6>;H1>DLҟ->ڵI)>yQW$>Š > QM>?*>Ogh>_^gY>~e >}>rl>>Rc>>x=>>u>$Ҳc> 2>Fظ۔>^vה> EMӔ>b ϔ>vUQʔ> Ɣ>D”>}>9Ź>)ѭ>6\J>— >iSҨ>[e>/]]>2$>N엔>[hc>M6~>uI>>G>8U~>6{z>\Jv>ިqUr>|sm>E(i>Bd\[e>Nhaa>xMQ5]>=Y Y> T>V)P>ۯ{L>`eH>:T>D>W@>7kE;>`r7>QB3>/>\f+>䳘E'>gpf%#>e >X h>ʮJ> >:>{u >|&[>?[-B>[)>ep>@>-G>uv>k>㥛n>S;>utTݓ>qٓ>sTBaaՓ>Qѓ>YC͓>_5ɓ>I(œ>>5>>sXX>.)>\>%rYc쬓>=娓>F(ޤ>i٠>DCԜ>bИ>y͔>ː>>ʌ>#eɈ>.Ʉ>]sʀ>|>-bx>u>t>;np>vۇl>Wxh> Sd>`>|R\>mmY>P U>hQ>m#M>ƻ$/I>>AJA>wY=>&qi9> T>1>_"Z->hC)>/Z%>.p!>D>4>I>up2>S K>̬=sd >~>n~>;6>;> >$& >q3 ,>BK>:U>"ߒ>uے>3P3ג>5ԐԒ>N?В>?Pqe̒>BȒ>p?Ē>N>yl>[g/>nZ>s>v_>q{yߩ>r[ >s<>txk>'a>f̖>9~>x1> jgd>(߆>S*Jm̓>}j>E6_9|>Spx>cɨt>!a:p>m>6oUi>p(e>;fa>'` ^>qFZ>vV>R>})IO>њCK>R5G>% C>.Z @>^^M<>(U8>|^4>1>q5c->Ϸ˓)>aڴ%>d|ǘ;">ri?>K>/>f>q>s >fO>wĥ >x\>,c;>>!Mt>On>)4>􆥇>y>oeu0>1Y>PnRߑ>i8U4ܑ>ZQؑ>-ԑ>&>ё>&Ę͑>Z8ɑ>sxOƑ>‘>~S' >{g>dŷ>^B%>dpr>#r`欑>c> H>&u> >؀q>F"֚>E';>b>c&t>Wp>AY؈>v8gA>`0>q%~>Jkz>^v>R׬Ys>!x o>O5l>39h>se> D>a>fLY]>?.gZ>نV>MS>ۄx O>S5L>>H>o!E>:־YA>*H'>>,]Y:>.=o7>}ݞ={3>y/>7~Rq,>X(>j⟬i%>!>(Y5e> >:Pc>.>AZd>G >Hi >5#8*>bp> L>A%y>X>Խ>]1 >>)>~l}>'2>*/ߐ>`Iܐ>ؐ>VbՐ>2ѐ> ΐ>#;Tː>f<ǐ>o.Đ>W{'>+R>y r乐>rNx>Nm >+E?>g6>̨>c>_WZ>]Փ>,>`mƗ>cm`>d9>gٗ>SV4>ׄц>do> >qf8|>,My>_vcu>%r>o6+1o>Tck>Gwh>m^e>-H%a>e^>NE [>vCW>eZT>RQ>6M>˘TJ>%= F>mwRC>ҲU@>/=>29> L\6>T 3>pP/>Ci,>f)>%>o|">V;/>#S>^M>6MJ>>,;p>6k > #>(G>2SS>$>u0 > >P#>#2o>sۏ>,bՏ>DkΏ>C[ȏ>_>JVyY>Jڴ>6\> ৏>Te>NL뚏>s>h >ACц>un>c]z> -t>^0m>OH'Ng>%J`>6^sZ>4T>e]ϞM>ƱF6G>%=@>F-%i:>sm4>@->D?'>gZ > *8>&!>6nc >^mZh>[r>q>Y^>N>3>x}(t_>$P ێ>>Ԏ>dj7lΎ> Ȏ>PC>>9>iD>Pߙ>4a>Zi\>W*ؕ>A> S>sZnG>{r5|> Bkv>ŠYp>#aj>c>,'W]>`tW>z>Q>\g K>D>w>>r8>i&B2>:iP,>$%>5>{T> 3f>3T> > O>tMo>B>Jpk>\x>uTg>;9YqH>hJ*܍>3rd ֍>ύ>Xɍ>R-3Í>qL>>C>z>|Jf>K*S>w~A>)1>!>is>68>mmO> 0τz>مt>-n>wdb>_\> TV>xOuP>]J>XD>Ȧ >>vwZ8>2>,>Oȥ&>Y >YJ>>> > >9'>A6>zX~G>žsY>gGl>+w;>ߌ>iٌ>nӌ>A¨͌>[A7nj>CŒ>j1>OϣO>n>\>} >VEӞ>g>˔L8>GC>ͷKXk>y3>dA{>"u>Cp>?¼Cj>37Qhrd> l^>xСX>R%?S>Μ9M>jAbnG>gXWA>{;>5}6>ΫRM0>8L*>C$>>;,?>z(~>#- >X>,w>7J>o>GwQd[>n2>l,ߋ>4R9ڋ>Sԋ>΋>/!ɋ>v0ԓqË>N½>s=>h>*.w>`>mh>٨>]>/t>} ϊ>e,,>e)>Z0y>Dn>vS i>+oc>Gp]>&8:X>)%R>_}r8 M>5prG>A>T6NH<>,6>"1>rX+>隟&>r >MIK>\X>te>q%C >7 >2>B5>Ҟ~%>D>Wt>#ҽ >ފ>xۙ؊>OVӊ>`s;͊>W`d Ȋ>g.ҤŠ>^*>YUz >8>H>DK>5H֡>cK/c>>Y2 >$o>W4e>;;1>K.{>9=Xv>r2!ip>qNk>`*f>Qz`>M +M[>ZȑU>-䮃P>YØ K>tE>@]@>Sk:>ݢ;E5>wA0>04*>LN҉%>v6u/ >!W>)>~>c'='>Q T >|>-(>]%>K>x$4>>_}>EKI>d.ډ>'Չ>.6hЉ>yYˉ>Ĉʼn>ߐ>wAK>>ߔEBð>a>?>DW>ϗ/>NX>E>A) >mLΆ>h>bB[|>` $w>cq>,l>Qg>`.Pb>"b]>34W>%hR>EM>3_H>̊02C><>>X8>,93>M.>1a)>VW:$>^%>Y+> >#$5>[Έ >T+th>@&I>o*> >>k>KY>}G~S>CX܈>:`ht׈>T^҈>I͈>05Ȉ>b#È> mU> >0X>%GY⮈>V>ԩ>R4Ȥ>n>O91>5>o*O>5阋>(>5>k|>1w>[\r>[fu!m>͡h> 㽂c>Fz^>b}qY>Ń TT>;O> (J>fE>R]@> ;>,Q6>Ed 1>d<>,>,'>Hz(">>8>\L >^LJb>}]={,>RH? >BtS>_dh>lX[~>?>XK9>i^> >}>{އ>P5ه>yDTԇ>Esχ>#lʇ>WŇ>O>g>璩>q{!C>cAi>4w`>}>>m~ជ>܋ >*F6>Ƕb>l珋>󽆇>z쁇>}>bNx>%s>tn>Li>te> ;Q`>b[[>lV>nqQ>SH3M>$nH> C>no>>[sf$:>C+c5>΢0>'x+>E%'>qg">J>H>Y5>-{>6bH > >U>hĭm>)`X>a7>)X@>Is>pA!>5:q> ۆ>a׆>p g҆>c̻͆>vɆ>5+e>$+>lm>QǔDZ>6">T}>_ $Uڣ> 7>x?>M]> 8dU>;>5t>B |>8~>doEz>xǫu>몷q>@Ԙzl>Yjg>hG-Mc>.^>#H#Z>PbU>LP>A lL>mG>RKC>B?>>ߗY./:>L5>&xZX1>BR,>=|;(>x#>8>jh> '>z$B\>!m, >,[T>*>A#P>)N>"eO>+5h>@XWR>AP1>&sX>Ҧ߅>ʽAcۅ>օ>+(.8q҅>Rגͅ>}ׂɅ>Y Ņ>'> $>+G >8,>>M,~ͮ>xD]>h>_[{K>>>󤘅>"9>"<:Ώ>.9d>-u>쒂>E+~>]o~1_u>G\&p>&tl>//4h>3yc>/oq_>z[>sV>#TR>UM>l1I> >E>W@>27U<>o18>B3>ā/>z++>p&>">->0>WKU>,\8>eE >>'>4 J>K>F> e>޽p?>UR>oG>?>0>[f݄>kل>1'Մ>{fЄ>Eaz̄>sn^Ȅ>pAĄ>+gܿ>p*>>^>ڐ\A!>Hpm䮄>w>l_m>Ox%3>Z>[I>"w>hR>1>;ڥ爄>\>Ul> >M|>K[x>/s>Yo>Ұk>#^g> 31c>_>fI!Z>`V>~$yR>mwl[N>N93J>v F>aaA>xub=>e$9>v5>$S1>w1->9)>ǽ$> >Z>j >zu>.Y>Y9> >V#>:_ >:>j)Ic>u>;>^j6>?/>Y9l>PY>|'F߃>ТZ5ۃ>DS$׃>'Ӄ>sσ>Rʃ> ƃ>ziwƒ>-nҾ>%@Ǻ>z>ayx>{#>E>`򝦃>Ud>/>B!׎>/t>zV−>{#>>k36>?@>SІ>(X~>吚z>ۍv>c0֑r>_Ӣn>%k?j>f>6b>Yo^>ԺZ>XMV>/KR>KN>@gJ>ǃRF>r C>Y4?>A;>/7>@3>E"Q/>䊄Yd+>%w'>F#>,ܠ>>R7>'>XC>p >/>uJ>߮oze>s>+W>έm`> >y I>Dn>]G^;>dZ]>F݂>ƌق>ij Ղ>Lт>N΂>K@-8ʂ>[_Ƃ>וpg‚>M=>xoٺ>3OD>u/>`:o[>v2>0ъ>䣂>v,>h?C> Us>l4Z.>Qhא>j >3>>gr>>>N8}>sz>fLv>|5B8r>1on>] lj>,.3g> hnc>RP_>my{[>%X>_ dT>TuP>j`L>o$I>,KWfE>+"A>rZ=>U0:>u6>2>7/>5G+>'>c)C#>.! >k>t2>>f>svN>7X( >s >p8>w>ޛ>6?(>ұ'z>>/>5s>uI>)>I9s>݁>=Oo"ځ>?uzց>E$ҁ>lj3-ρ>|ˁ>9Yǁ>m@ā>ׇ+>Ԣ>hY>rc#>>쓜x>U٪>. <>,ឣ>fs>jHWf>˘>-1>3]>'1b> ag>G,І>rN9>zȣ>G|>8dzx>O?Tt>jSq>ݽm>TJd0j>Hf>oyc>_>pC[>sSdX>$!LT>;JQ>4kM>"4J>LrF>) !C> ^?>.N3k<>y08>T5>o|1>''->+}s*>'P&>@l#>Eш>(VNi>*>Wņh>W5>Xj>P >{o>>C \w>׮T>w>i>%.>V>Dݟ>-6)> >鏴=>ϭ݀>I#Uڀ>:#ր>hsgoӀ>π>+L|̀>oɀ>X9dŀ>uf=€>NϾ>Ca>XԢ>Es>n>-0/>쿪H>a,ަ>.Mv> - >a>/P'@>JAڕ>{A[ u>[\>*>?I>/焀>'s>؈i$~>1q4z>Pgdw>a?pt>MV)p>KIm>>8i>p.wf> u4c>ڣ_>S~\>&&Y>ODU>VIˡuR>-9O>mK>vqH>kE>JoA>qs>> E" ;> $7>17'{4>!)I*1>->ȉ*>͌:'>Rl#>6/Y >pP> b> ->7\">c6 >{ޏ >"cG>0>Lp>%?>WX>Z>$5+E>ɗ>5Y7>q> .>]>zٹ+>ж'>D->>h5>&&>$7B>)ʐ>;.ST>w]߃>iWk}>gv> gp>Ϲj>\c>tQ=]>vV>g+gP>3I>0FC>Y//=><6>lf0>԰7*> #>C>pf>N~>/ + >HR>]v~>'~>I~>Чkr~>@0~>A~>_y~>#D)~>"7~>{s~>G ?~>[I~>^g_窱~>lLb~>:~>lԞ~>+0~>'L~> ~>QɅ~>~>$jKy~>is~>e[l~>bKf~> _`~>KD'Z~>+egS~>\*M~>PֆG~>(SA~>CY";~>w4~>.~>ķ (~>Dh"~>:hDN=~>Ľ!J~>{ ~>U ~>Μ~> ~w}>]T}>O~M1}>t}>k}>+#}>]}>-}><}}>gc}>|K}>3}>@a}>[0D }>lt}>7C}>?қ}>/'•}>Mj}>Uu+}>m?)}>d}}>;܆w}>g~q}>2wk}> qe}>m_}>D"iY}>SgS}>i邯fM}>ISgG}>{hA}>1RYk;}>G \o5}>fߗt/}>ԁ {)}>jqg#}>D}>4n•}>]p}> }>8)s}>r|>0|>"|>|>7|>*ɫ'|>$=|>6arU|> A&n|>|>+f-|>@<|>;0 ݸ|>ݧ|> |>w<|>2_|>f |>Y<||>dLn͏|>n|>EE|>*rF~|>I-qx|>r|>9F7l|>f|>(a|>j:ʷX[|>)U|>#ĪO|>G]I|>7]'D|>Đ]>|>̮Ε8|>>:2|>-|>Q01XD'|>l!|>|>Z|>=|>l ~ |>GF|>0{>g&I{>ڑ{>{> {>h{> '{> {>2WK{>{>*Sb{>A9{>(~{>J޴{>7@2{>~tR`{>,ݣ{>Hn5{>w{>u{>_B{>0eq{>\{>6H Z|{>Sv{>CCq{>|k{>e{> 7C`{>4G0Z{>A U{> ^vO{>,8I{>ID{>->{>s? 9{>B3{>5@-{>g]k({>oD"{>-N{>h{>;O;5{>;\~ {>2 {>k{>tz>ߊz>fz>>6bځz>pj z>~DY}z>W?z>ǞZ}z>n z>$A܁z>^z>t_܊z>BN z>_Yz>v z> $Rz>4z>Zz>v$Mz>,?ۓz>jz>Ϯv z>ez>7Y~z>4pxz> Gsz>mz>shz>0 cz>$]z>ɕ/?Xz>M}vMz>7}Hz>i!Bz>-R=z>Q7z>Ⱥ2z>?(8-z> 'z>"z>msf(z>$Qz>Yxz>-R! z>wz>{9yxz>:4]%y>|jy>G2y>ojy>gm&y>aIy>o y>7y> Sjy>m$"y>ivy>^cӔy>sOy>. y>֛ ɭy>1Dy>iFy>?Yy>YgȘy>==2y>=Ny>3y> ؃y>~y>cgyy>#0ty>Jny>r8iy>͸בdy>!__y> oV-Zy> PTy>l,0Oy>y؍Jy>qEy>D@y>6WQ;y>n5y>RIF0y>\+y>9`!{v&y>J=iP!y>oe.e+y>rny>Ay>ة y>Ǐڡy>y>#?ccx>lEx>)x>ϕ x>nx>yx>7x>ICx>H`x>%v~x>.ix>.Vx>adDx>X>3x>F!#x>Ix>.x>.cx>B( x><x>=3ؗx>Tϒx>L1L|Ǎx>M8x>㺃x>Q)"~x>9gyx>C'tx>nq$ox>y`jx>ex>J%`x>Ґ[x>Vx>wQx>Lx>,6sGx>5Bx>{}=x>\+8x>3x>@^6.x>*x>Nl%x>  x>W-x>U>x>D,Ox>0!b x>~NVvx>{q~x>+J|w>]iw>w>HO:w>S`w>7w>nTw>frw>+w>icְw>䨍w>=FDw>w>B9w> b^w>h`w>TĪw>"rҥw>w>$w>届pOw>|^{w>AMw>["VՈw>"w>)13w>dzw>ruw>9:pw>~kw>&CF0gw> ebw>>]w>VʬXw># Tw> EOw>CJw>OEw>@w>4Ds7w>۞2w>>[-w>qc3)w>@I-v$w>bUw>d,uw>aZBw>xnw>*4 w>*Xyw>U `w>v>;IKmv>HAv>~_v>zv>*v>xTzv>̵v>߿v>2ov>焬v>v;v>a'lv>v>fsv> rv>̳v>D@&v> lv>-ݥv>6D~:v>裘v>0Dv>oWv>!dv>Sˌ3v>|v>6=v>ME|v>~qwv>.qksv>xnv>@Miv>7Jev>n`v>*, \v>WWv>IVrRv>.}gNv>2wIv>:٘`FEv>z 9@v>u)-b϶7v>[3v>Q.v>p=p)v>j:Qo%v>Vg< v>_v>92v>ÅRv>v>5I v>v>K*EDv>~u>6/Cu>~%u>qTEu>1Cu>Pi'Ku>qu>Tu>]u>Fuau>u>8˥ru>`ou>#"u>užu>5,Du><\,u>k u>KdINJu>Yixڧu>ku>c u>Y2iu>P4$u>J5縑u> Nu>u>cl|u>u>?{u>ǫHwu>Vtru>_nu>"ju>eu>f#Xau>3\u>h Xu>AzY9Tu>Ou>fH~Ku>EA"Gu>={Bu>m?m>u>WC:u>Os5u>c1u>65 -u>k(u>Mb$u>> u>au>#iu>=fu> DOu>d")u>ם/u>=t>-Bt>z\t>p,t>Bct>ח&t>;X t>/>t>@kKRFt>xFt>jt>θyt>f`7t>>t>QG$t>]_Tut>*)c6t>XxPt>/vt>~t>ݵMCt>=;Nt>^{Οt>:?4t>1'^t>l3&t>u*t>K U't>jRt>n% ~t>TJ+yt>h ut>,hʌqt>­c]mt>-.it> 'et>3R`t>cW\t>(K7}Xt>zRTt>:P)Pt>-KLt>Y=Gt>;`Ct>H\?t>YD1g;t>qB7t>?o6h3t>u.t>o@*t>E-&t>Ey"t>]zt>[\t>>t>"t>䠁9t>(ui2 t>y_{t>kSt>Mm's>dT{s>ups>GZs>BqEs>#-1s>iWs>()* s>up7s>F:s>Ʀs>C:@s>Ogs> şs>:œs>]]s>oA~s>Ints>Rk ls>e-ds>t#]s>*Vs>KȇQs>]e"Ls>lJ 7Is>!&^JFs>/Ds>yBs>fqBs>I@Bs> Cs>6E|s>:fHxs>@gLts>˧jPps>{Vls>-\hs>Dcds>^Yj`s>gFs\s>Fϙ|Xs>Ts>C)Ps>?^qLs>Hs>3bDs>8@s>*@ʺG[8s>&4s>lx^1s>QB-s>qؚ+)s>}m?%s>, T!s>CW{is>6s>F+s>1 s>FƩ4 s>. s>KKs>is>rh1r>PWVNr>5 kr>g\r>Yr>t*r>T^r>t r>/]`,r>-VOr>x.sr>rK8r>Ǐr>@r>Ȍ r>Q2r>Zr>r>R(r>ٴr>2 r>i31r>LE^r>Ar>xr>l9r>r>R^BLr>9}r>er>em>r>ߍ?r>F@Mr>r>3{r>wr>k)tr>apr>lr> ahr>9,er>_$Mar>q3]r>dYr>aTVr>˸DRr>+Nr>/Jr> 9yGr>|aSHCr>=z?r>JJ!;r>-8r>cX4r>0r>n\_,r>),)r>Iu%r>!r>r>wRRr>/ r>jvr> i6r> } r>ZAr>6j~P!r>5 qr>EHq>9q>eq>q>UG q>AN_q>؟q>|bH q>Jհq>q>Seiq>k1q>|ۼq>د1xq> kq>U0q>3Lq>+p[[q> :8(Kq>\Nq>v q>Hlq>cͨq>J0q>XNJq>q>rkB\q>aչq>'q>ߎq>-wq>f&^q>`ZȄq>1q>60U}q>ezq> tvq>XWrq>ijNoq>!޳kq>=c+hq>ʭHsdq>z aq>}]q>s Yq>RaVq>ZRq> e2IOq>LKq>3Hq>Dq>P Aq>Qu=q>;:q>~}B6q>E)3q>~/q>q' +q>:1v(q>b$q>:Yzp!q>q>bmq>@qKq>emq>fq>p q>..q>XCQvq>ӹDq>~p>Mp>X80p>p>` p>Z0٩p>v|3p>ֽp>K;Hp>1p> ap>@dNp>0|p>ۙ p>p>Ȉb*p>bƺp>i-Lp>%|I޼p>Mqp>p>,Ҙp>-p>zXëp>BYp>p>B`p>1 p>⹚p>O4Sp>ǣ.p>Ԇ^p>vA%p>S$p>_p>&H1p>o໛p><;|p>%m xp>D{up> Hrp>enp>23bkp>hp>iީdp>IڼNap>DuJ]p>AZp>muAWp>Sp>u^Pp>&!Y:Mp>xKIp>0[\Fp>,d9Cp>K?p>

    yɒ>9p>T=T5p>NJÚ2p>]1I/p>ii+p>dF%(p>K[%p>}I_ "p>Tp>"`rp>;$`&p>7/1p>!ep>?FFp>Ĉ p>C p>h-kp>Z$p>Ao>X/o>Īro>V"o>(ajڒo> o>o>eo>_o>Z+o>aF}o>o>iCo>kwo>͡o>o>6yo>,^"o>Ӌo>|HU8o>pyo>JSso>Mlo>Ȯtfo>Db`o>IÚYo>G/So>Lo>]Fo>y%^?o>'9o>/,3o>xi,o>ޙg&o>_ o>+o>#aJo>>h o>ɴo>0!8o>k/qn>cn>.D1n>7,n>1n>ǩCy7n>Րn>*jn>uHn> ^گn>ifen>6<n>N[ԧn>юÍn>tHn>nn>n>:n>E @n>4_&|n> VƇun>'/on>;Lin>.Tcn>=v\n>6Vn>lPn>G7Jn>TGxDn>wO=n>^k7n>dq1n>GpC+n>qX%n>n>䧇n>Gn>mn n>(:Gn>iO"n> m>wNf m>Km>W͘m>ym>\ᮓ[m> >m>]\#m>W m>nW%m>Liؼm>'m>஬m>m>#m>Ǽmtm>S)dm>H#Um>UZGm>7?:m>B/m>@n%zm>:ařtm>nm>uhm>[ bm>\m>Vm>Y6Pm>mNJm>(NTDm>`V>m>̣Z8m>! 2m>͠W,m>v&m>#C5" m>ڡs+m>6m>YBm>hOm>߆`^m>_^nl> ~l>*oKl>&[kl>Fl>wAl>Ԟ}l>l>V$ Al>~T1l>BMl>jl>1߈l>YLJl>ȩl>Vjl>覇 l>1l>XgWl>x~l>/Mإl>}X΀l>fpzl>.Wz$ul>G#Qol>@~il>mڭcl>]l>A>_dXl>ARl>uLl> h@l>';l>P5l><(-/l>vX)l> $l>W,C>l>Y|l>?8l> `u l>Jl>l>Vl>W^Ak>X[ k>GdRRk>k>1!k>>G[4-k>o4xk>vrk>›k>?hak>`k>&k>HuTk>Bk>k>ٟRk> k>}!k>ʞZk>H]k>!k>0mk>,3~k>tN*yk>vsk>Hmk>lNhk>Ŗ4bk>و]k>8|Wk>Qk> R8LLk>8OFk> Ak>Y‹;k>|5k>,f0k>ww*k>J:E%k>H^'k>Ц)k>5m k> k>6k>p)wj>Owj>ejj>vj>""|(cj>y;j>#@_j>cj>+K5aj>dÉj>кpfj>Odj>,Cqj>Hj>6j>nF j>JAj>Vj>j>~~8j>"ǐj>"Vj>j>Qyj>$ {j>В uj>NN]6pj>7 jj>1\BRdej>x_j>q鴖Zj>ώ1Uj>uOj>cjJj>Ej>&?j>P\H:j>4j>y2Yd/j>W 0*j>b$j>Wۗzj>>K!j>zCj>,Grj>|  j>(^j>Yti>RNK"i>0i>5Ɠi>(Y1i>+6i>(i>Դ0Ji> xNi>i>li>I'%i>޿i>Mhi>nTi>5hi>H+Ϫi>fi>Mi>Ȏi>y'Еi>Hxi>\HNXi>Xai>Ai>Y{i>M'svi> ^-d=qi>bli>]fi>3|tai>lEn\i> '=Wi>  Ri>xMLi>,Gi>zMBi>H}W=i>˭,8i>, 3i>f-i>/Ѳ(i>SJ#i>['fi>#+fBi>=i> i>&t i>F=i>d,h>jY~}h>+4`h>}Dh>5Y)h> h>9h>c`2roh><hh>ղh>Hh>Pcwh>2 fh>V|Uh>Eh>y7h>*h>F}h>)7h>Fh>h>]@h>oh>zh> |Uh> b{h>=qh>evlh>tgh>H4ibh>s]h>kmXh>˸-Sh>vr%Nh>Ih>ODh>B*?h>/G;h>Fg6h> Ќ1h>t',h>&b4'h>(/C"h>VzCRh>tybh>Ʊsh>;h>X) h>8hh>!g>jg>AB1g>8vg>V/~!g>/MWg>Еsg>ސg>ys'g>capg>jǸg>Lg> G2g>hUg>.yg>:1#g>RXŬg>|.g>Og>[=>g>Khg>Ng>ζg>g>pg>'H@Jg>%gz|g>0wg>6rg>ng>1dDig>=&ydg>H_g>Zg>Vg>XQg>oLg>SGg>5Cg>;E>g>Ҿ9g>v:s4g>`D0g>LGC+g>҄&g>{!g>EC g>)zUg>a0g>م# g>Olg>BsAҵg>ߴKf>lHKf>-'"f>f>cw3f>f>4)\f>$f>Lvf>:f>ZLPf>#rrf> f> f>Lwf>bеf>x*f>SX ;f>Yf>=f>M5f>1f>FYf>Q$f> x f>x}f>#GUHD~f>HX,yf>ܽKuf>{[wpf>`ػ\kf>rNHgf>&0bf>XQY^f>&ƈYf>xTf>cPf>XũKf>:/AGf>zBf>/">f>nN9f>k5f>i|0f>Sb+f>kg'f>U"f>Vf>(f>ʪmBIf>f>?c? f>F f> K}9f>G{a۷e>آ%7e>'>[e>M\}8e>퇋e>=e>he>46)8Fe>Re>%Re>ɀr&e>be>e>RQve>.ce>e>e>;e>;{7e>dfWe>e>L |e>xqe>Ϳe>28e>Pϊe>ֈ fe>e>N֖}e>:ˎ0ye>w0te>ÑTfpe>$le>nvge>N>ce>^e>}Ze>JVe>4Qe>];cMe>)}Ie>IODe>{P@e>Y;e>n67e>*F3e>Pj7.e>8*e> C&e>,@!e>M8e>Ie>P_e>e>8ߊV e>þse>p>e>Xkd>xd>gd>7d>Yh?d>bzd>!)1md>?gd> d>3fd>d>^}d>Ud>`#!d>ANMd> d>1s϶d>eEd>% >Ud>Qeed>04jޥd>|Md>1kd>z2d>ʞ'd>D۵Đd>wd>*9Yd>ND%d>N~d>%{d>_rwd>M^sd>W?.od>2~Tjd>LDfd>eTbd>w^d>i7LZd>=K!Vd>>zl]Md>iæId>{Ed> %YAd>~A3=d>9d>U$J4d>i`0d> 1,d>*(d> ԕ4d$d>%hGD d>o %d>Zd>Gd>Xd>6 d>d>%Q~d>(ufc>d Nc>܁X6c>]} c>7 c>OHc>i`kc>j =c>|{ c>;1@`c>vc>d|c>mmvac>REUc> "Ic>6s?c>'5c>2+,c>#c>*({c>c>)c>,; c>!c>c>cc>[_c>3Vc> c>c>z kz kͩayWave(\aMbp????sh|? @<'.4J??31Z?ap[c? v,j? {Zp?53Us?#dv? !z?6b}?Q?cO?RZfO?D0?ppyφ?`I$n?Lp]l ? _?DG?F?iA?+n?θ ݑ?ӦЏ?Iiay?LG?l;?~F?x?A |?MUH?+0!?m&?N[?P=z?}dwF?yg?7 ޝ?E㞩?7L_t?t ?񿏩?%C ?V2hP?ܟvծ?jov? ?, {h?e5I?Xٮ?գ?9Yx?^;Qܤ?QA?ׂX?<c ?n?V5iҦ?-I7?Dn#?h ?mc?zƨ?Dx*?ExG?xWEI?jך`U?i[θ?$(?em?ET?j=E?{Iè?Y ? BY'n? Ibѭ? 4?R`.?L?][?*y-?,??9E _A?ٌ;tr?rJ?@O԰?Kw?r/Bd6?WI~4Gg?HV$ ?n ȱ? Df?dn*?s[?&>Ƌ?=Dd?)?`u+S?"ZM?x"rt~?/:ள?*]A߳?A?(*??ֱ*p?d?Eۜд?>ź?>0?߅`?&"??cѳ?. ?QP?t?׉?iW?)r9?,?o??|A,o?Oɞ?У\η? ?!6e-?U_ \?G?g? p6?3*TR?VR—I?bx?w?wk.׹?L?@a5?Mcmd?*=o?lxgº?m_V?y<; ?6D}O?M}?"?.oۻ?`C$ ?E8?~2Kqg?le* ? ļ? d?\;7!?a P?9Su~?Ԭ?fn*۽? dv ?T7?'e?"?QSI¾?%ZUf?~y?0L?Az?A|?Siֿ?1'?Z8 ?O/?LF?~@5]?}t?xr? PC?N?z!gg?֛?Z?g?/*?s{A?)ٽ+'X?dвn?žq?p??8x?—w>?̖"?=әZ?6 ?fEd#?,19?:*3[P?:{j9f?W@}?;0ޫ??'u?P?o,?lS??(<0?W$cF?GL~\?Ir?7?Z16Q?4`[?2??=8?.9?~/?{E .$?1B:?aSP?J,I_f?խf|?Ni?Lg?oa?!0W?yKH?_u4?~\?+?xՈA?0+W?; 'm?Tx\`?4-?RM?m?p'Wz?O5?\? f?vHL1?M ѹF?6 뻚\?O;r?iuׇ?/o?}?.ba? ?H=? m# ?4֠?Xmh4?I}'I?%*9^?y2Uit?n2щ?Į4?&ƥ?ӎ?B?? հ ? )?n4?mI?v(^?r!t?0W0S?D?!.>ج??lc?g? Ԡ*?D??pO2?#[G?eNc\?\fq?u*e?uy`?f^W?{PI?>7?֦ ?sC?a?N'E-?QB?:qqW?L5pdBl?ݣ?5ڕ?e^0V?XtOm?V=?^?4??~;3?ᅮ(??rxU?XUۣm?X)އ?|2?/?) x?ƌ;!?Rvlo%_??l ?<4u"?TH8?@@?PXY*?q?!M}F`?ƴ:B?QI? Crv?N?&=?wo~?oz?sE5?P? Q?u??lu?9W?>`lY?#%?L?Dqi?*;?d?G{?%ܛ|?\/?P׬?/?BYG?=>*?5?j3[?~ ?`?P m??'/?:K<{?)?_L?'P?23?[Q?/M?r:?*>?3?rl>?4?ń?0n???BUÓ?)vT=?Dx?,mq?f7?zv2?pɮ? /?f?B}?&$?ʋS?.*p?|q?y6jԺ?H*_?$h%?d.IM? L?X2Z? ?|5?\M ?.z?e ?v ?.^ ?i ?{9?@??aN?Jr?!nB? [?3?0dz? 05?NݦW?=8*o!?X4 #?rGӧ$?rC&?H]*'?\Wz)?z0+?n+W,?X)I.?^Q/?FK}1?c 3?ab4?~G6?pF)7?Ȉhx9?ȢQ;?6?ްg??%@jA?C?D>D?&++F?@qG?Ύ*UI?J W~J?}L?Z%-N?LO?γc7Q?,GR?_\T?,U?)qM|W?AY?Z?{3\?KC]?|gT_?w:`? sb?d?zǑe?m;S g?bξh?|*UvRc+?"gk?.#7??+G/A?&tkƖ?VJ?>9ϙ?:dR?r֜?ȭY?,3ܟ?( t6_?` ?gc?P2?BIf?z+? fh?!?Si?R?_h?嵘?n)كf?U ?oc?+o?W!_?uOܺ?vY?cbֽ?:(R??]J?H]v?aA?H⭼?>U7?8?y+?^wz? ?2?e?2q?[e?Ġy?A?h?P?0[]V?ص?..B?Q:Ƹ?ҘP.?֙!?6?r#?e|?ޞu?GH?>\?Ҋ?3mxB?zP?i'??9 ?[G|?=ϯ?XYy^??ݠ*??,?m0? ?6o?Ak?.?:(SH?Rb,?I;#?# ?C ?68j ? ?F"C?PpM?JKu?Xޮ??:aB[?T?d+/?Ҋt?R?)#l?ߤ ?J= ?/!?> #?عu$?\FB%?՚8pD'?ȢT(?2*?kAx+?*HI,?3*D.?}/?(E1?s2?ԙ'3?C\.y<5?fJ6?S@8?bg9?(bp:?6-?{OT@?/`/A?hC?h5yD?/E? :G?GeH?*+I?ZK?ruL?W N?bLxO?JIP?X5R?C?œS?*>zT?$"OV?5&eW?ƴ` Y?fZ?C[?fk]?z^?,_?k1a?'etb?Z6c?0fAe?yQf?"g?#wOi?`֨j?Rl?zxZm?Ln?Nݐ p?r&cq?ƤGr?"Pt?۳iu?fv?%agx?my? ~z? |?~%o}?_f~?D`?in?6|‚?!p?Jj?50?#O?d?qj?D ?6$6\?R4?}2?lw`Q?Ċ?}x? D?|?jl?`m4?#?2Kӛ?6ER"?u6q?t?J8 ?-[?v?n?1 D? DM?Zڑݨ?N)?-v?6&?p0k ?>DX??p?h9?T2E?W?͵?p?Zh`?N'?{Q?$-;?L!?<˾?$?M)0[?D?^ ?nr0?Bw? PO?为Y?:Rf!I?L`??|/w?]?k ?X?SN*?TiIn?Ϣs?GŢ?\7?I:z?'j?ܻ8?@?R?\%?ȴw?Lr E?QK?>3?<?$F?+??ђ?S_dC?s?&YC?]Q?tm?^۶,??n,NA?o./B?e\C?D?w E?KF?(NH?4::I?."~eJ?oK?v&L?ƏM?0XO?*;P?{eQ?_!R?5CS?H?Z V?Z4W?Q^]X?`ͅY? Z?"}y[?Z|\?{*%^?jL_?cyns`?Xԝ5a?^ib? c?(! e?^42f?(Xg?}k}h?/@i?Uj?k?w m?]?5n?*6Yo?sy|p?%oq?d-$r?ւs?OM u?ˏ,v?xVjNw?Bpx?ay?tf=z?xk{?J|?~?\8>8?+ָX?kex?4? Ƹ?4U؄?%??>35?CT?|r?`>ڐ?E<ή?d4G̍?^?ڲI?B3S$?{"A?} ]?*z?lf3?31?d_͗?P8?Jp?Un?2:?aT?9 o?2z$???ա֢?>?>#5?& ? u9?㟿Q?mbLi?^z?tP}? ?N??2P??L?'?Sr?W?{k?! ?f ?~֐?"(?y!7?(%ui ? \܏!?//"?T%#??)G!??YUB@?b`@A?jr B?@}C?EC?09;D?h:E?@ F?ŴG?3: H?Z=I?B?J?rK?ʪL?6,M?0ION?4TO?MW(P?V5\}Q?;8sR?thS?~]T?VRU?RDFV? p;W?zŲ/X?w]#Y?b:Z?L [?~[?^\?N%]? ^?<_?)7>`?b}׍a?ܫb?NQc??Sd?Vve?&4hf?E[Yg?}PJh?:b;i? |+j?)Vk?{h{8 l?:t7l?"aKm?[ n? o?ZkHp?S Rq?b*r?҆s?Iut?:cu?iQv??w?9>-x?dy?z?{26z?'{?ޒ|?hy}?p٧~?GW ??k?vW?bBKB?Y#.?m1? ?^?<ه?@È??S2?RgT?j?LAT?p=?o&?*[m>?"? %N?iȒ??̩?dU2?e]cg?xO?YB,6?س ?5?{?g{Л? n?Gp"?? h?X>G!N?4όm3?\^?Ny?b8? Ƥ?+?^?'1cs?L8W?z!:?X?٥??޳ Ǭ?يi?Ԟ?;%Q[o?:JQ?俶3?}j?t?X_س?>ٹ?~V?{?4\?q==?b?c?}ݺ??2"p?~v|?J C\?h;?T7`?*?=?Q4?"u?H(r?oP?k(.?& ??XZB?E?n? \?F}@9?"??`}?:nl?7?fMt`?״;?}?xhK?nHi??qV?[?ӑ5?Il?ή&? as?*9?Ru?TN?&??dk?G?e?UW`?"P8?|Ķ?+$?Le?Hrz?zcl?zۯ C?ر??lP?]?x?r?؍vG?P?v?V??UQq?8F?'?A,q?Pӭ?Ư?Sk?hH1??]Z?8?$0/?!?-? _?ѧ1?f$?z~u?R?$z?(hL? ?P/?;?0?s^b?@3?5uaj?L$?T:3?-Wu?QE ? Q  ?\@v ? ? ?(gd ?R ?!??==&??Ʋ[?$*?n5?K1?[ ?G@a?–vg.??[ ?_ki?p(b?+.?>?|!?@gq&?|_?ٳ*?z;?vu?TKό ?W!?:4""?fNWt"?CN#?}%h$?: L%?7&?FT/&?n<^'?b%s(?5b=)? *?T*?+?oza,?ۥ*-?l}ʏ-?^ܺ.?/?wJ0?wO1?]Hw1?H2?ՏOi3?MQ~04? L4? ea5?86?OK7?k8?w?8?FQ9?';d:?);?;?h?70b??20??֍@?TRA?bիB? k:B?HݞC?bD?zp&E?Q*E?־K?L?QwL?M?-FN?NpO?"*O?!WP?8LQ? R?|R?ZJS?:HOT?VU?LsU?|EŐV?dxPW?J!X?>6DX?2׋ˏY?*OZ? c[?8!/t[? ^\?ή K]?ɼ ^?61^?v#^_?&4D`?a?a?kE1~b?w;c?.!c?^d?xuse? f0f?v/f?ҩg?h_Ofh?tƤ"i?i?6ܚj?ԾVk?zl?"l?,Ƿ~m?;Dn?'gn?Do?|ٺup?[/j0q?zMq?;Vr?i_s?㋧t?4t?odu?!% Gv?sw?w? sx?6,y?Tcy?Ɲz?xaV{?I'|?k&|?+inP}?T7~?|'2~?>m?f=~^?2L`?Jd4́?"V?S;?n+?Fݨ?#Aj_??j̆? G0?'8??1Ħ?G.Y?? >Ë?TTx?!-?Z?!Q?K?q5?)sfo?لh?mu?v,AВ?l胓? Ej7?/?_?p_Q??`Mlζ?ׇti?`?nSΙ?Ј?چ2? 6?>W,Z?|H?:?0;᪞?\?lW0 ?]!?4pn?.?Т?h3|?|0??Đ?n.@?"`A?Кɟ?<-O?In?̊?jyv\?\NX ?[ ?ۥh?4? Fŭ?$7:hs?zf!?zAϯ?|?AA*?$ױ??ѦI?^r2?Ux߳?[[?9?.?x-?.ׂ>?B?F–?.+B?t.v??RE?KV?6?POG?5D? 0?C}G?b-S?}ɼ?ZG?h3`'?dh(?E?p?Z?T6A?"U$?_yT?b=?5N??,7?r@?!?o0?5??Ė(?ȃ?lx?~?[?{Xn?A ??E{b?>V[ ?^A|ܯ?jq;V?wx?xN?yH?zGvc?T?9?lQ?q#,l?k)?^?gEs?NiW?? a?p?&?/FN?T"D?.]!?c9?Au??ĵuD$?8y?*aEj? ?P?,"+S?<}?#?RG:?Rq?A{~?sc ?hҀ*?^oc?IFU?X ?QG??=?U*?ڼ?bnZl?ƻ ?. 4?goM?Bk?ƒ?\-??,:l?# ?}y?fѪJ??:G?B'?Q@?d?[8F?0?*{?Ч? M?z T?rL?BK?c,?Oλ?f?֏?OG?<?D?4u?a?VnЭ?֒I?ZIލ?t<? ?I: ?.S ?#? ?Oxɉ ?,l|$ ?|Yȉ ?]b:Z ?XR ?a<?jlJ)?t_?c]?>?JS? KM+??V^?b??B)? \5?q[?c?H?&%??-V?TJ?_H?_&??$M?2d?&.j|?sn4?@MҪ?6 'A?&>?no ?NB/!?>>!?pi$3"?p"?c_#?3?#?(c$?&n!%?M!%?H;L&?>+&?'w'?} (?Gԡ(?D̋6)?P)?bܚj`*?^Lr *?܋+?(,?3,?YF-?ÿa-? fKn.?/?rÕ/?R)0?Hoü0?P1? AJ1?r`v2?$X 3?Z23?u.4?Z4?; T5?n5?vh x6?ʑ 7?h7?<=.8?8?]@DR9?9?) jHu:?bnu;?Eԗ;?fP(?2 >?`޻?? 3b@?,t@?;2=A?uA?;d]B?)B?8(|C?Ӏ0 D?Ц~D?"*E?mE?j&HF?d&F?fG?]G?H^H?cI?1ຠI?&.J?OJ?ƥKK?fK?fL?^qbL?UyM?.]N?N?!)O?1O?.۲CP?wP?92]Q?:Q?ѲovR?c-S?U<{S?fT?VT?3U?}nU?@TKV?LAwV?\|bW?v(W?D|1yX?͹aY?Ps5uY?]}@lZ?֬FZ?0[?Ǧ[?P*,E\?*E1\?qY]?=C]?Z&n^?fB-^?C_?r `?D\`?nq?a?Na?hĜ1b?` ZϺb?oCc?N[Hc?^Ud?޼ d?k'ge?$ұe?TD xf?j?@?k?&Ftk?$Ml?%zl?#s[m?§m?j܍in?d@n?:vo?Qo?tp?rV q?q?:+r?&r?)!s?fs?zM-t?Ѳt?Rk:8u?懽u?0Bv?qv?nLw?>a&w?frVx?,yx?b_y?\)y?C`whz?Tgcz?p{?XS{?x|?&|?S}?2~?Pdo~?$ ??PO?d?y^?r>?t?)U?VnV;"??@:. '?\\H?ҙHl+?hu??f????@@?Xn?p@?d-5{?<1Z@?ܗ?T??l)Z?>?7,?o=?G?/n;?ʯ?ѷs9?t3?C!6?4of?3?6X1?@o0?rʔ?_Cş,?a򐪙?hVh(?%?PA#??T?}?G?hX?*{?@gŅ?٤ v?rL ?p ?4|? X7?*+?=I{??46?!3?F?O2)?O,A?& ?hK?ӆw?H^?O?L^!e?",?s?q?ff?x]S?8ǞY?:\Ұ?"K?ւı?R=?ǣ?UZ/?[?^} ?|꘴?(xz>?,y??3y?@\Q?\Wqi?߽1?X?]Hiи?HG?^>?6?Р?P$?ě? c?ou? E)?Ev?hH?!:vc?̂Eھ?@P?=cƿ?DpmBY&?&f&?\կ&?_('?֑ω'?+I'? TK(?c(?%z )?~m)?Wo)?YG-*?@*?.5*?FON+?KSV+?BgI,?#P(n,?,?P֬--?rpQ-?tu-?_L.?ɫ.?2 /?`cj/?Hqi/?6H(0?l>0?0?/!E1?5[1?<2?T)a2?Q2?M3?>}3?93?694?5v4?vl24??T5?~׏85?6?0m6?6? ^)7?u7?*x}7?A8?".P8?8?(gY9?9?a:?(U4q:?H:?.*;?u;?B V;?Y@?n2k>?HO>?0Z#??*Q??6??s7@?kƒ@?fr@?Q JA?1A?B?&h\B?3B?{FC?̙_nC?1C?5$D?TJ&D?pLD?Ю<4E?KE?@]1E?]DF?&nBGF?\>hF? TG?H-]G?lԔH?bH? -̼H?|I?pI?3XI?g_$J?{~J?2dJ?NYL1K?ƕˊK? F9K?EE=L?ܖL?4AeL?77IM?zwIM?r$IM?ؙ6TN?iN?24O?>̑^O?[6O?(P?IhP?߷P?Q?ʀ;^qQ?NJQ?J!R?:T?yR?+R?)S?^S?kS?^%1T?v4͈T?\,cT?=7U?/*ZU?$tU??>V?kcEV?4pV?7CW?ᏚW?W?phHX?v:X?HX? LY?|+8DY?DY?PGPZ?tԮZ?gNZ?yHS[?j?z[?_[?mU\?]ڦ\?*~]?TPlW]?5]? ^?oOX^?O%%^?BBv_?7EY_?w_?@]o`?mY`?u,`?$ =Fa?ONXa?6Da??*b?x($Vb?b?qc?֭Uc?* 1c?dc?ůLRd?X7d?F-d?a`eOe?|~?>~?p'n-?Xa i?w۷?s?R3IU?d磀?.cv?x@??c?f݁?O,?%Nz?1d|Ȃ??d?'?t?OsN?6B?ұ? ZB7?ZM?>҅? [ ?m?x)?~q!y?EU?:V袇?;?DW=?R? = ׈? #?!p?{|?n. ?V?$Ob?6?W?F??;оOݐ?b(? ss?[־?9t ?0T?hҟ??S5?D?:ʓ?띙?#-`?Fd?d&?2&??:`≕?N)ԕ?.vb?h?⸤?_G?F?n? 4 tڗ? B$?n??RpQ?ZJ?QFe?ı,ݙ?ǰ='?EX p?ٹ??|9L?qR?>~]ޛ?Y'?4[Ep?a#?v)?{r J?c?~ܝ? Y$?im?\@?p?PF?ᙎ?%֟??FITg?:E*?(u)?2{??dӢ?Ρ??@H^?C~異?^G‡?Z]5?X!T|?\ã?v]V ?dlvR?w<噤??D]6;(?MOo?a5V?M?5+ 7D?L{?`}Ѧ?Y(u?tJ_?XM륧?mˇ}?O3?1vy?^ݿ?O6?G1L?黒?@ة?~:?6ue??F?6?|?|«?cO?¯2M?0c?S*٬?&?~d?پ?:?$4?N_y?r9̋?0!?OH?Z?Eү??m\?^7?J1?VW*??k b?f¼?L,?Mc!G? F?F+]˽?yff ?bO?dQ?Tu2Ӿ?` ?R$$V?tDŽ?u/ڿ??^]?(?Pt^V?0q!? c?mf?'y]?c&?p,g?\?j ?+? l?M~?z?.?>3Ho?-c?H?)1?q?m(??!r72?VCs?uK??k3?Dt? ݨ?.]?#K 4?LW2s?^.2γ?~?b\3??s??PQ?P 1?]q?(yvа?/6?z/? ]n? ?)fK?aUp,?XWk?n??l*(? Ogg?>?Հ ?O#?Gxb?h?&#?_~5>?6\?h,?8?|@?V2V?p?ľ?XK?N?Ħ?[?'f??F?\?l?ŭ?T%?>Z?j?2=C? ?zG?c?I?a,?64?u4o?W#+'?H ?DW?YZ?6Rw?hC-?*/ ?uE?m?? ?t/?2i?K,?ww? $7?mmyR? ?B(?b6?tw9;?w@0u?+?y;?fr"?oҔ\?"6_P?d?ju ?*$?Z&v?rn?t_?Wj?|\U? ? D?LlM?813?_k?4ע?dND?f?>H?RLF???k%?^%\?XV?`?X?>9?vo?-0æ??:U?$4K?f8?E ]?fu?'%?*t[?t?Fw?4r=?+5?^k?B?HI?p?$D?N~Dz?fS?l S?ʰE?-tR? N?.>?K? )?#cG_?(:??6?5?k?X)s?%?g%+ ?cv@?u?&?ж?t'X6?TKJ? U?T?v8KH?n1?0S? ? ˬ?̠j?,&?ΣZ?h|ed?X??T,?Noa?^\ו?E4?FT?,k2?G 6 g?>?tTPf?_X?E7?h3ik?Xv? ތ?t?(Q;? R$o?>?B?XK\ ?p>?q?D5??YQq?!?@?v ?< ? n ?H> ?` ?#Ӥ: ?(#08 ?lh k ?Og ?d ?J4 ?574 ?1ugf ?t` ?) ?8{ ?7'. ?A` ?lǴ ?:ӿ ?| ? Q( ?bTcZ ?hۋ ?z ?(J= ? ?$^vR??*ֆ??0n?dI?4.{?~?ԇ<?0?ң3@?=%\q?uOz?k?x{? 5?"f?Ixz?l\?^4?Q*?FZ???|]?0?~UG?:Yr?xN?~? ?s4??XJ@?zɩp?X?$0?ii?1?~Ha?}ؑ??v?!?fQ?h́?H??RQ?KA?}p?q|?J"?|?]0P/?^?W?̽?X57?o-?bK??{?1?D;??#?滜k#?Sؘ#?%& #?׽3#?XœS $?,jM$?swz$?{$?ౝv$?A,Vh%?8P.%?и.0[%?R%?tHӴ%?%? Q&?*;&?\|g&?۩J&?&? j'?llF'?r'?%F'?7'?O'?3I$(?u7P(?O|(?4?薽mh4? q /4?4? 4?8?5?b85?=ub5?65?EF5?vmd5?\{6?'16?BJ[6?6?.6?ġB6?'Ʉ7? }%)7?ZR7?||7?77?rCO7?F~^7?'Re 8?xcI8?dYr8?lnG8?V,8? 8? i"9?O>9?!ng9?{Ǜ)9?=ܸ9?9?* :?22:?NB V[:?ԗ߃:?`:?A:?vJ:?`ڲ%;?N;?jv;?٪j;?;?U@;?kzw?xrBG>?Pn>?<>?v6>?>?Bu ??5??H\?? O??dx??C??"Yp??}!@?غ\.I@?T-p@?p˗@?t@?hXI@?{ A?e4A?Ӊ<[A?A?}mA?A?(A?*=B?2EB?ŠlB?4;B?.B?kB?6C?y.C?mUC? tg|C?HۏC?F:C?QC?gD?co=D?8xcD?,oD?D?@ND?Nw D?HD$E?cJE?n*,pE?BE?˶1E?"`fE?~ F?U/F?fUF?+{F?F?pF?!CF?G?9G?_G?:*G?׽G?]RG?@G?H?(sBH?&DhH?rH?z6H?7(H?H?QsE$I?&II?,CoI?MI?3"I?D&9I?pJ?N7*J?>bOJ?tJ?ġJ?p5=J?|wblJ?W K?.K?pSK?T٘xK?j*K?n'K?K?h L?\~1L?j~iVL?fw{L?5KL?LL?xL?2M?8bN3M?J`WM?Լۢ|M?kAM?QM?OiM?<N?6r3N?fWN?,g|^|N?ɠN?pH,N?!8N?hH O?)2O?nVO?;zO?O?<O?9O?RZ P?+Es/P?ӄSP?wP?ˑP?8P?FP?lmQ?PS+Q?N1OQ?HsQ?EזQ?@AQ?:_Q?XAR?\G%R?wuIR?;jmR?R?˰]JR?R?M.^R?8-S?TBS? _eS?K.S?\ S?wES?P >S?v@T?9T? ]T?~lDT? sT?T?lT? U? 8[/U?kRU?luU?hU? U?2U?eV?ԓܢ$V?/|GV?Q`NjV?oV?_ݯV?k82V?~OV?W?e:W?lF]W?þW?qW?$W?ڞ;W?~A X?7t,X?L NX?{ JqX?̫X?ՓX?}RXX?p X?&Y?k&?Y?]aY?ÌY?“nY?Y?fY?ך Z?<.Z?ݻPZ?ރrZ?­Z?Z?rZ?pZ?z~[?i}=[?TWK_[?[?dsӢ[?[?0s?[? 6\?Kڏ)\?-K\?l\?8T\?ޯ\?vn`\?I\?P]?`j5]?Lb%W]?2x]?,ޙ]?F1]?|]?}]?^?6@^?|0hga^?T)^?&ܳ^?B^?-^?%_?h'_?`H_?EKi_?TI _?zb֫_?_?n_?#}t`?rxFF/`?>WP`?5p`?Sg?)ْrg?n?S%n?JCn?|zan?*un?{Rn?gO)n?n?:ԥn?_t*o?yG2o?LOo?,mo?X^o?pqo?xo?o>o?s Vp?.`p? Uu?˟u?"9u?y@Uu?}Aru?u?Su?EVu?Du?5v?ںbv?8v?Tv?z;qv?Wxv?::⮩v?wv?@/ v?®0v?+kPw?ej6w?l~Rw?6nw?oՕw?" Ԙw?Nw?Uw?]lw?kx?Q2x?2Nx?{ jx?:x?|Fx?0!|x?dL@x?hx?_y?j,y?v*Hy?icy?}by?^y?2ay?$&y?X[y?7 z?N69$z?J)2@z?ا[z?9wz?z?'R#z?3Cz?z?z?<={?z݅6{? pQ{?mm{?J<{?nOn{?{?*׭{?b{?@o|?}|+|?"$F|?*/a|?Rd5||?ZJ5|?e/|?b$|?|?}?KF}?BQ8}?T%S}?umn}? -<}?}?WȾ}?_q4}?>}?f~?3)~?nFD~?*{^~?|y~?P2~?Nb~?%"=~?ar~?OTF~? ?B93?aoM?Z3h?Cn~?hߜ?;?re??h/?"u ?}:?HNT?M(o?4Y?;b?\?Ux׀?n?א( ?0&?~|@?z Z?|!t?a?˜1?a?6ہ?W? $ݶ?N)?hC?_9]?w?&H̐?Ҟ?k{IĂ?-ނ? ?]?+?\D?;B^?mw?k?q?ă?uNރ?%T? "?6i*?C?G?]?Av??7X?„?8ۄ?@C??6'?BM@?3Z?"~Ѿ?ׅ?I?v ?P #?#:?kcjR?uj?;#?x? ɳ?(L̉?WZ?ћ?e!? z-? 0AE?"kOo]?r̗u?W?٥?s?RzV֊?Y#?3#? (?)6?(&N?dTf?hb~?? ?!孋? &ŋ?Qݧ݋?벁?V ?T&%??gd?9z?O? ?L ?Ҕ?"iV?629??|*? ߩ@?ėV?Q+l?9f?|F?Fz"?P Õ?ٕ??pėe?5+? _0?hF?Ua\?s%r?힃ć?Sqo?zx?Ȗ?Uޖ?? ?T?v4?{'J?vk_?AUX)u?¼?݈?%?Kʗ?Fa?Zp?Tp% ? ?Q5?y3+K?˥y`?u? ?fK?-6?ʘ?^Zߘ?i%?J"Q ?lx?4?TNI?ڭ^?(s?M`? ?C+?ș?~gݙ??ظ ?^?20?XE?ǗZ?"o?PW?+N\?=2?LinÚ?ך??!9*^??;*?J??MFT?.ۻh?%}?#G?֡ꦛ?J%?zo#Л??^K?= ?4aub"?F6?jhK?(_?]6^t?tS҈?zJB??ШƜ?Ƣzڜ?Q/?%5?ƌ?+?۴.@?XoyT?tah?n}?1|@?8Az?C԰?w͝?g?D;9?/t_ ?Oʀ?t2?.wF?-Z?pn?6邞?a?@?f?eҞ? ?.7:?T?PY"? J6?L'J?'g^?zCr?U?F?x??bQ՟?K??f?F$?7?6K?45T_?Vr?q?|=?Eح?Oo?Wՠ?41??̣?&#?"6?~ J?J]?d q?'z?եE嗡?iL?VΔ?Bҡ?j?1I?@ ?c? [2?E?VP:Y?l:yl?[?.풢? ?}V?:h?Y[y?*I?`iۜ?҃i?$`?{Ѫ?^mS?k?&?t??.9(?Rd\:?`7K?4]?n?HHs?٪g_?yͻ?.o?Eiū?]֫?~ ?ST? ?B;?mF-?r[>?ŔO?~!;`?*q?9*?zU?%|?[?9LǬ?8ج?L7O?) ? ?`.?L9.?LaA??yFP??4?.\'?sP?@aǭ?׭??̲?z ?k?R&C,?'=?ekM?Ng^?}o?D?0?"š?́?f1:î?(Ӯ?s'?N?˹?rs۠?fD'?E=7?RH?-Y?eJi?-Ez?ܬԊ?M`?ø髯?ln?$̯?Zoݯ?ό?^^b?i?G?/?@?P? `?RJq?Z̧?_?6vW?|?G°?;FӰ???f?"U?nyB$?|4?cD?-/U?w?^e?n5u?B۰?2Օ?{E?CS?´a?:Bp?n~?f⌺?l9-?Xu?5غ?DFź?w<Ժ?_y?S ?.?d ?xN?⛩|)?XZͧ7? E?aS?b?`7p? T~?9m??ԥ?ϩ? Ļ?:iһ?ʐ?t?|@?? ?S"?MG&?ŏ4?PB?لP?C^?> l?"lz?LR?T5?R?~?oο?fzͼ?TK{ۼ?AM?[[?z?dWγ?]z ?HZ>.? O?$K? IY?Øf?ns? 0?|Ǘw?dm?R?|=?Vzÿ?>п?hݿ?y ?ɝWR??Zc?c?%,?c3#:?p|DG?bbcT?6a?2ؙn?c̰{?:ň?#֕?b?F?[g?,O?SG?6?ą?H?Is ?Q(?j$?^ƹ1?pŴ>? K?ڹX?nŅe?d,jr?SK?+?v.? h?碸?E?=?G?:jl?M?F ?^?6"?F{4/?p0;?U?H?rT?$p?a?dm?@L6z??r"?g?e?.q?*?;D?YHé?# ?5m?L!?Յ&?,*b?i'?)4?z@?БL?PY?=w_e? q?)+q}?S-? Mm?w?2!? I?R?/?¶??_?+9?ɤv`?^M?a(?664?z]@?"L?/nY?*)e?ԗ?x?mY?Y?IS?c*I?w??n\?p?i?Y<?]?t<|?&%?00?xw;?SF?Q?u}]?h?,s?'~?{z.?>4? k7?<|W8? 7?Xm3?Ok-?2%?*%1??ja??Ry ?x?1"?P 3-?w8?YC?8N?_Y?Pc?^_tn?y?/t?F?p?"l?.0Ʈ?hw?Π>??;?zk?8yD?v?/?> q?R '?i/%?"0?)9;?nxE?ѺܐP?9[?e?p?)${?{ą?ha?=?eӅ?S,?hA?lS?Ҩ?q?l??U?ה?%2?e?>r$?Y.?P49?XC?.M?ÁsX?b?蜼Um?Kw?ek/?[?#?8e?2ɫ?"R*?PR?2? @?H??6D?=ʖ?Mx?45?Z?'?8ʎ2?80X?"?K? Hq?x?蠕?L?sV?"){?2N+?dC?ڗX&?F`l0?R}:?ZqD?N?DX?ؘb?޶l?r3v?LrB?N`?D-s?4y?Zt?(d?.TI?=I$?r?9? |n?P2[?tE?.?& ?8C?w P?lۼ)?\a3?w=?^RG?j*Q?J[?<-d?'n?wKxx?_$F?_? yݕ?&?=cl?+0?+N?N(?r?x`z.?l?RJ?oW?-7% ?b ?[ o?M?jP'?`t1?V;?scD?7hN? X?va? Jk?N4t?~?P??̾E?Fؤ?i?P? ??7љ?Z ?$?}a)?뫪?d*?҃j ?P"?Nc ?T*?ƚ3?vN5?гo?(Xڍ?~7?\?u(?)1?W9?t!mB?<' K?2iS?HD\?'d?vʛvm? v?aF~?3?[ď?T?薊??3:m?")?_4Z?|P? }?q ?`[?w?8ڋ?l???Tfq?*t?#Y ?W](?V:;1?\9? DB?StJ?jR?P[?6-c? l?Q|t?.?m|?L.;?3z?{>?LL??F?O?p??B?m"?Gw?%?K!n?JS?^?[j= ??q$?Zx"?zg:+?c2u3?W;?P!C?L?@~PT?.\?0 yd?l?-u?<}?z/f??8A?ڝ?'??Q#@?y^?Zw{?( ?i'?M?" 5?@?q??Su&?pkd4?e@?PK?[NT'?v[/?VZa7?\je??gG?VhO?gW?Be_? ag?\[o?Sw?J?E@?"3?&?p?_X?hl?w"޶?Ⱦ?p?)?PC|?_?A?FK!??+??rGђ ?TVk?FA?m%?,?>ӻ4?o?"E?IML?h.S?VZ Y?g`?5-Zg?6n?t?{?~*Q?f ? ď? m|?EZ2?[W?輚?IL?j??1Z?*?HhY?*\?o??-pQ?=?l3И?Xv:???Ly?VD? P~?p]N"?Z(? /?Mh6?W? .?X ?X?n ]k?tK?/V7&?D9,?>:2?ލ`9? P??Ye F?,~L?rR?5Y?!_?De?a?l?u烕r?Ha1x?t=???N,t?/?S)~? ˞?|?nI a?A?a?BAV8?χ}?p?X?DiE?z?C?y?0A>?jBx?? ?"8*" ?X?j›??]?l?y?.?eQ?F??|?d?pq¶??^ ?m?j?]d?t!?Hr'?*뢲-?'Ù3?dW9?ܜ??(E?+;K?|Q?#nW?~%`]?YPc?V?i?-o?Su?{?{t'?P؆?ʿ?XL??no?.R?6)@4??V?;һ?a"?_?,e?Y>?l?VL?@X?4x?j?<Jl?XXq?}Qw? [|?iT? fԇ?psS?В?M?pȝ?bB?]|?R~3?p熪?/? ?vڔ?W??'z??פ\?G%?%9?xޥ? |?h&|?z?M?A?i? v ?h? @G??kG ?**i%?B*?J$0?.5?0S:?^6@?LRE?]-J?h=P?U?P/Z?;`?e?Z_j?`/p?ͷ~u?z??we?()`?$R?ZB?{=?uП??`Z?Z?Dߴ?o ?$`?i?xT?U?OHV??d17?γ?:?pxp??i?R2 ?x5??s;p?Z1 ?f??ʴ)?lU"?H\'?`,?:1?6?|& B?츷?MW?jDg?ΰ#?'?S,?tܪ0?5?"(V9?^z=?rA?x%uPF?"J?N?^BS?͑W?[?9.-`?yd? h?Hm? &`Yq?I:u?3y?@M1~?&w?/߼?3dX?D? ?Ԇɗ?J ?BJ?@݉?<Ȩ??Wx`B?D7%~?r ?H?^@,?Md?}??L?&=?:-%q?8G?)?.?t8?g(8h?v?z ?Җ,?r?;I?0ot ?$% ?(<??L-?E|<?|a"?&? Q*?(;.?L2?P<7?0;?mP??oC?JG?K?ȞO?.oS?W?"\?QY.`?2NFd?׻m]h?Nsl?(p?f ŝt?㎋x?b||?ր?T?N?*R?P?e$?~1? >?-iI??!T?k]?af?jo?|cv? |?:?j? 7r?p?` ?&2?Z?$G?b??H\%?̊?t??p{?.Cu?&?i?6?֭?ŕ?m?ǒve?[,/?? aF??FN?Pa? 0?Y(|?a?tL#?? ?jg?'?E?)'?휈a?%"?%?)?TfO-?T1?4?@y8?1w?z?s~?,_;??f?Vb1?א?8w|?0!?dě?,g?_a ?'{?1L?*?nd?)?Ǹ?Rd?[?,,l?t57?6B?ڒj?S&?W?h 2?Fv?+$^??*?n;??N?G??w?P]a?.A?|?5/?^Ǜ?( ?6ɴ?3@?3j?6T??f ?fg#?G8yu'?L**?ar.?Z2?:5?'9?D ?d`-?hx?Zc??(?k?N" ?u#?]&?^v)? c_,?G/?/2?5?AK7?f:?o.=?w@?㲏C?@sF?NhUI?. 8L?qO?v,Q?ЂT?W?#Z?sx]?zV`?>:V4c?.:f?p`h?vBk?,dn?~q?ҢXt?K2w? z?nQP|???Hyh?V]>?ɬ?,g?Z?~ ?c?z&5?Py_?؞?P?Hly?8H??4QJ?`?&T?|M??v?ʆ?~Az?yD?^ ?&?֩??.f? -?4?PQ?s~?=C?VY?&?ߍ?/IP?:9"?j?"?~JT?X?8?a?IO?8 ?j?#?0NA?:h ?&1 ?fp?$X^*?2=?Nd?, OS?c? ?:#' ?=w#?j,&?L(?-+? J.?!^0?T!3?aXb6?9? p;?Lu>?3%A?A#C? F?Eg2I?Qu6K??yN?^/:Q?SZS?DZV? =Y?,([?zꋑ^?a:a?!c?6f?4i?@Ek?f|n?FJ((q? Cs?brv?v%ky?Gl{?^~?}?1? F?TPX??}W(? Ȑ?10g?d?N㣘? oA?qޝ?Nkz?G?5fD?#M?z?jI??nM?K?T1?Wz?"7?T ?H?@?JSC?D~E?0HH? -J?B;M? ֳO?+R?0SxT?xW?nY?M"\?:2|^?4`?qCfc?dMe?0Mh?j?Hf3m?no?Mr?t?5v?hy?{?**G~?b?H#?4:?E?^j?֌?kB?pz?j ?&?䴯?VT?tZ?8r%? ?H(?1Z?&?T=&??jcU?GT?+?3[?n ~?&B?4A?e6?M%?rE7d?T?F#?O?Jc?8>??m?DT?*߲?@ ? g?|?s?zt?3?u&?~?b?%-?>?<9?/? ?a?-?`U?$?z a'?0y ? ?&?m?-?x?jv]??ބ?)!I?N!?,#?o0&?ǘ|(?]mI*?-?A^/?4≨1?Y3?y;6?#8?Q:?y=?d\??fA?%C?d0F??{uH?źJ?ލsL?⺪CO?kQ?dմS? V?OX?ʑZ?ڵ:\?i4_?Ta?Ŕc?82]e?~h?|+Rj?nxal?rU"n?m q?CHs?u?%w?y?.7|?ϔq~??O?B~?>8W?}?]ONj?"?VД5?^ l?Wc ?Rז?Jz ?UA?Ӈu?H3F?*ܡ?uh?>A?;s?W?(+?9U?NN?!6???H%?:lM?u?U`?\1?@?S? 4?C Z?<~?آ?R? ?' ?O-/?*Q?!r?`Փ?n6?D? E?JC?)2?dQ?)wo ?, ?"lO ?P?l?U??5?wP?j?g?x ?"1"?>$?&?;(?>+?|ߧ,-?JpB/?X1?Wn3?,b5?"7?<09?;?ʀJ=?n4??A?%O D?rofF?"-H?}i>J?NNL?J^N?NcBnP?@]}R? 4 T?*VOV?&X?+{Z?8\?z_'^?:P`?.b?}ad? &If?i?gk?,~m?C'$o?l-q?5s?N1=u?Ew?(Ly?*.dS{?=Y}?_?he?(3j?b n?,s?:v?qdz?hh}??,5?q?R\?tR?߆?H?¾?U5??>'|?є?[E?|?̘ly?0u?anq?ʚm?:h?<ұc?ԧ!^?)X?_Q?lK? C?S?:?^$A?|ٖC?,tE?QG?z®-I?TJ K?VL?AN?JL P?2]vR?pBQT?^*V?v}X?Y?Jf[?Ɏ]?_f_?<=n>a?c?dd?Mf?0h?nj?,PDl?-Pn?eo?v/q?`Gs?YPiu?Bnqӎ?]?n?.N)?c?Ha?w7 ?^6?w?Z?J?|&U?,)V?pX?DҗZ?[?]]?_?QԤ`?Gb?Aoc?"e?fb.g?Uh?@qj?l?g9m?So?d|p?Mr?j2t?`bu? pw?Ry?Kz?nI|?d?}?~:? ?82?*I0Y?q?JS.?.+?nŊ?3`?Vu8?蓏?РE-? ?vI=?u?LK?;?b4W?~?a?ԣ?qk?6 ? |s?|o?z?Ju?$?x?E:? ?l˔? ?n?aL ?C ?, ?B7@?מ ??|p?[?*' ?E߂?Nh?:}??I.w?~?o ?,6!?ݝf#?m$?a\&?D'?V2Q)?6*?ZD,?~1-?6/?90?8(2?3?5?kV6?8?d}9?6:??j]:=?~mU??I@?_@B?~'C?L)E?6zԝF?vH?PPI?J?SݛkL?OOM? PO?P?0 4R?X(S?aU? OV?lW?NGiY?PMRZ?I\?P]?t'_?un`?M b?-!hsc?dd?Of?}g?1)i?kj?Ȅl?ȶ.om?W n?cwFp?x$$q?n6s?>et?T|u?\w?:?W;?ae?#E?? @?`A?0TC?5GD?*EE?6F?;H?EI?̄J?{K?pM?,@N?~O?}P?Q?L=6S?>$sT?c˯U?,1V?/V(X?z:dY?ޟZ?lA[?c]?\yEQ^?_? G`?hb?I:c?N4sd?!Ie?:hf?Hh?n1Wi?JGj?{gk?KBGm?/7n?QGoo?޴gp?fHq?Dts?JJt?lu?DOv?^Bw?0U!y?0!zVz?_{? |?ik}?Ԓ(?+{\?x$?ʎÂ?~-?d)?YT\? =Î?vd??$? V?˰A?8?X?-l?FI?y?Ȭe?ؕ?W*?/7?Te?%?(›?,l??9L?gy?򣦡?$|Ӣ?S?8u,?CX?w?X?۩??Vڜ1?L\???ڰ?ߋ?Ao).?kkW?zp?P8?sѷ?O?X%"?I?!q???S?h ?4?I25Z?#'?rݥ?H X?<?j"?D-^:?H^?6?H?w?O?nt?<5?j$X?/z?eB?fw?\q?G/?F@$?EE?g?Mه? /p??p?2c?j{(?AlG?& g??tD٤?]?@?&˶?r?P%;?CX?Qu?d?E?6?????hO;?V?q?"?;A?V???p?oH)?}fB?x[?83Pt??S??r?"+ ? ? ?2 ?j>I?sn`?̠v??D ?(d??e?~yr?/F ?k3!?E6?koJ?3a^?r?W?%? ?>˾!?,k"?x#?$?o&?r{'?X>+(?@6<)?!M*? #^+?LI*o,?-?,я.?џ/?N'0?)1?2?03?E͍4?T3@5?. 7?8?0 &9?3:? }A;?JeN?[u??2W@?ӪA?$ǚB?C?R)[D?ҽE?#F?0MG?+H?bI?mJ? W%K?M?N?&InO? |$P?*]-Q?6R?V?S?VGT?EPU?}VXV?]1`W?9gX?EoY?~vZ?#}[?]N\?]?rvG^?js_?i`?[*a?mb? c?*d?Ǎe?ʼf?~Jg?h?i? j?4k?Vl?m?*n?o?mp?Gq?r?ns?#Bt?N{u?v?=w?^6 x?y?^bz?{?m|?}? ~?Q(?%?~?`?dK?gf?,$?B?">-??e߉?A܊?ً?䔵֌? hӍ?ώ?^3̏?GKȐ?/đ?P࿒?$]????h?8O? ̡?b ?*?5 ?1?8?|?u? {n?|F+g?چ_?GW?u P?8G?Xcld?E?{^'?M??Ȫo?I?ꔋ?Ȗk?WL?6+?$= ?tN?f? ?a?og?ᯏF ?%!?ej"?u"?o #?-]$?z%?DqX&?J5'?(? {(?y)?z *?n+?Nna,?=-?Uŋ.?h;.?m/?\0?<<1?8b2?h=3? 4?@4?xh5?86?.'t7?r 7Z8?|_39?&7 :?jt:?6;?ői?_ "??mV??? F@?P A?΁B?PYC?0D?zE?gE?LF?ƎFG?*bH?#9I?0J?'J?ܛK?`L?KjfM?ZJ;N?ofO?|VO?P?pسQ?9!cR?c7S?y T?0dT?Y6$U?V?ty!ZW?"+_-X?iqY?XY?Z?إx[? K\?JgF]?V]?:^?_?Xd`?8>5a?F b?z.b?:c??yd?pnXJe?f?4f? "g?(xh?q?Zi?R,*j?Cj?Pk?tؗl?fm?w5n?o?rlo?>p?ʸnq?z?( {?{?xi|?XGn}?gw9~?:??Ԛ?>e?A0??& Ń?n/?LP,Y?q"?A?U)?P?H?n?ڊ?RB?k?fM,4?c?2rĎ?ȲW?RFT?<??T?nq?Fw^8?1&?:ŕ?;?XR?R~?ޘ?>!? *j?4ŭ/?Rl?^:?D? &D?0V? ?̸?z4?"K?M ?iȻ??%F??:¾? р?6ܼ>?V??ȕw?4???zk?V(?91?.?]?j?J?ޝ?_M?U?:?n?|:? yd?y%?j?<5%?&?W?ݯS?N ?mB?Ӏ?v=:??c?>e?k?"?9?B H?<?wR?? ??k??Ch@? A? iA?|J3?$&Tȇ?M?]?2 ?,?@I?*L?CD? B؋?Yl?Q?k*?2'?4??+O?{b?tu??d&Л?V.?s?ރ.T?`?,y?~ ?v?P/?-?ƏS?X?v?Fw?jڙ? +?PG?@QM?>=ޛ?6 o??SP? ? ?NXA?uџ?ua?[W?Y?s?TL?{ָ/?F?js9N?HMݤ?rDl?X?ۉ?ldz?~?hla5?n3è?Q?eߩ?8m?E?^[?!?*bq?1?C?8L?wAٮ??-f?.?aJ?C ??b%?V?>y=?~ɳ?gU?`-4?l?|v?탶?bG?[?%?j?m;?k^ƹ?+ Q?ۺ?#Xf?gp?#z?b?\Ԏ?+?8L?:,?ϵ?W"G???Q??\d?N?4u?%}??c`??3 ?[?g0?~W?t4,@?.?tO?m?g^?,?l?"?z?}?Y?6j%???"k?ï(?º?Vb4? ?i[d@?C?ǡK?Hw?qV??`?6? j?V?{St?5?o}?;??uN ? c?6\?\:??D?2!?J6?'?9?9Z.?ha?xM4??9?np?>?W?&C?R?1G?ܚ?K?ӌ?S8O?G?s@R?=? QT?C?rVW??ЮX?G?=Z?m?5[?$S?Z[?z"?([??b.[?+\?Z?{?(XY?j2?`XgX?@Ɓ?}.V?Eh? 5T?~?Q?&?]cN?6? 5J?]?zF?wD? B?Q?ua=?c?h8??h?3?fU?Q-?4?&?D?C ?X?z#?&m?L`?-? ?\??`?f}?e?<(t?2?`j?H ?_&a?&?0'W?J?JL?+-?BA ?ܥ ?Ij6 ?⡰ ?v* ? Ƥ ? ? G ?@ ? ?k? ~?2?qq?v?5c??+m?O:> ?V ?D)!?!?}"?j҉"?g"?#4t#?p@#?5^$?$?tG%?y%?1&?8&?K'?I'?B(?v(?(?6Y^)?ji)?(F*?mϹ*?_-+?נ+?k7,?',?uI,?m-?,-?DS.?/.?E9/?o/?u0?0?ލH1?ʶu1?*{1?#Y2?$2?v=3?&3?I!4?^4?fbw5?u5?`H5?땎X6??6?\:7?ի7?;K8?c8?mbK8?Mn9?)|9?4O:?P:?0;?_ɠ;?x6?>???Jy?????Vkl@?>@?h{ KA?hA? (B?%B?[C?E/tC?qC?5QD?,D?Ȼh.E?x荜E? F?YxF?6vF?9MATG?G? /H?H?v I?wI?Ns,I?iZRJ?<[rJ? s,K?^K?3L?OrL?L?,LM?dwM?n%N?]N?N?zչiO?O?AP?.ZP?hQ?:Q?9Q?D\R?6R?83S?ZS?? T?K?tT?T?NJU?RqU?4 V?V? yV?4_W? 8fW?P4X?@X?6& Y?F;sY?l4:Y?to#GZ?Z?ݴ[?B][?[?lW\?\?%*]?j.b]?]?1e^?.ĕ^?{7_? L_? `?rq`? ">`?WBa?ba?nb?ϩ{b?Xb?rKc?vڳc?d?pd?Kd?fRe? e?}}!f?cf?״f?Wg?[g?G)&h?%h?_ h? Zi?4i?xE(j?؎j?>Wj?[k?k?YrT(l?~l?Kl?nBZm?(m?X&n?&#n?hn?d_Wo?'o? hR"p?p?$p?̓"Rq?n>q?>Er?/8r?r?FJs?ݓs?3t?4xt?5t?7Au?u? v?Cnv?Sv?fO6w?Ԑ6w?G w?܎ax?kqx?)y?y?sy?LSz?z?{?|{?'{?(B|?W|?~}?4k}?}?d0~? ޒ~?4nC~?.W?ѹ??~?2j?(A?գ??),Kg?$Ȃ?P~p*?(2勃?XE?^ÒN?ި˯?i?r?҅?`3?~꽔?Ρ?-V?LǶ?M?w? j؈?Ej8?6ꡘ?h?hX?Ѹ?ܬ?bx?/Q؋?7?XI?v?V??>?Nwt?L^ӎ?2???|v?Ѣ?$ ,?yW?? ,? 9[?ѵ?|?j?I#ħ?xv?w?UѨ?Ʈ+?~?@MI?sK?>:7?5N?h٤?w؏?G4R?yǨ?H?<6U??4+b?X?uŮ??2Z?$$ְ?}?>B\?uH??6]?`?ܕ?m]?@S?!?FK]??M?-\?4?,?+w[?I??Y?j ??wV?P;6?xv?vS? 8ç?\?:O?O9?/?@UK? ? ?ȁFF?ə?;? @?? ,?Y:?(v??8}3?g? m@?b,?e~?ye?U#??~v?:??T?Wm?z??!6d?jD?tA?.Z? ? ?&O?D9??5?Pҕ?w9?׏8?GoՉ?c ?.,?-pB}?ЎE?@8?p?8w?zS?,\b?w??Ƌ?e T?vx??5$E?/a?B?m5??p? %?ŏvu?@?1?ad?=?L?l?S?᧢??D HA??H?<.?}?Ƥ?|j?zj?΃@??OV?>3?zK?D/B?.?h ?0-?Tf{?w?A?e?杳?ƃ?!YO???{8?"3?h?!?Lun?Z̻? ?hJV? r??^=?"_?:q?xJ$?q?˽?Hu ?W?<瘣?3?}?x?*?Z? {g?0l??^E?g?|%?wn%?-&?m&?򍯭&?f&?^+-'?(?\(?p4+)?̭j)?h)?x)?Ci(*?Wh*?`RG*?\r*?v%+?d+?륣+?GK+?rƇ!,?`e`,? 6,?,?-? 1[[-?-?-?s .?:U.?.? BK.?Sۛ/?BN/?/?'A/?^ 0?roG0?&s0?&nk0?BV1?i4?1?J}1?ʺ1?f1?y.62?Dfs2?f_2?^k2?s^,3?i3?+3?4g~3?=!4?-^4?H-4?كN4?;c5?qkS5?)g5?eV5?.(9 6?sG6?Jك6?6?tG6?/97?8Ov7?7?Y7?cI,8?hh8? ä8?8?cR9?Y9?rb9?9? :? I:?؅:?:?z:?u9;?u?I>>?y>?D>?UR(>?G,+??N)$f??????g@?>Q@?F@?C@?tיA?j1C?ojIC?C?,C?qC?Rԣ1D?XkD?yD?QD?E?~RE?:2E? >E?t_E?Cn9F?^rF?nF?BF?8@G?XG?xqG?""G?UH?~=H?$vH?2IH?^H?ȩ!I?ZI?LyI?IPI?J?=J?cvJ?5J?LJ?b K?XK?aK?K?2L?:L?|rL?mL?VHL?qM?SM?xM?lM?`M?ޑ3N?BukN?^NN?N?lO?)JO?0>O?N5޹O?YrO?(P?Dx`P?P?a:QP?ґQ?=Q?0DAuQ?zQ?Q?zR?QR?<*R?tR?R?2-S?adS?fTS?LS?, T?ݻ?T?bvT?T?>T?1U?,PU?0U?bU?U?V *V?ԃL`V?#V?uV?&W?r8W?nW?5W?W?7X?KFX?W|X?^OX?c X?gY?nhSY?wY?Y?VY?Ú)Z? _Z?3rZ?oZ?hZ?cc4[?i[?͞[?m[?U \?_>\?s\?\?sY\?]?eF]?H͑{]?T]?_ ]?b^?]N^? ^?^?r^?3T} _?XT_?L_?/_?_?*3&`?jZ`?Z`?6l`?P`?*a?^a? גa?a?a?}.b?xJbb?! b?b? qb?761c?2dc?%9c?Zc?4c?@2d?Ufd?^d?٬d?d?)3e?TXfe?|e?e?te?֪2f?:Gef?Gf?Pzf?Vf?&1g?@cg? g?lZg?yg?.h?1ah?'h?-6h? Th?;k+i?.0r]i?Əi? i?WPi?;&j?1Xj?Ҋj?Pj?j? k?|Rk?݄k?Ixk?\Ԛk?il?.Ll?}l?`Ll?@l?3m?oDm?*um?tm?}m? R n?z;n?mn? Rn?-n?H;o?51o?co?2o?Ao?Fo?UCA'p?1Xp?p?BNp?p?̣q?ROLq?}q?j®q?TOq?Xr?5s?r?#or?"or?#6r?^Cs?%1s?"as?$o7s?us?Rs?~"t?ބRt?t?t?[t?u?$Bu? ru?x꾢u?NKu?Wv?[2v?иav?bsv?v?MBv?F8 w?Ow?M5w?w? w?g x?9b? ?ώ?1S ?/${ ? E6?Da?J|?2뵐?2?1o ?4? s^?fP??&+#ݑ?,-?.1?v^'[?f?/2?"=ؒ?d?U,?GV??F?;dӓ??&?.4P?#Wy?w??̔?=(??%H?Er? ?ĕ?/?HL?x@?Ni?4?g˻?.2? ? 6?/_?h?$A?fڗ?6?Ҝ+?T?u}?#?F>Θ?Th??H?q?n?+™?vn?{?8<.;?Hc?F̋?6?zJܚ?1}?Lx,?@T?A]|?F?k̛??c?ŒD?\;l??7?G[?IR# ?73?[?lJ?v?}ҝ?4(?>!?x?I?p?4??n ?(i?Ը5?|H]?T?E?ҟ? ?!?6d?:?7?5-Ӫ??OX?A?Cf?膋?O?ի??.z?4$C?g?ya?D?NNլ?.??B?fg?a͋?J,?8hԭ?? ?)_A?t9e?ˉ??LҮ?a7?lL?|Z>?=[`b?A_?V?Fί?/?F:?W9?]?:?M?v ɰ?d?n? 4??W_?U??RX|? ?^W?懺!?`SB?h~mb?+ ?6?MH? ?%?Ȭ#?՝D?20d?"K?(_?Zm?Jt?,4u?t,o$?`bD?T{Od?5???+?U?S#?C?Pb?}?d)??"m??B ?_#@?]O_?&?՞?m?{?O?d>?H};?Z?3z?w?⵸?6?/?AJ?n5? BT?3s?.Ƕ??O?^?舽?\-?UښL?k? ^?^7?D ?w?s ?WZ$?UC?z a?ur?"?w?R?e?xr?.J7?:yV?P/t?~Eh?Fֱ?¾=?\$?;R ?HO+? I?g?(?e??p?q?? 5;?8LY?&]w?g?"l?2 k?`c?)U ?A+?'I?og?@&??f??I? ?:&?D{7?$O*U?DEr?i)v???r:??I$?CA?@@_?F|?|?,??p@?d?,?,,J?ƒng??g??^O$??'?C$*?@D?^_?y?/? ?'?j??I? l3?cM?sS9h?ܗ??D?<?H?V?l] ?:?7+T?Fn?h!?WiD?sb?'%{?F?W ?r0%???Y?Cs?覒?y?}i?nL? +?Y?(?ץB??n\?ԑ2v?|?3?^? ?\*?NZ?B3)?ؒC?>A']?lv?\@?^ũ?ݎD?Ҿ?3? ?W)?sB?[?6/u?@?է?!?Mg?dl?_ ?)&?L??@yX?쏠q?Š?Iߣ??$\ ??q ?#!?":?%S?z&l? ?(?F̶?<?.? \? _,?2?$̽K?a~d?:}?i?Yң?P? |?=?.8?С)?FeB?Z?v}s????q?F?M??7?!rO?g?H5?i?]??4?Tn??*)?A?J#Z?wDr?>v`?w??ז??hx??jo2? J?~b????j@?l?]?*y?l%?39=?T?٣Gl?ǃ?B?2?p*?!?~?b?'???|oV?m?D ?mQ?.?,?h?;?2j?'?ٹ>?g[U? l?* ?z?2-?5?:? 9?UF4?N*%?A?jV?k??{??,??m???Ҷ(?j>=?^uR?yQg?/)|??˥??bc]???Jޗ ?M"?6?)K?dU`?t?\?6?β?b?/?}??ه?.?hJB?BV?ik??A?? ?rf?l??t{e?+"?6??K?Q_?gs?Y?''?PV?\?,ũ? ?6?&@?,)?d0=?Y?Q?HJe?Py?+S?wQ?K?pA?h3?z!? ?i?q ,?Ű@?lYT?<_h?.Q1|??tȣ?tY?՗N?d ? ?lz?)+?$8-??A?*@&U?4;h?2d|?$?m?#??8?Ľ?X?] ?H??U?)?C3?l@<?ŪF?O[P? Z?\nc?ram? w?D?MT?x?`Q?7?2Ӱ?ޡn?w?JW??3?~2?/W?6?Hs? g???V #?2Y-?26?P!@?I?v"S?R\?_f?xo?ix?b]?͋?;?f?ؽ?y?"1?ćD??p?f?? i?N?EZH?-cQ?)Z?8c?xZFl?^Qu?~[~?c?̳i?m?}Ip?p?~o?Ul? Vg?~`?W?8PM?4@?2?"?g?H ??x?NT(?]1?:?`C?̍@L?PU?B]?df?Ķo?T9x?yW?*??/˛?/?>Vd?6.?I?? ?̻C??t?& ?<?K?> ?gd??b'?3|0?<+9?BA?6J?-S?&[?{d?. m?u?6c~??$?;?1oՠ?xm?B?fE?* +?l ?LK??;d?Վ?v?R?V??`?!?^)?1?z:?\B?$iK?S?R\?d?n3m?Ρu?H~?y??\I???t?dո?24??g?,E?N۝??yH?):?gF?; ?lC?4?s%?h-?Zڮ5?=?y7F??yN?UV?^?n4g?soo?ɨw?/p?nh?J?N}?'<?:}ݨ? ?6?3a?É??$?l?O?x;?Z?v?M9 ?̫??W"?l*?Ĉ3?>;?z"C?y0K???u?;?z??V?y?t ?ed??ٻ?^e?8?\"?$[)?/?6?0RD=? C?gJ?H!Q?W?{X^? d?Ek?$!r?x?J?S݅?,$o?G????Xe2?һ?>C??P?*?V?T?TjX?*?oT??tK??S=?̳?yD)?i?<"?(?.?`5?W;?r:B?~H?O?dwU?_[?p Db?gh? u o?3mu?ȣ{?,?™??YB?D??66L?x<?Q?dJ?F?^?+<? -?4$?Z#?\4n?M??ϤE??(? ?R? ??j&?K,?A2?6l8?>?\ 0E?eK?Q?W? ^? 0d?Do`j?p?v?|??@;?:c??f?ӡ?? 9?$8?W?u?$k?\֭?>????1$? 8?bJ?GB\?ul?k{ ?N$??ݠ?Nߪ!?'?,-?y3?9? `??xE?YK?U~Q?@hW?B]? c?Ri?̼o?u?&{?~??4?44?p?`?_O?=? a*???(?ޮ?;?ړ??c?^^E?%?*5?R?<??wv ?O?6'?? ?D&?m|,?N2?8?J=?ݽC?@I?nsWO?pv"U?IZ?`?Db|f?\Bl?|r?w?/c}?0O??.MD?I?9~O?$U?9Z?؂>`?e?ck?p?W=v?|?D?2,?z?zA?ʗ?wR?٢?N^??=f?\?2Zi?7? g?5?b?m?W?J?JH?b?js5??? ?W ?q??N?Eh ?$'&?ő+?QJ0?c6?C;?31A?gKF?jHK?*]Q?V?\? 5a?yf?;l?Xq?v?8L|?P?́?OT?F??`*R?F??<5F?`?Lv?u0?G_|?3??DY?0?ï?_-?grq???8? x?t??^1 ?Nmm?T??8 ?DQ%?l*?d/?4?$:?V??D?0I?SN?4T?>AY?zlm^?Rc?h?BYm?s?Y8x?T]}?"?r?̵nj?? ?0(?@F?Dc?C<?G(??̺?ç?f?4?"%?d9?LK?]?n?€}?A?V?j?} ?HV?ܚ? ?x ?9?`?"?8$?)?.?3?88?&=?`B?DG?yL?]Q?`u?p~??^u???P-i??f Y?ʜ?$CE??-?⼠?z?@Ճ??zJc?M????~Q? ?>?xT?ݼ?#?9"?&?:S+?/?$4?{8?<? 0_?d?Vsh?Fl?!q?&Evu?vy?~?ap?^]†?*-?c?@&?O?M???M(0?y?L±?x ?Q?3??"?θe?m{?^?b+?އk?dΪ?6?&?jc?7?$'?8?lM?Å?=? ?V)?|^????0n)$?Z(?,?O0?4?9?|@=?0kA?t(E?AI?M?R?8V?^^Z?z܃^?Հb?0Lf?p>j?Xo?2s?tSw?r{?I?)?z2̇?Jc?׼???L7?P?4h?,?3?T?R?i!Դ?^?=?Ћ ??*?w9?qG?ʗT?l`?fl?@w???;?~q?{??Ґ??ݱ?H ?L ?0? ??q?0!?B%?M!)?.-?A?jvE?kI? U`M?VTQ?^GU?"9Y?s*]?a?ժ e?h?l?p?nt?x?|??!Xk?S?]~;?^"?r?\?Z4қ?㵟?Ƙ?fz?^*\?1<?`?GK?jٺ?쿶?HJ?o o?2J?,$??8&???5[?0?R?.4?L?~?$P? ?r? ?t?\ ?b(??@M?ъ?T?F"?*%?#)?s-?91?ҿ4?v8?<?jI@?Bn D?2G?5'K?LO? S?aV?bZ?jD^?a?e?t^ui?.m?dp?Jןt?$Wx?\ |?u? {x?ν,?>?A?JD?t5?W?gV?^? ?j a? ?񲹯?gd?Y? ? b?2K?5?.U!?D?r??Tܓ?n΍???䒫{?mu?o?ؓi?gc?j2]?T8W?yQ?FK?֫E?r??ZNJ9?+3? ʔ-?f'?!?!? }?7?P) ?*S?Ĵ?yM?k?##?Ea7?L?Z~c?]{?r?ʼ?.<?4??#?"GD?e??Op?^ѓ? ?e?/H?0r|?v?@lp?j?ژ%e?xU_?Y?ɸS?:M? H?:VB?<?c6?c90?S9+?|u%?k?t?/?e:p?vڱ?Q?.8?V}?? ?CT??h?F5???D ?q?ø??> k?Ɯ?RB?o??Ȗ?&"?m}?م?q7?l/z? t?XWo?[Qi?d?(^?CX?9MS?{M?H?dӈB?1<?`7?Z1?%=,?g&?t&!?[?[?/x? ?d?Tp?tU??+J?J?tD?~?IC?4?&@F?"k?ܵM?ӽ? Y?Q?j??j?! ?`?&?7?F?؁?Sk|?@v?Hq?n*l?f? Za?f[?V?9)Q?&K?OldF?hA?~;?D6?00?Z+?d.&?j ?{?"?D?u ?^ ??4z?n(??W?9?$?\?3U? ?j#?:z?f3?]?j?Xee?Z"?r??a?`#?Ju?d?fo?z5?|?Fw?4!r?{Xm?#h?bb?]?X?9\S? ,N?H?:C?>?z9?P4?;'/?)?$?7F?ږ?j?U`H?& ?<^?L??9??Rs?Y?`[@?_@(?30?*? 0????Y?|??? ~?ip?ػc?zX?`yM?C?W;?3?NU-?R'?Pp#}?r x?s?Ln?i?ԩd?`a_?!Z?t$U?)P?v/K?H6F?->A?PF<?~P7?޼[2?ܣg-?t(?|#? n?0b?RY?R?N ?L?M?N?2R-?VE?\^?:cx?j?r?z??b ?)?J?l?y?D?ز??%?M?gv??|ʕ?N?( ?I?q?Ւ}?5x?is? n?yLi?ʯc? ]?V?N?OD?8?N4)?e?w?X??hnmp?`&?? W?PL?32&'?vK7f?r?Hf?2.~?5(U?6?T ?[) ?B: ?0,?p ?\M?6U?QU?`8?<?(U?yJ?_?LjP?'?d,?!yXc?GE?Xs/??y?. ?|?Nn?/T?C?F/?b?c?T7?~?_??t?2B?{? ?B?M?d?[???t? ????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????~????|????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????~????~????????????????????????~????|??~??{????????????????????????????????????????????????????????~??????~??}????????????????????????~????|??~??|????????????|??~??{????????{??}??x??{??x????????????????????????????~????~????????????????????????????????~????????????????????????????????~????????????????~????????????}??}??z????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????}??|??{????????????????????????????~????????????????????????????~????????????????????????????????????~????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????~????|??~??~????~????~????~??~??}????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????~????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????~????????????????~????????????~??~??????????????????~????????????????~??~??????~????????|????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????~????~????}??~??~????|??~??|??~??}??z??|????}????|??~??|????}????}??~??~??|??y??|??z??|??z??|??z??z??v??{??z??|??|??{??~??~??|??y??|??~??~????~????|??}??}????~??~??}????|??|??~????~????~????|??~??~????}??~??|????~????????????????~????}????}??~??}????~??|??~????|??}??}????}??~??~????~??~??~????|??|??????????????????????????????????????????????????????????????????????????~????}??~??????~??????~??~??~??~????~??~??|??~??z??}??|??~??|??|??~??~??}??~??~??~??~??~??}??}??}??|??|??~??{??|??y??|??z??|??}??~??~??~??~????~????~????????~??????~????~??????????|????~??~??~??}??{??~??|??|??~????z??~??~??|??|??}??~??~??~????????|??~??|??{??{??z??z??y??x??x??z??z??z??z??z??|??z??|??|??z??x??|??z??|??|??{??~??{??{??|??z??{??z??z??z??z??|??z??|??|??y??z??|??|??|??}??|??|??z??{??~??|??z??{??z??z??x??z??|??z??{??|??}??|??|??|??~??~??~??|??~??|??|??{??~??}??z??{??x??z??x??z??|??|??{??|??|??|??|??|??~??~??~??~??{??}??~??~??~??|??}??~??z??z??z??}??|??|??z??}??|??|??z??x??|??z??x??z??z??z??y??z??{??{??x??x??|??z??x??u??x??r??p??r??r??p??p??n??p??r??o??p??n??p??m??p??p??r??o??q??r??p??n??r??p??p??p??p??p??p??p??n??o??n??n??p??q??o??p??p??s??q??p??r??p??q??p??r??r??r??o??r??r??s??p??r??t??v??t??v??x??x??x??w??x??t??u??u??t??r??s??r??u??t??s??t??s??s??r??t??u??t??r??v??u??v??t??v??t??v??t??v??t??v??v??t??v??s??t??t??t??t??t??u??v??t??r??v??r??v??t??t??v??v??t??v??v??v??t??x??y??v??v??y??x??z??w??x??w??r??s??r??p??p??p??r??t??r??r??q??p??q??r??s??u??r??q??v??t??r??r??r??t??p??p??q??p??p??n??l??q??n??l??o??l??l??k??m??n??m??j??l??l??m??l??n??p??n??l??n??n??n??j??n??p??l??n??n??n??n??l??n??p??k??k??m??l??j??l??n??o??l??m??n??m??n??m??l??q??n??p??p??r??r??q??q??r??t??t??s??r??v??x??v??x??v??t??v??t??s??t??v??v??v??u??u??u??x??v??v??z??x??t??v??x??w??v??x??x??w??x??z??|??|??z??y??z?z?u??v??t??t??r??s??r??u??r??t??s??s??r??r??s??t??s??s??t??u??v??p??t??u??u??r??r??p??r??p??r??t??n??p??p??r??n??n??p??p??n??n??n??o??l??l??k??n??l??j??j??j??j??j??l??l??l??j??l??n??m??m??l??p??h??k??j??j??h??h??h??l??h??h??f??g??g??h??h??j??f??f??f??h??h??h??h??i??h??f??i??h??h??i??h??l??i??h??j??j??h??i??l??k??f??h??i??j??j??j??m??p??n??m??n??p??l??l??p??s??p??p??q??r??r??r??t??t??h??h??h??i??f??h??h??n??h??h??j??h??h??j??k??l??j??i??j??l??h??i??l??m??h??i??j??h??j??j??i??l??f??e??g??g??h??h??j??j??g??j??k??n??j??l??m??o??i??j??j??m??j??h??l??n??m??l??n??p??p??n??p??s??j??m??m??p??l??o??n??p??j??j??l??k??l??l??l??p??n??k??n??p??m??n??p??r??n??p??p??l??o??p??q??t??j??l??l??j??l??j??l??n??l??j??j??n??l??p??m??r??n??l??l??n??n??o??p??r??p??p??p??r??t??q??q??t??^??`??`??b??]??`??`??d??b??`??b??d??b??c??f??h??e??d??e??h??d??f??h??h??f??e??f??f??f??h??j??k??b??c??f??h??d??d??f??j??d??e??f??h??f??d??h??j??d??e??e??g??f??e??h??l??g??j??l??n??n??o??DXkk W_ParamConfidenceInterval(\ ????@c?g4k5k͠weight_ni2(\Mb`????b????????????????????????????????????????????????????????????????????????׳???????????????????????????????????????????????????????????????????????????????????????????????????????????????׳??????????????????????????????????????????????????????????׳?????????׳???׳???׳??׳?׳???׳?׳???׳???׳???׳??????׳?׳???׳?@?@????׳?׳?׳???@?׳??׳????׳?׳??@???׳?????׳???׳??׳???@?@?׳??????@?׳??@??׳?׳???@?@׳?@׳??q@?@?׳?????????@?@@?@?@@@׳?@@@׳?׳?S)@@׳?׳??@@5@bJ@q@q@?S)@׳?׳????׳?q@q@?@@@@S)@׳?@@@@bJ@@q@q@bJ@q@S)@S)@5@@@Qwo@@@S)@5@CT@q@@@w@bJ@@@@S)@@@@Qwo@bJ@5@w@q@@@S)@q@@5@@@@S)@Zf@Qwo@S)@׳]@Zf@@׳]@@@׳]@bJ@@Ç@w@w@@{@|@@v@Ç@@׳]@|@w@|@@++@qĜ@qĜ@|@|@@@qĜ@|@++@uӷ@@tw@F@oE@{@ +@++@@@@@@P@(@@@ES@a@S@@oE@oE@ES@b@(@@F@S@uӷ@++@S@@B@uӷ@tw@|@@v@|@@@|@Qwo@@{@׳]@׳]@@׳]@5@׳?׳?S)@@@@@?׳???????????? ዀ {I5kI5kfit_Ni2_kev_Hist(\`mt}????/$@yc ݣ?]iX?8L?+LNA? ڱ%?`V(*1?|!?);V-?wP8?lJD?GO?mFB[?]*f?2tz?s7gS@?.Bk?$ ù?f,_;?7?-2I}4?jLo?H}?՞C?Ȣp<=?4/?OZ,?®@F{s?@!>@@"P2S@@rDk?@D5l<@U"7@`DY2@o#,@_H#@MZ@k@ ܽ'@Z0?E0?.uR?Yu?o^.?G,?^W?D2U,?,@s?DЛ?ԨS?̢l?m?0?Ql?xYܒ^@j]@GjAC@P\@w@E0@bM3@ht@@c)`vC@h&-~@8@Q@6+@d@ Pwğ@Nϯ@8^ 7@ @DE @ ߼! @Os@6@d@6g}@^R6@@m@Ov!@?ӈ?'9}?g[d?Jr?U?p -f$\?4XW?yzX?—T0?hY?6=u??=3:@?S?H?yYm?l ?RZ?@o?Aۙ3?}z&?kS?C˗?Ƌ?~=?ЏB!??~GG<4?@?[?'?1aIշ?x'+?&,]?Y$)^?BȬ?&#D?5 #?`f<^?O3?5dg)~?|=?M?]X?XcP??tz! ?Curve fit with data subrange: AL_kev_Hist[538,1595] fit_AL_kev_Hist= GaussTail(W_coef,x) W_coef={-1.5807,2.9092,7.7663,2.2653,0.25679,0.24308} V_chisq= 594.444;V_npnts= 758;V_numNaNs= 0;V_numINFs= 0; V_startRow= 538;V_endRow= 1595; W_sigma={0.491,0.554,0.218,0.0112,0.0102,0.05} Coefficient values one standard deviation w_0 =-1.5807 0.491 w_1 =2.9092 0.554 w_2 =7.7663 0.218 w_3 =2.2653 0.0112 w_4 =0.25679 0.0102 w_5 =0.24308 0.05 @[(?@oY6k]6k͠weight_sn(\Mb`????h????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????׳?????????????????׳????????????׳??????????????????????????????????׳????????????????????????????????׳????????׳??׳??????????׳?????@????????׳????@?????׳?????????????????׳???׳??׳????@??׳??׳???????׳??׳??׳???׳???@??@@?@?׳????׳??׳?@?׳??׳???@׳?????׳?????@@׳???@׳?׳?׳??׳??׳?׳??׳?׳?@q@?׳??S)@S)@?@???׳?@@?@׳?׳??׳?@??׳?@׳??@׳?@?׳?׳?@׳??@׳?@@@@bJ@@??@׳?׳?׳?@?q@?5@q@q@@@@@@S)@׳??q@CT@׳?@bJ@5@@?bJ@@@@@q@q@@S)@q@@@CT@@׳?@@S)@@@q@S)@?CT@5@q@@@S)@S)@S)@q@@Zf@5@5@@@bJ@S)@bJ@q@?5@@bJ@@@Zf@q@@CT@bJ@@@@bJ@Qwo@|@@5@S)@@@@׳?@׳]@S)@@Ç@@@@@q@׳]@Zf@׳]@5@@@bJ@S)@q@׳]@CT@@@Qwo@׳]@׳]@S)@q@5@Qwo@׳]@w@Qwo@Zf@q@|@bJ@5@Qwo@@@CT@w@w@@@Ç@bJ@S)@5@|@CT@q@׳]@bJ@@@Zf@Qwo@bJ@׳]@|@@Qwo@Zf@Qwo@bJ@@@tw@CT@Zf@CT@Qwo@׳]@w@w@Zf@bJ@bJ@@Qwo@@@q@bJ@bJ@5@@@@@bJ@@@5@Zf@׳]@w@@@@5@׳]@CT@S)@@@@׳]@S)@w@CT@5@bJ@@@׳]@CT@5@׳]@S)@@@S)@׳]@Zf@S)@bJ@5@bJ@CT@@@S)@Zf@Zf@CT@5@bJ@S)@5@bJ@@5@@@@@q@S)@@S)@@׳]@S)@׳]@5@@@S)@CT@@@׳]@bJ@q@5@@׳?@S)@@S)@@@@@@CT@@@@@?׳???׳?׳??q@׳?׳?׳?@@?@?@?׳?@@?׳?׳?׳???׳???׳?׳?????????@??׳?@?׳??????????׳????????????????????????????? 6k6kfit_Sn_kev_Hist(\????Mb@xi<Ξ~?eu-9?yG?E$=?Yډ'm8?٘"+\?pM?~ʪ?g!l?9[0?w"z?2^?C+?S )=?},O?!YI`?%r?ф?80?_lU?%Qm? r??< ? 8q?v~b?{&?NYQ8?aJ?/v\?B8o?^L?`?|]˥??Gs{?!?Ywh?kI?;?so?X_'?^P7:?U-M?n.B`? 霂|s?Wxކ?yZ1m?V-?w%?hPw\?Ad ?9?Up?:CU9*?SZ @?~V??L_m?+Ԅ?xAO?R?pT?j?V1J?!?(8??4\P^?6|?KIڡ?z?gu?Q/&?s@?y.Ղn?.dʭ??%?{6?!R=TK?IH?mD^?¨$?4y?oӫ?c69o>Q92>X%3>(C> 6>?1>rú0>n>3 =_>Y>42z>Sn>Xfa>麨S>4/_F>‘{8>*>Curve fit with data subrange: Sn_kev_Hist[1128,2442] fit_Sn_kev_Hist= GaussTail(W_coef,x) W_coef={0.34746,0.1736,11.003,3.8349,0.13864,0.16563} V_chisq= 501.584;V_npnts= 662;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1128;V_endRow= 2442; W_sigma={0.292,0.82,0.343,0.00448,0.00423,0.0336} Coefficient values one standard deviation w_0 =0.34746 0.292 w_1 =0.1736 0.82 w_2 =11.003 0.343 w_3 =3.8349 0.00448 w_4 =0.13864 0.00423 w_5 =0.16563 0.0336 Packages!v!! MultiPeakFit2v!!xJ_1Jɕ"_F-C?rĸC^currentSetNumber@MPF2_DontShowHelpMessage?MPF2_PanelVersion333333@MPF2_DoFitHelpBoxTextuTo get started, add peaks to the list. Either click the \f01Auto-locate Peaks\f]0 button, above, or drag a marquee on the graph and select \f01Add or Edit Peaks\f]0 from the marquee menu. MPF_SetFolder_1!!X J_1Jɕ"_F-C?rĸC^MPF2ConstraintsShowingnegativePeaksdisplayPeaksFullWidth?panelPositionMPF2_UserCursorsMPF2OptionsShowing?XPointRangeBegin@XPointRangeEnd̥@XPointRangeReversedAutoFindNoiseLevelJ#?AutoFindSmoothFactor@AutoFindTrimFraction@MPF2_FitCurvePoints"K+9@MPF2_FitDate33K[AMPF2_FitPointsP{@MPF2_FitChiSqk}u@YWvName)uQu~,root:Ni_kev_HistXWvName)uQu~,GraphNameuQu~,Graph0MPF2WeightWaveNameQu~,root:weight_ni1MPF2MaskWaveNameeQu~,interPeakConstraintsu~,FuncListStringaintsu~,SavedFunctionTypessu~,Constant;ExpModGauss;MPF2_Results_DataWavesTitle,:\f01\K(52428,1,1)Data Wave:\f00\K(0,0,0) root:Ni_kev_HistMPF2_Results_DateTitleitle,?Multi-peak fit completed 2:26 AM 3/17/2013 Multi-peak Fit Set 1MPF2_ReportNameeTitleitle,MultipeakSet1Report:Hj\jBaseline CoefsX????6d?Aj5jHoldStringsX????0TjjW_AutoPeakInfoX????@rn;At_;p[;!`8j\jPeak 0 CoefsX????SyYr@ٖڥ:w~[UYP@}uذ;xjwjconstraintsTextWaveX????MINK0:;MAXK0:;MINK0:;MAXK0:;MINK1:;MAXK1:;MINK2:;MAXK2:;MINK3:;MAXK3:;F  \j\jPeak 0Xva????v/ @~ > I!>}2_!>yI8y">ik#>p:o#>`di$>1]%>zq%>zʐ&>&L9N'>]yL(>FCz(>0 I3)>o+'*>!+>iq,>:g->lge.>gPl/>z=0>;0>ܧtL[1>_B1>WG2>`,3>o23>Js}4>UF{.5> u}5>d N6>Q8>f7>qB@j08>Puvh9>đ]t9>ʸ:>:s;>SuU<> O=>}L>>SË?>F)N@>AX۲ @>#rlA>1s7B>5{,؞B>쮃?C>o:iC>VQD>sA®CE>gE>ۮTF>}G>]\ПHH>1oI>RSI>ѲaJ>wĝPK>gL>UM>EN>kDqVO>z^P>) SP>~Q> >R>nzR>/VRS>"S>rPpT>XU>? hV><V>TD,W>Xѫ`X>3Y>u+L Z>AkbZ>|[>_l\>?C]>uqO^>Qi_> n`>jp`>Q٨a>6W'b>q0b>npTfc>d9S d>5aa6d>EyTne>g$~'f>Lf>Ƭg>2Syh>D9Li>]K_'j>7V k>?fk>(c (il>k| m>%$Ln>aRo>NOp>J q>un1q>pc͂9r>*vr>ys>W"t><t>g<^ǃu>}DY=v>\bv>$#ƭxw> Cґx>&,Zfy>ZAz>e${>y$4|>"\S}>Wx<}>`~>e>nTя>\>ղ>F1K>[qN>5d"<>L)6>B-e>O>. S>]p>ʔ5B܇>"Pi>>im>[>: ?>ؖ*>z7[>>u>f4>e>#z>S 0>{đ>do^>u>YR0Π>z"MdJ>k>q٥>QxmEj>ϝ+>"#>:$Ø>(k >4v>K`Z>V-G>Ӿ;>$8>M0(=>\z+%>s- >f&@A>;T֡>9#qp>vA>,s>^>w̱>-ĥ>Sx>'jo C> >;Wۨ>t>(c\>a6v>Qzc>n~X>TeOV>Xk\>X5>m+Ľ>kR>B/>u-悲>{l">(j+ȳ> s>G #>CM/qjڵ>9>3lhZ>`.$> >@e#a̹>kQF>H>qJ>@7 v>W)t>}{>E>l >J)c>f9>m>Ee5>2>Zv|>G>8>ieoI>`խ>_b/q>:?pUW<>h% >O 3>4A>FQ}I>Y{?j>Zy䜓>.Q'>۰Q>f%"3V>y*Y>ކBu>?~ >ƿFf>G47I>be>-h>M*N>hw>> ũ>K>>E6h՘T>o&>S>/R>>K> >HX6>j>镦>iόf>m3@>3X>N(>He>//a\>ߔ{>K幰>fg/d}c>fI>u R>}D6͠> l>Fy#?> _$>egΩ>*a,>II>YHV>zDy>SB[>uv>s)7>K(F>|tJ0>?Cq>a\o>~>'4mo>ox>l=dj2>n:2>. s>Zd>d-AY>D4>{6>0w>*ڧ>O>yLP>cfؖ>1Qq?i@?̽-?B?#B? Y?q+?mM8?b?+H?;4O) ?P0?^?%Rԟr ?!}N ?71 ??$ ?2.m ? , ?2F? HL ?aG?U~Z'?cnҏ?/sT?e&?ψ?E @?PRu?]?^?W_7 ?d#?Y??h9h?7L?9C8?{{,?+(?U[-?\ ? s̗ ?^촅8!?VLJ(O!?log"?j#?{#? ReT$?7 %?@,q%?eRu&?MK\7'?@'?z`N(?=f)?s@*?CRh+?U,?gI-?`6F.?LL/?Z}-0?CC0?1WI1?A 1?Y(y2?- '(3?ISD*3?# h4?U5?0q\5?rF̋6?+ИN7?ڻ8?"8?T9? .Xɝ:?K/.;?yq?Kk??Տ=@?J:@?T[A?//A?8B?s_E,C?ygC?ܓ!+}D?`>,1.E?50E?M]F?m_eG?70H?'gI?_GUI?4lJ?OIK?'kmL?w% M?P3N?%dTO?l4cMP?7:VP?ӑnlQ?/R?~R?gTu?S?bS?vT?֐cCU?_U?k7|V?GW}W?KJHX?)Y? Y?@*Z?\{[?hr\?01]?b:^?%_?ֿA^`?lg`?)9}a?}-b?Ա&9b?ZHRc?DƬc?vYBd?)ʫXe?LRf?fVf?\ٔg?_`h?:863i? m j?$Wj?(ʯk? Q6l? Vyڿm?"n?Teo?Rآnp?fap?~_q?O'r?}iZr?fs?|T t?~^t? nu?s0'v? GCv?\|sw?czxx?nLy?e''z?6{?&Mg{?,h|?7 娠}?Fn~?i?6?W@< ?!?c#B9?HPGւ?Ozy?â!?\쵬τ?ҙ{?\=?k?eu$ć??{?eKe?|/A?)EA$?;?~>??@aXΐ?FP-?!4?Ky?#?K?`#?}?hh5?}Ѐ??֞S?SK҄?|.ۗ? s?d,+?}Cv[?8u0??MYd*?0C?g?h? &6?*?;/?"Mġ?w']?~?? \J?i?ZrGF?NX}i?@+?,0?$~¨?^^?yUu?: uZ?\9F?:;?<z7?J-M??i{8? ?Y&CT?kSw&?'?޶Ad?@?.wK?<ΰ?T?z胺?Z Sf?2gg?So}?L?*pp?q2@\?d?Oq?{2c?븅?"֌? |z?il?RVQ??s?qvJ?.݀i?<^^f?B\?$ ?P-E?ҰS޼v@@q?c2@ԩ9 0@F.@ܦHo@L{Iȍ@fmW%@ Йx@ 82@k@;@],f@= X @;v3 @OK @>S @A @"r:Z @[@":&@J7@g@ٰ.@[>B@ @v8mT@ "+@ip@@U SH@)@̺@O @cW}Fr@"!N@A@y;JQ?@ Gݟ@@,E1;Z@@@@kq^@@ϝ)AA@"JA A@f^yA@wA@<ߞ B@n/G$B@N2B@'s3B@TUSc'B@f-)B@1idΧA@ gHA@2rA@^"A@x]@@h!fZ@@tw?@SS>@k:=@<@=]cD;@@L6X9@芧8@:K7@j,5@"qd4@i 9T&3@1@n0@\<=.@d?J># ?dsR?6[<>ȡܹ>v*R5>4g>Nfu>Ea>'(ݑ>%>SH>>` Ǜ>%MǑ>=p㠆>0٣|>r>6f>7K\>@^Q>c4fM_E>Sd&:>/>|5h?#> F(>i >OZz>Oޚ,H~==F}=5b2=мaA0=xIw=%zӼ=eZK==㽂z=SBo!=%2&s=3mIe=- ߆W=ndI=X A<=~z].=e˕ =0!9a==o 7<'jZ<m8ɪ;<; e|;]O;.M;GYjހ;BtrNCo;î\;-dcJ; 8;"%;G!;59|;ߍE::uШ8_:ƪ:&U:Jꐢ:^u:.љ{:9g:/)ZlET:sd"A:)Mנ,:#:,zr:;ۚwt9L:569 @Q$9"~9 9Wp*V9Chlr9doF]9<8Gvgx$8e$d)38T.~v7Ь97$ZA,777ɾ֖7)_7ZSf7[XeO7n95707=7 16 jc6E=Gl6~6.x~6@m6\ɨ_S65@96}2! 6֔{ft6.5Ӝ65*5%5e.~85JArf5sK56915> &5|_49y:v\4s4l7VB渦4GD}U4@p4 R4>E64+4_ .;/g/p.n`ҏ.wS.8G%.o.!Ҙ!L.8P(.M.33\j\j͜ fit_Ni_kev_HistX *)(F????v/ @& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?' ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?( ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?) ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?* ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?+ ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?- ?- ?- ?- ?- ?- ?- ?- ?- ?- ?- ?- ?- ?- ?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?. ?/ ?/ ?/ ?/ ?/ ?/ ?/ ?/ ?/ ?/ ?/ ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 ?1 ?1 ?1 ?1 ?1 ?1 ?1 ?1 ?1 ?2 ?2 ?2 ?2 ?2 ?2 ?2 ?2 ?3 ?3 ?3 ?3 ?3 ?3 ?3 ?4 ?4 ?4 ?4 ?4 ?4 ?4 ?5 ?5 ?5 ?5 ?5 ?5 ?5 ?6 ?6 ?6 ?6 ?6 ?6 ?7 ?7 ?7 ?7 ?7 ?8 ?8 ?8 ?8 ?8 ?8 ?9 ?9 ?9 ?9 ?9 ?: ?: ?: ?: ?: ?; ?; ?; ?; ?< ?< ?< ?< ?< ?= ?= ?= ?= ?> ?> ?> ?> ?? ?? ?? ?? ?@ ?@ ?@ ?@ ?A ?A ?A ?B ?B ?B ?B ?C ?C ?C ?D ?D ?D ?D ?E ?E ?E ?F ?F ?F ?G ?G ?G ?H ?H ?H ?I ?I ?J ?J ?J ?K ?K ?K ?L ?L ?M ?M ?M ?N ?N ?O ?O ?P ?P ?P ?Q ?Q ?R ?R ?S ?S ?T ?T ?T ?U ?U ?V ?V ?W ?W ?X ?X ?Y ?Y ?Z ?[ ?[ ?\ ?\ ?] ?] ?^ ?^ ?_ ?` ?` ?a ?a ?b ?c ?c ?d ?e ?e ?f ?g ?g ?h ?i ?i ?j ?k ?k ?l ?m ?n ?n ?o ?p ?q ?q ?r ?s ?t ?t ?u ?v ?w ?x ?y ?y ?z ?{ ?| ?} ?~ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?!?!?!?!? !? !?!?!?!?!?!?!?!?!!?#!?&!?(!?+!?.!?1!?3!?6!?9!?"?D"?I"?O"?U"?Z"?`"?f"?l"?r"?x"?~"?"?"?"?"?"?"?"?"?"?"?"?"?"?"?"?"?"?"?#?#?#?#?#?&#?.#?6#?>#?F#?O#?W#?_#?h#?q#?y#?#?#?#?#?#?#?#?#?#?#?#?#?#?#?$?$?$?&$?1$?<$?F$?Q$?\$?g$?s$?~$?$?$?$?$?$?$?$?$?$?$?%?%?%?*%?7%?E%?R%?`%?n%?|%?%?%?%?%?%?%?%?%?&?&?&?/&??&?O&?_&?p&?&?&?&?&?&?&?&?&? '?'?0'?C'?V'?i'?|'?'?'?'?'?'?'?(?(?2(?G(?](?s(?(?(?(?(?(?(?)?))?@)?Y)?q)?)?)?)?)?)?*?"*?=*?W*?r*?*?*?*?*?*?+?7+?T+?r+?+?+?+?+? ,?*,?I,?i,?,?,?,?,?-?1-?T-?v-?-?-?-?.?*.?O.?u.?.?.?.?/?6/?^/?/?/?/?0?+0?U0?0?0?0?1?01?]1?1?1?1?2?E2?u2?2?2?3?:3?l3?3?3?4?;4?p4?4?4?5?J5?5?5?5?-6?h6?6?6?7?W7?7?7?8?P8?8?8?9?S9?9?9?:?b:?:?:?4;?|;?;? ?q>?>???d???? @?^@?@? A?`A?A?B?kB?B?!C?}C?C?9D?D?D?ZE?E? F?F?F?PG?G? H?H?H?aI?I??O?n_?o?????"ű?ֱ?t?c? ??N1?C?V?i?7}??\??&f??V??5 ?J4?^??'??L ? :?Eg??ü?? ?vP??%?=??E?x??h߾??`H?}??? ?nX??:??]?ʢ??o?p?t@??? ?x?^??>??#?$? ???u?Q?l?(?g?)?"h?q?n??~y?D?q? ??.?v?M??-s???6?/?]k?%??F?E??0?m??*??փ?`3???L???^w?4??$?u?::??p?$?`?/?????Z?6? @z@v@_@@G@:@5@b@T(@@ @ĝ@@3@@@T&@@:3 @û @E @ @] @' @{ @ @ԟ @4@@#a@@x@0@.@xm@g@@FU@@@@[L@@v@0S@@@Bj@P @@@@M@ @0@Ҍ@tP @!@!@"@fs#@XA$@j%@%@&@'@mg(@xB)@*@^*@D+@,@-@.@r/@Bn0@^1@FQ2@F3@R>4@85@56@&57@V78@0<9@C:@N;@[<@j=@m}>@ޒ?@,@@`A@B@D@)E@PF@zG@H@iI@ K@BL@_|M@wN@O@=Q@R@S@U@mV@W@Y@vZ@9[@C9]@^@a `@xa@xb@:`d@e@\Wg@h@B^j@k@?um@o@p@6r@s@Qwu@ w@Lx@xz@,|@y}@@"@M@z@b@L@9@(@r@@1@`@ @{@v@@j@r @5@&@8@6L@5c@}@♗@@Rܙ@@*@V@|@@@%@`@@@>'@p@Z@ @0_@ص@ @m@0ϱ@84@@d @y@@xe@4@`@|@l@@@n@|@O@J@ @N>@@@`T@d@@6@\@)@@F@V@P@Bv@:a@BQ@lF@@@R@@,E@ZO@^@s@@@P@@lAAFAAAR?AiA7A A A2 Al AAA.AuAAA[`AiA AjAA4-A;AAtm!A"AU$A%AM'Aj(A1U*A+Al-A.A0AH/2A3Ap5A7AS8A@s:A'@F@'@\@@@be@@H@2~@v@n@wg@P`@rY@R@L@]{F@@@6 ;@5@˺0@{+@;'@J"@@v@@@@D @0 @` @I@@?5?R?C?Y$?>?~?J??a?!??@g???{?Wr?M?$?H ?6w?z??J??'?޸?߷??? E??Dг?(? ?!?ku?C? ?3?*?pW???[h?C$?Q?*?wu?C?3??>Ŭ???Xb?F?,???9?ګ?ɫ?U?n???x??v?n?|g?`?Z?U?P?vK?IG?C?@?Nտ3\ddud%Yddtdd9)Pտddd*dvAdZd`rd1տЦdhd޾dd#d\7d\Wd-wd=d滿d߿dvd4o*deQdydd19տXd*(d"Wddxdd!d)Xdld!ddDdGod d d]nOdPdjd-d-7տdi!diwddkF,d+տ0d.Pd"d#"dFl7?8Dd+wd֮dkddod^dC>d7?ddCCd1dd-djdFSdFdddKVտ+cd9d\`տWdddddP,d{տ6 dZ+-d3jdտNKd4տBdMhdvdVf-dqddz<d?ddkdOddLdd-ddldCd1NdVud d` d;տ(4wd dd5<dd>d"d[D%d4A5)dA,dOhտ3dտB;d z6?dZmy7?Y|GdVKdFPd#zSտYd^d,cdMտdտ0Dsd!Oydj,dozտB-տ GտC;d܉Vdf>7?dGd5ԼdA8;?ĂdOldGHC7?5duտdd dRaտ#dp6.da9dvEdքFտh,^d;gտDmxd@M+d#0Udwdhտ$dw~ddBտu տAZտ/)d`<d<*Pddd˖ydCd^dՒտkcd did=q տ տ[Vd?sdaodߺ"տd<#7?#=$տz1 d_,T dy dI dJ'տ7г'տ- dBK@ dNk dllc*տf2 d dM6( dPZ dO d/տRU{/տ26 dG.1տ|7 dL3տ- d{7?;)6տ5 d{ F9տʮdx_dJ׹<տdX?տkq@տL(MddEddd0"xdPKտ4RMտOտR>dXd>7dVտJ4@dnd+e]տC`d'dL dldiտbdhi@d4ydtտCwտ$udd 7^ dt9!day2"d-k<#di 7?տ)՘տտ]'d)dw/*dTnP7?#ӈ,dQJH-d-տlVտ*1d03dU@4dvאտ}ݐտ+9d:dG+Vd2Q?d%Ad0y?{\տuGdyz IdW.տLeReNտr 4?a(l4?J P4?$տ$ӗտgfhf$fbӘտXտWf[jfh3?} DCտ2“տGsGffKtտf Mտտ@ODg)]g:]mxgڿ,Nտ%>տ00*3տ*g%տ';֗?X l/?տM!J9տvxe.?zZ ]տ@(nտs:^ۖ?MKx4տ?Siۥտ2Ai wI8տEiʖNտTlh[jM6տ?}*?C~eګտ>۵տAտX(?TT|nke\iտ BZl"yhpտ$lʼn%mX푒?#lm Yn|K꫑?nB#%տZnMx_!?݋[+H@R!տWտ pd *qIտ?-kr&r?M/տ1HtRtKt?CcXտDvzsտ΃v:pv?Z<܇?U3z?2 ?t>տ  ?  ?>t9*|}|i}jnտ=Um?]CֿJ0ֿ̨`?x<|?cg?OQ ʆL%vֿ*?r(ֿIVar1ֿe6ֿ@g%<ֿۭ4]&a/FֿH&͒Lֿo?(OkPf?iOe?b?o% 0 @Nuֿc^?GK?c?ֿrWnֿ:79F?BNb:;?(J?ލֿc[Bֿ ֿL5HN ׿s׿`^I#׿VD/׿#,U<׿!cq W-&dM?r|#?)ٚ>?EA[Pݡ׿  @Ɲ@4?\u @ajn(C?E3ؿܨ?- ^ؿߒ 6']"g Z?է?2'@5r*?3Aٿ*n?O쒔8CWS,vB?.2?ћ?DRٿPm9ٿ:?06'?:"?K`?/5\?ϾOڿƎTڿ`wF ۿOuo@di '?zh ?O?0?oFle/ {?I?n @*Tg @ zB?a-8e?迵Mqݿ_5>ݿ6ZA?q?5Jb?P?37z>?GkW?,R @A~0 ?D M?K2I$t?࿂Ni_?&?DwP>?x8?"`G @X<?E?$?D:@o?씚Dzqe?Zw ge?M=@m?J5ΑKe޲@B?yLaE@i- @/cب?R-qҳ?R Hݿ?-^?eD"2:t;? Ĝ Q@ӹ+"?N!?⧙"!?$>Mԙ?|} p?S@{-l@"v܄?@Zh$:Ӫ1 g?FNlF?f@ g,; ?_ @XG>F?&\' ?d<*?V4r"??É?zj@?.9 p$zt@Y],a@q;%?Bt1ysn@6HF @̶?C-$mQ$V9 ?<l?p\AJc}~J7n| {u?bM]@$Fֿ Y'U@vWM?YbF/㿻7^q@  D迢@?8#@>BHa?q;?JJW @O(@u??@p ? @1Q?2ZYA&4?3YQ?"Y ?Gl:*Nu? _P@@gK2U@ĢO! @ߺ?@~x9?m%@{y?hXX@P/?ZM2g/, @ĉ hձ?~o?(Tr@4+4z^@Pl)п؏ N% @Ĝ@ fk@= ?U뿄bG@`"?@u@?[!x,Xh @`JpCu] _i?ӣF1M I@t؂ hG!Qж)F֑6@ofK3ҥc@͗@w{dӿXV+@ )BzpV@xCO@p/US@؉[<@fm5'` @mm @aL35hZ r@4N '?}a@p߿lb @+@>Kw+,@XL" @6j 5@6o0@!Ql6= @0Y𿐜lZ7@AB"Z+#Tf F$7'"@ M ?Jlʈ#.q'@hj݁@9rK+su&@"m@ĤBgا @)u2{^SMaB{@Vg5/J%@.2Ğ@-h|=L"@Z0B`K[?Ț@hDM'@گR?x@hN/@nwk"@I@l[@ִ@t{1I%90?w* ȣ%?}7H$@|1`/@w-Đ@m0{w[.S@*-iPx|5G9߿3MpɌ' @Ӛ@^JlUi@'ftr8 @T,86?N-Ŗ@H?j\n$[O?P?" CH>b 6?Q:YM, `!zH6dߺ`t7;;&Cz5(u1׿7'x.*Т#l`Qֿq(jW ӊyOLt㺩Fp1f4mjTixg df\ fI~eȧeOd`1diBjd篭=Md8db(dm0dTQdPndxUL dWۢ d d d4.d}d*d_Md\d'@"ddXhddu:dIdD<dFpdFd*d dud djdVd#>Jd~Bd=d¹:d8d7d7d6du6dO6dd96d+6d$6dj6d6d6d/6d6dY6d-6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6d6dP  8\j\jBkg_Ni_kev_HistXFXgq????v/ @& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?& ?(H\j\jblepswaveX????ư>Z`j\jPeak 0 CoefsepsX????ư>ư>ư>ư>=Hj\jMPF2_CoefsBackup_0X????%(y?`j\jMPF2_CoefsBackup_1X????@JZ"zP@H X\j\jM_CovarX????#!}x?^~nc@!$ޡ/b/IJU?^~nch>M>O~p?mޗѾ@!$ޡM> >9 4t?1^þ/b/O~p?9 4t?tGr+@SW2EʹyIJU?mޗѾ1^þSW2Eʹyll5!> h\j\jW_sigmaX????a˳?ױk^?FX?D @6߽h?@OH\j\jW_sigma_0X????a˳?N`X\j\jW_sigma_1X????ױk^?FX?D @6߽h?^41hwjwjMPF2_ResultsListWaveX????xPeak 0ExpModGauss3.2087(Not Available)-0(Not Available)-4.7225+/- -0NaN(Not Available)5.0053+/- 0.001856665.396+/- 3.7198-0.067841+/- 0.0035323-0.065803+/- 0.00302025.0053+/- 0.0018566-0.028809+/- 0.001565.396+/- 3.7198-0.065803+/- 0.0030202&(7>DGV\ioyҲhxwjwjMPF2_ResultsListTitlesX????\K(39321,39321,39321)\k(39321,39321,39321) \Zr075\W517\MPeak TypeLocationAmplitudeAreaFWHMGauss LocGauss HeightGauss FWHMExp TauGaussX0GaussWidthHeightExpTau8AIIRRVVZZccooyy MPF_SetFolder_2!!WJ_1Jɕ"_F-C?rĸC^MPF2ConstraintsShowingnegativePeaksdisplayPeaksFullWidth?panelPositionMPF2_UserCursorsMPF2OptionsShowing?XPointRangeBeginH@XPointRangeEnd¦@XPointRangeReversedAutoFindNoiseLevelw@?AutoFindSmoothFactor@AutoFindTrimFraction@MPF2_FitCurvePoints MÕs@MPF2_FitDateQ\AMPF2_FitPointsp@MPF2_FitChiSq)XBgHv@YWvNameroot:Ni_kev_HistXWvNameGraphNameMultipeakFit_Set2MPF2WeightWaveNameroot:weight_ni1MPF2MaskWaveNameeinterPeakConstraintsFuncListStringaints&{Constant_BLFunc, root:Packages:MultiPeakFit2:MPF_SetFolder_2:'Baseline Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_2:blepswave, STRC=BLStruct}{MPFXEMGPeak,root:Packages:MultiPeakFit2:MPF_SetFolder_2:'Peak 0 Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_2:'Peak 0 Coefseps'}SavedFunctionTypessConstant;ExpModGauss;HxNj͎jBaseline Coefs????zW?ANjjHoldStrings????0TkjkjW_AutoPeakInfo????@rn;At_;p[;`rj͎jPeak 0 Coefs????ð@zvuۉnxP@92 NkjrjconstraintsTextWave????MINK0:;MAXK0:; f j͎jPeak 0bxVg????ףp= @$=,uא=+,=aJ= b=P?ƚ==LN*=i̭=1Ax=]=-L=26(F=uiJ= @Z=EQu=bVb=F_,=jt=2B8d=o5a>#b>ZO>#۟>p>̘yI>sMR,>N\>T/>^h>zI= >'8 >oW] >V >Pr >A#>ɤ;>1w>>s t>/ C>l>XI8>>/>~A>ۤ>vY>P>[DzM>ɓБ>{>& I >)z, >mC9!>d E"I">sn^#>ƽ#>\M$>+Q6 %> H&>] '>^(?(>)>xwS*>'Kmox ,>E->+].>V/>]<0>QG]1>)ys2>ԃ}12>3>X4>z5>hS-q6>\ l7>7g r8>J`kc9>ﭠ:>#n;> T0=>o؅E>>jQ?>J$H|@>G5A>R+lA>6ӏC>t"jD>ۿNE>mȾ!=F>M/5G>vd̖X9H>-΋8HI>ۘrbJ>DK>SL>RM>NO>Ӓ5kVP>i[ Q>~VQ>[aŒR>ubS>4>8;T>V8rU>~ݎ V>g9V>-+X>{ 1 Y>.*%Z>kJ[>2ddE{\>{]>0%_>k·0`>=MH`>^9a>fŤgb>6;5c>=+,M d>\zd> se>rxf>Fe)g>MP3}h>i> k>nH89l>Gtm>3P3n>y E p>[b`p>vیyq>X'=r>لs>}#s>s9t>PjΣu>Diɕv>Uw>Y@x> y>.z>f4Z{>Q\s0}>J>v~>:7^>Sk>1Q>7M>ϱF܂>p&v>׎-4ߋ>K#q> ha>"cp[>pQ`>Avq>|b>La{6趋>V >BA0><Ӂ>Gq>kj$(>o(>_>)WG>@9\>D?> )v->}E%>hS(> [u6>ݦѢcP>=}v>B쬞>#F>><D8>J>/ >\gE>GQҸ>Zy$T>,z->$> E>B>KM>C>X]>C6>Bg>rޤ>!Y>pRp'%>6[Eٰ> U>|D5XZ>VW(>ԭ^7>}ݴ>uխǵ>^j9>Yɸ> ¸>?ֹ>z>d%>cS`>s򙨾> m>Vn>2Tm> {30>6, ><>ʝc>ɼ>gBM>݅GƁ>1l>l >?J>B>i}>Va>C[/8>8>XZMD>dgV>ݱ> >U@o}>{b>pQ>#ՅBK>~`;.O>^]~_>1fǯP{>o>t}>Q >dmk>:΄e>(>9>M>XY+`t>`}:#M>t0>L>r0=>-y`Z>$>oN=>0QVc>]X>J:>ld">x| c~?>>/.>%Ͳ>-mx>)6>>`>7#>Հ"|>3Bo>.o > #>}0NS> >X>8&?'e?ѼG‰?\!M?Ƕ?!Lv+?䚴??η?G:?v?DE?X' ?[l ?Ý ?82{K ?E?Vr?-7? a?R.,l#?z N??po?indܞ?NMq?܍Vv?.^Bq?ҭdw?9˹?$Ã?y?B?(L?o?q5D ?.L8!?'ԩ[!?RlX"?uc#?]| o$?7iS%?ZB&?'a:'?Ȫ>(?JM)?^h*?+? 49,??v.?B+U/?wŇY0?W(E1?Y쳬1?g7+[ז2?iSf3?I;?4?‚D"5?7)+c6?sĈ7?Jm8?a9?K w+:?#P;?g8 P?Do}Q?8,AR?A S?ael)S?rT?֌U?[@sV?!4W?s{JeNX? IzY?}^$OZ?f][?&6]?zw}^?^$U_?uro=/`?ITTa?^*حb?byb?_s c? <_d?"Rve?>}Pff?B1`g?B+w4fh?W wi?Ewʓj?k?V&l?B6n?1cͺo?"\tp?Ѯ,q?dq?t^p*r?G[s?|O`t?_۴Du?n?^2v?)gN͒*w?ia+-x?;y?'Vz?3|{?u|?}?caFl??̂N?б̄??5)Á?Dt|lj?B>Y?uZm1?-O:?-/?wڪE?Rp?h/v?7v4?QGjr?L+d:1ԣ?&ɟ뱤?mfU?^xqڊ?톧?7?غ?tRw%?E:?`"?ָ(h?0,+?{?EH? xw ?m9vӲ?+5?OE클?%vb>g?N엻V?S]P?'#U?7[%e?QS?'n~?޼?S!?$r?i?"ם ?"?M?]x? D9^R?.5?j"?25(L?NP?$N5A*? :C?)EuWi?»ۛ? 4?P$)?R C?υ?֧?Цʰ|?H{K?Ιw=#?OHk?;p?d_?xl? ?nF?b")?BY?<\?yE`?/*jW?Q?6-?wKQ?B>?&3??'b?U0֠?$6N?"N9?ȉb?u2?`p?N^Q?Q™?-"?&Ae?|d?de'?%Se?iB?5fva?6(?m{?^ev?||?EA?*Z??ꭷ ?R??@ js<@gL@ t@œg@ Ԅs@DH4X@ؼF@d!?@XC@pNS @Z|+Mn @tcU @0U @gT/y @ {\@#R]@`V@R @^8@j@+&1D@״&@zf8@pS @p @@31@ V@JVi ‡@N#@I1e@\N7 @ѩ @ʙ"^:!@_yo"@,8J=#@-ow $@n?$@c%@މx&@'@L_ (@E{W)@ =n+@%D,@jnYz-@cjM.@ŀc:0@, 0@2{1@bH=2@c@3@3@4@;屎5@us{u6@qb7@QqV8@(CO9@)L:@a2K;@@[B;?@)]@@D@@vi@@`FA@rA@zA@, >a B@hs6)B@lq4B@8/*B@-A B@KH1A@BOA@|(gA@ϝ@@u m @@;kF>@ѾV=@G9;@&sp:@a8@6ə6@:4@'2@$Tr[61@(B.@X>@+@zs(@tw%@*"@SM% @Ê٨@;}@>@}6@6>l2s$>c}>^ 4>ܥS>Wg8>d3>z,i>g0>> y>B0l>-j^>˽f@P>).03A>qc E2>diܸ">)A;%@>/=>sBDT,=au9=̌=/i(=C䗲=GJ.Cߡ=.=) =Zm=ہh[={H_I=57= >٬$=-gkd=9 5=}l6I<#q;#B&;!󰣿;Eq:V2h: :ҫ:P⭒:iЮx:y Z`: CSE:oRo+:)9A:7FO9;nÜ9cB6a9 `9b 9ujo9JyR9q<36909S.8cV8Hb8՟ :8}T6Έ8@ Gik8Uf+M8-@08 z+q8͉7+h7lՂ5U7g7ȂӬsu7򌎅U7ǒś57-TTx7S<6(66[B6Rټ6q6!ʛP60`"6/6fWs 6w|nd 5g*t50p^5"=xv5P n$`5k+;5g5x]Y4\]HA4yPo~4w}8ڪ~48/c45u?4$ʉ4y 3<ڹ13[3W{3ps.A\3(&V535hJ32%)nT2B +2$l r2]I2HE{b."2qd1'~-я1t 1#P1:AU1 $-1N11O 0X&+0Ͼy[0 2Z0bim00Quh0A/jt/rp/*wDWV/m\C */p.2.nT., w.l_ J.?1.No -@ތ-#^-CHdd-75-Ca-ɸ6,{, Ky,џKI,3`\V,'6!+w+A+F W+ &+z˄*X<}* *$-`*Vׄ8.*G8E)m)4}A)ӏ9b)*l 0)UST(0U(+}1K☓(sL`(2 *(ZCj+'A^q'6SJ'hV'a(!'GolL&ZՆ&QAF&pH&`&9<%۔S%@Nl%f:S4%"$rp\$@ˈVf$Tx;S$$)@$s*#.|0]#(R.p#=*H5#sUˠ"8"Uӆ"8'EL";K("r k!̐)!'l`!by&*$! }E6: ivi5f \քp u~:3 z ?A?C?F?H?J?M?O?R?T?W?Z?\?_?a?d?g?j?l?o?r?u?x?{?~??????????????????????????????????????? ?????"?'?,?1?5?:???D?I?N?S?X?^?c?h?n?s?y?~?????????????????????¢?¢?¢?¢?¢?$¢?+¢?2¢?:¢?A¢?I¢?Q¢?X¢?`¢?h¢?p¢?x¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?¢?â?â?â?"â?,â?6â?@â?Jâ?Uâ?_â?iâ?tâ?â?â?â?â?â?â?â?â?â?â?â?â?Ģ?Ģ?!Ģ?-Ģ?:Ģ?GĢ?SĢ?`Ģ?nĢ?{Ģ?Ģ?Ģ?Ģ?Ģ?Ģ?Ģ?Ģ?Ģ?Ģ?Ţ?Ţ?%Ţ?4Ţ?CŢ?SŢ?bŢ?rŢ?Ţ?Ţ?Ţ?Ţ?Ţ?Ţ?Ţ?Ţ?Ƣ?Ƣ?*Ƣ?<Ƣ?NƢ?`Ƣ?sƢ?Ƣ?Ƣ?Ƣ?Ƣ?Ƣ?Ƣ?Ƣ? Ǣ?!Ǣ?5Ǣ?IǢ?^Ǣ?sǢ?Ǣ?Ǣ?Ǣ?Ǣ?Ǣ?Ǣ? Ȣ?"Ȣ?9Ȣ?PȢ?hȢ?Ȣ?Ȣ?Ȣ?Ȣ?Ȣ?Ȣ?ɢ?,ɢ?Fɢ?_ɢ?zɢ?ɢ?ɢ?ɢ?ɢ?ʢ?ʢ?8ʢ?Uʢ?qʢ?ʢ?ʢ?ʢ?ʢ?ˢ?$ˢ?Cˢ?bˢ?ˢ?ˢ?ˢ?ˢ?̢?#̢?D̢?f̢?̢?̢?̢?̢?͢?8͢?\͢?͢?͢?͢?͢?΢?=΢?d΢?΢?΢?΢?Ϣ?,Ϣ?VϢ?Ϣ?Ϣ?Ϣ?Ϣ?+Т?VТ?Т?Т?Т? Ѣ?9Ѣ?gѢ?Ѣ?Ѣ?Ѣ?'Ң?XҢ?Ң?Ң?Ң?!Ӣ?UӢ?Ӣ?Ӣ?Ӣ?)Ԣ?_Ԣ?Ԣ?Ԣ?բ?>բ?wբ?բ?բ?&֢?b֢?֢?֢?ע?Vע?ע?ע?آ?Tآ?آ?آ?٢?]٢?٢?٢?+ڢ?qڢ?ڢ?ڢ?Gۢ?ۢ?ۢ?$ܢ?oܢ?ܢ?ݢ?Vݢ?ݢ?ݢ?Cޢ?ޢ?ޢ?7ߢ?ߢ?ߢ?3???7???C???X???t??7???c??/???k??B?????p??X??D??5??+??&??&??+??6??F??[??w???+??U??? ??Y????#? ???????? ?!?"?#?$?%?&?'?(?)?+?,?8-?W.?x/?0?1?2?4?N5?6?7?8?1:?q;??=?A?K?Z?o???͓??(?^??۞?#?p?å??}?⬣?N??9??>?˻?^??ã??ƣ?ȣ?ˣ?_Σ?"ѣ?ӣ?֣?٣?yܣ?aߣ?Q?I?H?O?^?u????#?c???V ??$????, ?#?h'?+?.?2?Q6?$:?>?A?E?I?M?Q?V?*Z?Z^?b?f?.k?o?s?fx?|?p???Y??ܘ???~?x?????!Ƥ?kˤ?Ф?)֤?ۤ???O????`?J ?D?M?e?!?'?.?j4?:?NA?G?wN?%U?[?b?i?p?w?~?څ??j?ϛ?G?Ҫ?q?$??ɥ?ѥ?٥???H??? ?2??%?.?7?@?I?R?M\?e?Bo?x??n?Z?`????ɦ? Ԧ?ަ?u?T?O?g ?? ?^,?7?C?aO?J[?Rg?zs??(??X?!? ?̧?G٧?? ??\?:?=+?d9?G? V?d?ts?W?b??쯨?m?Ϩ?ި?? ?[??z0?KA?HR?qc?t?J??٩?绩?$Ω??,???',???S?f?z??r? ?̪??? ?;"?8?(?U????&???Ap? ?Uҵ??k6?:i??hж??9?(o?(?۷??{J????.?si??`??Y?Z?պ?w?S?%?Ի?q?X?h?޼?#?g???:??˾?M?B^??p?@???*?~y???l?D??-g?k??i?e?*?s?o?)?f??"B?p??b?9?y(???XX?? (??)?g??eB?]?w!???x?k?Zc?}?R?l?=G?O?@?B?*??`?B??K??tZ??}n??/?0??9??a?c?^?)??a??՟?ZA??X?/???-? ?8?.;???X?@?k?|?xE?d?D? ?P????|?L?.??,??}? [?:?V?b??z????*E@@>;@+@]6@ٵ@6@@(<@@ G@@dW@@Sm@l@@ @g @X= @ @g @7 @= @2 @ @l@ @@O@@@A@@@B@@@T@@@u@"/@@@@nU?@vt@@lA@VB@d@tsf@g@i@k@l@<5n@o@0lq@ s@t@X^v@ x@y@w{@3}@*~@\@}A@(@<@+@@F݅@І@3Ƈ@h@&@r@S@и@m@Ŏ@2Џ@dݐ@T@ @@-@I@.g@/@#@Ӛ@@)@Z@)@pà@@9@_y@@@L@ƙ@G@7>@@@N@@@@@]@Ѹ@0J@Bƻ@4F@ʾ@Q@@m@v@@5@@z@#@@@8@?@M@u@ >@ @@@@m@R@<@]+@2@@3@z@"@/@ C@[@y@^@@zAAA-A+A ADApA A> A A> AzANA^A@A`AcA$AwAA'AAA6JAJA !A"A$Aw%A&A+q(A)A@z+A-A@.A%0A1APW3AQ4A6A A8A9A ;AQ=A ?A#@A.BAPDA FAGAIAKA=xMAQ[OAMCQA?0SA2"UA2WAMYA[A]A(_A9aAPcAkeAgA׳iA kAnAIpAԆrAtAwA_ayA{A~A8AkABAۃAFAWA͚AA*AtvAƌA AAoAȐA%AACA%PAhA(A A AAAAAAA*A%-AAaWAA:A70AԱA6|A)'A^նA͆Ai;A)AAkA,AqAA^AeLAA#AA{A}mAGA#AbAAA8AŇAXlAQA7A\A#AAAĸALAA\fA[HA(AAA/AA2BB}B-BBlBBYB,0B&BB Bxf BY* B B B\[ B BB_B-BB2B?BIBBGBB'BڌB=B?BBBcB BBlBɎB`BBGBNBB֒BqB8EBBBȃBt.BB-dB(BoB?B\PBݰBB0RBBB B B/ BK= B1A BY; B+BBBBBFUBCB+AAl"AZAwA*AAѯAAِAqAIGA&ATA}AOIAxAABAAG{AwAA9A˳A\AA(AAAAAݛA}A!AgˑAzA/AAAzA"|ALTvApA)iAzcAd]AXA?RALAFA#]AA;Aq6AS1A-,A!'AW/"AWWAҙAAnA AEAwAɶ@@@M@N@@}@@ h@@ٵ@Lݯ@@[v@j @"͙@@Kۏ@ %@@9@|@s@l@d@c]@wV@O@tI@YC@&=@n7@2@j-@(@#@@_@,@ @(,@{@ @2@s@n@r!??r????m? ~?x?\A?L????"n???ap?Wa?"r???=S?mӶ?k??߲??}???"ӭ??>?∫?ߪ? B?|?A'??%3?Ƨ?`??6?[?I?h̥??Q??v?9??Ti?+E?#?H?$?Jϣ??á?ȍ?v{?j?O[??M?a@?4?)? ????????&???ߢ?tܢ?٢?֢?Ԣ?Ң?Т?΢?K͢?ˢ?ʢ?qɢ?fȢ?vǢ?Ƣ?Ţ?,Ţ?Ģ?Ģ?â?â?¢?O¢???q?6?????b?D?)???꿢?ٿ?ʿ?????????~?y?u?r?o?l?j?h?f?d?c?b?a?`?_?^?]?]?\?\?\?[?[?[?Z?Z?Z?Z?Z?Z?Z?Z?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?~@~xj͎j͠Res_Ni_kev_HistMb`????]~)P?W~WJW-W%W5W]WWWjWr @WkW=k_ѿRWtW WWWJWW "W$'We,W1Wd7W$=WF k_ѿ-IWwOWUW\WcWjWqWuyW9W$k_ѿwWWWWWW{WW"WWWWZ WW#W0WXk_ѿKW8YWgWvWOWCWW k_ѿWWWWmW(W=W'SWZiW9W˗WWWWzWW5W*RW!pWWծWWiW;W8W]W.WqWWW'WSWk_ѿpWWW;FW;{WڱW"W!$W_W{WWVWaW&k_ѿWv8WrWWn#WvW@W$WWCW=WkWWqWWNWW9WFBk_ѿ#3WWHk_ѿrW(UW7WWWԼWbW6\k_ѿW sW.WW6ẂWTW-W WiWWWWWWWwW9WgWjWWW +WWWHWW=WWaWiWW$vW5BWKWW l_ѿWWh@ W x W Wn@l_ѿՈWA)P?jW DWfWW"W%W(W+W B/W#2W6W9Wc=Wm_ѿEW~(IWRMW2QWC VWӗZWI_W dW"iWm_ѿsWyW~W'kWcWjWD[n_ѿiW$W#Sn_ѿ:WaW o_ѿW2Wi_WhW*WW&4WWdW W%W|0W;W AGW!)SWn_WlWyW솆W\WWNWrW .@s_ѿWWWyWWvw%W$8WcKW0|u_ѿsW"v_ѿkWȴWWВW WBWx_ѿPJWeW W^VW*WsWfWv|_ѿ?WPbW&W?WGW0WH" WwL WC:x WӤ W W$!W2!W;e!W !Ws!W_ѿ.>"Wx"WӴ"W"W^2#Wt#W#Wڊ#WcF$W?$Wy$W[,%W}%Wi%W'&W$&WcU&W:'Ww'W"_ѿg(We@(W?)W)W%*WHv_ѿ;p+WW+WY,W,Ws)P? -W6S.WX.Wn5/WS+0Wob0WF~1W<&)P?-2WO3W2e4W68-5WU5WE6W_7W"8W(t9Wvd:WZ;Wwd_ѿ ._=W8m>W9 _ѿ;@WAW2BW3DWHwEWQuFW"o _ѿ}IW#JWW>1_ѿxMWc=_ѿQWmRWkTW>,VWSWW:YW"[WP]W_W$aWexdWqXMfW,hWjW|kmWp{oWrW5uW#@wW0TzW}W򞿀Wl_ѿW[W$aWrCWߔWkW&nWKaW@sWh饨Wⳮ_ѿ>mWخ_ѿWW<ôv(P?OWd(W,WmFi_ѿ'W+WV^W_z˯_ѿX_ѿ]gW*}WOWqlV_ѿk u_ѿ@_ѿ`-W5WC'P?@GWhPWYWGo?mW(wWe&P?W:c_ѿrWnqWͼW*&_ѿ#Wʂ1W!Wh~W-,=_ѿ>W _ѿ_t>W$OW W`Wk}rW:H_ѿB#W"W%AWdL_ѿ5C_ѿ#~_ѿR{W +WrACW K\W]uWSWWfk_ѿ߿W|W8nW_ѿJ|_ѿZWBǦWW=t_ѿa-WsȒP?y_ѿSW-ֱW7pW!_ Wղ_ѿC_ѿW7WlW_ѿMmWɦWާWQW#\W$t_ѿw~_ѿn%$W;`_ѿ^Q!WF_ѿKWo P?@ޱ_ѿ@WNH__ѿnWeMW/_ѿkW;_ѿp_ѿqGWWa'WWWRWtW,M_ѿxV__ѿ_ѿѬW N=W \W_ѿf? X<X[`ѿQX X3oX,XU%`ѿ8 X8XZ_X `ѿ@=}$`ѿ= X XpRy X@6 X X1 X-&ηO?E`ѿִI`ѿ?3N`ѿtXH#XqrXk\QfO?E1XbX1-lt`ѿQ2X˧?y`ѿ9Xu#;X7m`ѿaѿ50CXb=FXpkIXVcKX8NX@5 QXTX9߈8XXS:[X;e^X[zbX)aѿziXWhmXwqX,uX˽>aѿE aѿ/C bѿᇇX01bѿpV5XCYbѿ\z|Xgobѿ7eX!˧N?aX,$ X&bѿP,X|OaZXI*Hcѿ"9X? ?N?}Q`՟cѿ6cѿ< hcѿ^oN? dѿMY2YDd#YKo2SdѿgdѿXcM?1{+eѿ"8[VeѿK8`YhlY wYXL?h AfѿutfѿґRL?I YY>ZQgѿk99L?Η~L?`jK?JKhѿﻖێhѿ 5Zh0wFZ$JYZ$iѿuo iѿ&ZߧZ J?1a;Pkѿkѿm%[ ?[#^Wlѿ-ǭL[]b5mѿnѿ ;[Z[Rg[oѿ3\pѿ7"\pѿY\qѿ`?lxF?#sѿğBtѿ`Z;E?#uѿ꞊3vѿN/G?鈍UwѿXRxѿ}D^]ܯUyѿXa`^[w{ѿw,_00}ѿŋs@?ѿ2?ѿ7Tѿc???``hAѿfLa{D^Wѿߝ>a.!.bYp?ɚb[&cvx7؁?ᇿaѿ$0x5d#S6?6 @"ǰwѿfJѿt2f-Nf]Tѿ'tA0?^Ahb{ڂh;!?(&ѿujfjjF\͔? $ѿKi폱ѿV<mTW?7?!?Cݖ ?Dfnѿwe?#ix[?= Xrggs܀"ft0r%ѿ?U~hTѿs`/x|r ѿc3~h ?D7?8A?rdP;}Z\^~N)ѿU?"H5ҿ/E&F`ҿҿxnҿ,e͈'F,)ҿ ~O/ҿm3.?r# ٔC܌m?cBOk?gS:? @gҿ#d?}1q+?ǿVҿ%)be8ҿ9 %N?Vzӫ棆];?(=N?iU"ҿa裩ҿt՜ҿ`tb`bTRҿ_ +f ӿbfӿd$ӿ,C2ӿH5gw*P?6wBCu$?¢+@?¬_˳EƟӿg*Չ @@U?z&eP[>^ @ \)1?8<Կ@ǻc?ӧUpiԿH 吞c&H9Q?(?~c@9~?đGտZËa?TVGl^ 1'3?."?n׈?0տ+6:#ֿγ?{g?媴?.*P?AzAֿr׿C@׿nOΰ%@"iz?kWy~?+?@~q/p?[ @D @E?戎R9? ±śٿ싟[ڿhq?'G׈?G??5?%"?x?T8}@r?)?ݿcYbE?7^}ݿb?b'Y?5bf?%5VJ?ߠ1  @??o@g?_\ῧa{?1?Gq3?uub@X[/ڟ?O"f=_㿋<@ꭧR?(Ļ0(wߩr?M@Cp* @ z s?zP?Л=?e)?mxScy述r-?$@4 ҲLˆ?|?m4?'[?:^su?gV@"@Ĝ?2:9?<}x*7?-"@b3xc"kq?[vH0@e[?So??*?/a?,?⩜?[P1@IQ[߿ZfP@MC@'g?Z@}PzwE@֞b@O0 ?κ4ʤ85?p\C?--9&?0 tq cfrsg̚v?ӓ Ǧ@Ԏ09ֿ$g-IS@>K+A?|W0A9 |{u@΅n@bN?p @% ,#?lc?~Fd83 @dDs@,+?q#6@0QԊUs? {X@֒A?w菇z`cC?;wT?ȣ|῰6]h0?hg+@z^lf4Ͻ@L([ @?,}6rm?}Jx@9Ӳ'?2+@n?_cXK&'@<4g".? ?@DȊ@lbxr@n59-$տOȃ*@$+ckF@X8c@P(E@ Q:@|QZ(b @P, @SWh|C:@У1L>?~ֹ@5"0ZA!@5\@XF,@Xݭz @@(5@:9 1@ʯkȹm @ }"uKhPw@bFq"Y!㤘#8}XZW0S"@k?%ܸ]#κ*0'@@h !&@`xD@X`#ˏ\wG&W@YGSâ/P+G@e8%ȿĬB@hu4a|1"@(@55>?`Tj6@t7˻'@aCX?Ik@/'?]4ƙt@(M"@(WI@(QRF@jm@$|@y y?͍^ mN?=/]r4~|@n@5@(Ŗh}z|#NX@ֽ5Sc7޿IUIߘ|0 @ d@^rxi@S|DDz @>g:?.0L@HꗨM= =0~[3?Ш$t?*eP翐O^JNΒ?_pUӅp^޿@ҳ&Ow~, Q˙. Lm54Ӗ3f~>K6-;PӿVw2EGЗI$ҿ_}ZϽtoҳm1W'|h}(ddWDa^i+o]lٕ[Z0ԫY$—kYY{X{XgRX4XUUXhX X2,Ws,WW{,W#x6WhW7W dWvWx\iWX}We\Wn+FWII7Wk-W&Wh"WW#WFWqW6WGW)WOWHWpWWW !WrLW<.WDW WWWWWŅWWc~W|W{W[{W{WzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWk_ѿzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWzWP t Xj͎jBkg_Ni_kev_Hist*Qw????ףp= @Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?Y?yHj͎jblepswave????ư>|<`Xj͎jPeak 0 Coefseps????ư>ư>ư>ư>7Hj͎jMPF2_CoefsBackup_0????`j͎jMPF2_CoefsBackup_1????n@ru6C`k}?5^)A@aH8j͎jM_Covar????^G r? a8N[ב,2na8? a8&S>`6>@Gwrp?a{DѾN[`6>۴>]u?&Ynþב,2@Gwrp?]u?$Q-+@),yna8?a{DѾ&Ynþ),yi >zhXj͎jW_sigma????ww?k@t^? dX? ! @ˉ\h?4Hj͎jW_sigma_0????ww?4`j͎jW_sigma_1????k@t^? dX? ! @ˉ\h? MPF_SetFolder_3!!XWJ_1Jɕ"_F-C?rĸC^MPF2ConstraintsShowingnegativePeaksdisplayPeaksFullWidth?panelPositionMPF2_UserCursors?MPF2OptionsShowing?XPointRangeBeginXPointRangeEnd>@XPointRangeReversedAutoFindNoiseLevelw@?AutoFindSmoothFactor@AutoFindTrimFraction@MPF2_FitCurvePoints&|@MPF2_FitDate/TcAMPF2_FitPointsx@MPF2_FitChiSqa?H#Du@YWvNameroot:Ni_kev_HistXWvNameGraphNameMultipeakFit_Set3MPF2WeightWaveNameroot:weight_ni1MPF2MaskWaveNameeinterPeakConstraintsFuncListStringaints&{Constant_BLFunc, root:Packages:MultiPeakFit2:MPF_SetFolder_3:'Baseline Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_3:blepswave, STRC=BLStruct}{MPFXEMGPeak,root:Packages:MultiPeakFit2:MPF_SetFolder_3:'Peak 0 Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_3:'Peak 0 Coefseps'}SavedFunctionTypessConstant;ExpModGauss;HkRkBaseline CoefsX???? 9Ԛ?>Ak'kHoldStringsX????X0WTxkͻkW_AutoPeakInfoX????@:Èa:>@b :*.:u'?:)wL:N`:Y`۝:xz$:2/!:a_ٙ:+ X:G)R⬿:J9Xi:_dDZ:Ɵj* :jt=ȶ:.ʹ:"1:x,W:3^:)^{l,:Yb:z!:w!:SO=Bb:橯:}8GF: ?b7: vv{:ӅS(:˲7DI:~:s8mߑo:x: c:\`:m=:p=:9+:m:C@:;7+E8>;VB;; ;-"j#] ;٠N!;?M;+ L;"I;֯YJ;];*8|!;Pm#; .g&;wc ]);w!,;Rl'@0;He2;Ĭq4;,7;X:;4>;pyA;_{ZC;#vE;H;3ZL;x'nO;mQ;!s\T;*{ W;TZ;%m];DÂ`;Keb;_ke;&?h;@sk;o;/@Uq;j&Xs;CW_v;7&(y;H:|;vkX;+u;؁64;sĵ;90P֊;a;YeJ2; U}bw;VZ.. ;0,;:'<;y+;ڹ;tz;Fjq.;53K>;\j; &vyа;z[ͧ; Ջ;+ c;Ч};$A;c;^cC\;IO;Jg;#Y ;Zp;zb; VgF;o,;s_"x ;ăZI;eK;ʻLt;J*;ʑc ;f;oO;;2;0)p;\M,Q;h{e;Jt;Ro<)B%< U<"xU<rS <\ro<3<9jC$oK<(5b< g<(vC<-i<^v$ה<ˆ^< ጴ<Ư:<+>a<(<=TY~OA=#)qC=pн.F=p)I=m"lL=*"ŕP=*־:6R= T=F|DVW=LjZ=ڄ]=k=LMy=N=jI2=*cWM=hE=/lе=Z=Kh#|=L=5I:=g$wF=h=䥙)=Q'i=-v=0g=QT=م%=hVxU=U= AjX=(e#=C0 q=,Zm`g=B=˖iF=_l=pnb==mp+=! =8XA=e>|fw^b>Nd>ϴ>5%; >zia>=)>s!d>E+>d{.!>zz>bEbR >AwR">+t%>}ؕݔI(>S3I~+>T]S/>ktЀ1>?3>v_g6>3P9><b<>r*_@>P̓`KB>A ݇D>ömG>w[J>SKnN>eL9Q>bPS>)_(V>S…X>@a8H\>[`>|b>~2d>WX8g>憒vHj>u2m>^@Sp>CIis>ʑ"u>mx>wFX{>usM>Oͷ>>VdC>ҩ`x>@>|fw>e%>q >/T> D > > S>Kn>$3>lLF!>`tr>mK|v>虹 9>7ԡ>5\[>Yd=p>~hw>Kuy>F ,>,״>~lT>=> d|>U C> glx,>2A+>$>CvFdC>m4v>As>ο>^9>2؏>B!l2>"CRr>l>Hch>DT>F>~q>9Y1?Ϙ'U?:?}?\1 ?ăR?l8 ?I?ssVA?B?u-?oګ?ͽ!?贤J$?q{E&?lAt*?] Zo-?H"lڨ0?e2?"QY5?j!p*8?{T~F [;?+Ok>?ybA?,C?auF?lI?pL?O JP?93pR?v琹T?I?W?SnZ?FG^?6#a?Pfc?Qe?^ h?#l?*zo?hVr?2ht?|?w?H'z? }?;?:$ c?Rmx?ejN?H-ニ? %?<?ge?p '??R B?dy6jb?_ġ|?Q?,Cħ? }_? }t?TJN@/@Q_@Nju@ikNy@1+a @0#@nB %@4sŖ(@`r+@,z@F}/@1@F 4@s6@cɣd9@ݜ?<@X?@:a@@Eԃ̽A@; 6B@E B@5hm*A@8!C+?@Zߗ9:@ჵ5@처0@#6@(@fKYi @?@O @ة)?^3;?|G? Az?v]?A?`آ+?ۇ'1Jp?\"fT?yPO}7?#?k>i r>'7V{>bf>6h> n^;@>kz> Ȣ=ܺ\Q-=®ڶ=" [=õ|'=S&Jug^<':j;.҇;uQ;$`e4;zn:`yÂ:Oda::yWL.9TwK9P90W9씥z9go8`䗁d8B84ءQȹ78 :b7]37/ǁ86fyIP6R 5:ǥ.\5h<-5q~L34bwdb4օ4@[3zZV3Kth!%3d3D۷2E)1Nї_e1=|v0Hϼ{0"{0MY/jٮ/d.).iqt-wI9-K崋,.e,uow~+YaG*eZFh*zTI)+M)c0 (:T8*(j;;'Bʹ'k_h&d2%3%cr7$F1#Ȗ]tW#B-="*"H k!+ JpЇ m^p'dzpIvjc['@!'ÍGt'~4]3?=y=;É_6ػkhres%Eډ.Ue֭5q/)TCƪ/ J l,RkRk;.fit_Ni_kev_HistX;.gv\5o%F????ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?״?״?״?״?״?״?״?״?״? ״? ״? ״? ״? ״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״? ״?!״?#״?$״?%״?'״?(״?)״?+״?,״?-״?/״?0״?2״?3״?5״?6״?8״?9״?;״?<״?>״?@״?A״?C״?D״?F״?H״?I״?K״?M״?O״?P״?R״?T״?V״?X״?Z״?\״?]״?_״?a״?c״?e״?g״?i״?k״?m״?p״?r״?t״?v״?x״?z״?}״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?״?ش?ش? ش? ش?ش?ش?ش?ش? ش?$ش?(ش?,ش?0ش?4ش?8ش?<ش?Aش?Eش?Iش?Nش?Rش?Wش?[ش?`ش?eش?iش?nش?sش?xش?}ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ش?ٴ? ٴ?ٴ?ٴ?ٴ?#ٴ?*ٴ?1ٴ?8ٴ??ٴ?Fٴ?Mٴ?Tٴ?[ٴ?bٴ?jٴ?qٴ?yٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ٴ?ڴ?ڴ?ڴ?!ڴ?*ڴ?4ڴ?=ڴ?Gڴ?Qڴ?[ڴ?eڴ?oڴ?yڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?ڴ?۴?۴?۴?+۴?8۴?D۴?P۴?]۴?j۴?w۴?۴?۴?۴?۴?۴?۴?۴?۴?۴?۴? ܴ?ܴ?*ܴ?9ܴ?Hܴ?Wܴ?gܴ?vܴ?ܴ?ܴ?ܴ?ܴ?ܴ?ܴ?ܴ?ܴ? ݴ?ݴ?,ݴ?=ݴ?Oݴ?aݴ?sݴ?ݴ?ݴ?ݴ?ݴ?ݴ?ݴ?ݴ? ޴?޴?3޴?G޴?\޴?q޴?޴?޴?޴?޴?޴?޴?ߴ?ߴ?6ߴ?Mߴ?dߴ?|ߴ?ߴ?ߴ?ߴ?ߴ?ߴ??(?A?[?u???????4?Q?m?????? ???^?~?????!?B?d??????8?\??????@?g???? ?2?\?????4?a?????G?v????9?k????9?m????F?}???(?a????O????G????J????X???*?q???L???-?z???f???Y???S???V???a???t??1???S?????L?????_??<?????x??e??W??O??K??M??U??b ? ?t ? ? ? ? ?= ? ?e???,??c???C???2???1???@???`????P??? ?`!?)"?"?#?$?d%?8&?'?'?(?)?~*?`+?D,?+-?.?/?/?0?1?2?3?4?5?6?7?8?9?:?;????4@?QA?pB?C?D?E? G?:H?lI?J?K?M?TN?O?P?&R?rS?T?V?mW?X?'Z?[?\?Y^?_?8a?b?&d?e?$g?h?3j?k?Rm?n?p? r?s?ju?w?x?zz?4|?}??|?H???Ɉ???x?g?[?U?T?X?b?q????椵??C?z???D??鶵?F????µ?rŵ?ǵ?ʵ?͵?ϵ?Gҵ?Ե?׵?Nڵ? ݵ?ߵ??h?A?"? ????? ?&?G?q? ? ?"?n??"?? ?s$?'?+?/?2?b6?:?=?A?lE?HI?.M?Q?U?!Y?2]?Na?ue?i?m?-r?v?z?N?Ń?I?ٌ?u??Ӛ??d?@?)??"?3?Q¶?~Ƕ?̶?Ҷ?W׶?ܶ?/??B???P?? ????"??(?~.?4?.;?A?#H?N?^U?\?b?i?p?w?~?셷?'?v?؛?N?٪?w?*??ɷ?ѷ?ٷ???a??7? ?g?"?%?.?7?@?.J?zS?\?]f?o?y?r?X?X?t???k?ʸ?ո?`?@?>?Y? ??_#?.?:?{F?oR?^?j? w???Ӝ???ù?ѹ?|޹? ????#?1?b@?N?]?l?{?Պ?2??h?Cɺ?Hٺ?x??\ ??+?=?>N?_?Cq? ??1??̻?޻???B?+???S?g?|??w??ϼ?9???'?h=? T?j??]??Ƚ??@??*?C?<]?v?Ґ??ž?@?I??72?N?Nj?ˆ???޿???!8?V?u??????6?W?y?????e'?CK?o? ?#??S?*?Q?x??U??=?TA?j?є?8??^? A?Wm??,??"?Q??(???s?Y???0J?E??0?*?xc??+?q?WO?݋???KE?h?/??E???I ?2Q?ҕ?,?@!?h???A?ۊ?z? ?m???V??E?hG?f?@?????y@?Ǘ??'I?>?H?GZ?=?.?t? ?4???]? ?/)?g??b??C8????>?c?D?J??b5??%?????Ԕ?l?_??b?z%??5?G?L?f?/h?x?F???H??z??Ų?OQ??h?7?Q?`?0,??)?\1?d?F?G??:?m?()???dg?*?[??@@@ @u@@-I@@!@@@m@@P@@I9@F@&@@@ē@ @ @ @ @ @ @ @Ǜ @" @ @5@@N@@vl@@@s%@@;S@@d@#@@a@j@@K@6@@D@@@1N@@@4h@T@`@` @XP!@L"@B"@@#@KX$@j%@%@&@l'@Q(@")@)@%*@+@p,@]-@<.@/@0@b0@Z1@Ľ2@3@4@5@x6@|7@5w8@t9@t:@+w;@|<@=@>@[?@@@\A@B@C@. E@d,F@NG@sH@JI@J@lK@@(M@K]N@O@,P@R@URS@T@U@-W@}X@4Y@X([@\@]@C_@h`@b@_c@d@ff@g@\i@j@bl@m@Kyo@ q@yr@q:t@u@]{w@i"y@z@}|@p2~@@Ԁ@赁@@@g@R@@@/@L"@4@@@{@@@ @6@@*@:@PM@b@{@$@@9י@@~#@HN@5|@P@@0@T@.@ӥ@@`@@@N@@@x\@@"@l@@Nh@ܸ@T@л@P@ վ@H]@@,z@@@8E@@@j7@b@@Q@@@>@&a@0@@@@$@̉@w@j@b@\`@Bc@k@`y@@@2@x@@dB@AAAAEAoAA]A A7 Aq AD AA4A{AA AgAAAhrAA6AϞAv Ay AH!Ad#A$A^&A'Ahi)A*A\,A.A/AiL1A 2A 4Aw;6A]7AǛ9AR;AX=A>A@A@]BA+DA!EAeGAIAזKA~MAjOA \QARSANUA!PWAVYAb[At]A_AOaAcAeAf hASjAZlAnAqA4]sAuAxAczA|A1AрA A.KAA@҅AA~fAAA]A>AAtAבA>AoAA6AiA*wA{A`sAA}AAŖA(AAVAvAA&7AFޮA䈰A6A~AkAUAQA5кARAWA ArA۹A*AH_A 6AAAAAArArYABAW,A AA-A9AASAAARAA6tAbAPAFBBBBRcBdBܲBJBBEZBB?BoB'BDFBՈBBBB$+ B<: Ba? B: Bj, BBB[BDB}ZB@BBAb2A'kAA.AA_A'AA5A]A*A6ApA<`AIAFAXAAƐAj'AqAMA`޵AnAAA"AABNAAA)AѓA<A2A1AAwABIAwFzA tA~mA3gA`aA[AVAXPA^JA#EA!?AO:A 5AS/AD*A*%AD A2AAAVA/ A?AAR@@4@X@.e@V^@\@@@D@;@c@5@ D@@tߚ@<@N/@˘@,@r@@w@'p@ h@{a@#[@T@N@^H@B@tz=@qH8@P3@ܑ.@ *@$%@ʕ!@@0@vU@@@] @D @@P@@T?Jn?*0?O,?#`?'?d?$1?+?Q????y?]?b?*?c?.!??%??}??F?p?4J???9Ԛ?9Ԛ@9ԚA9Ԛ( SkڿC9Ԛ( SkڿE9ԚG9ԚH9ԚI9Ԛ)( SkڿL9ԚM9ԚN9ԚP9ԚQ9ԚS9ԚU9ԚV9ԚX9ԚZ9Ԛ[9Ԛ]9Ԛ_9Ԛa9Ԛc9Ԛe9Ԛh9Ԛj9Ԛl9Ԛo9Ԛq9Ԛt9Ԛv9Ԛy9Ԛ|9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ( Skڿ9Ԛ9ԚU( Skڿ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ9Ԛ:Ԛ:Ԛ:Ԛ]( Skڿ:Ԛ':Ԛ/:Ԛ8:ԚA:Ԛ'( SkڿS:ԚGkzV?g:Ԛq:Ԛ|:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ:Ԛ ;Ԛ;Ԛ(;Ԛ8;ԚI;ԚZ;Ԛl;Ԛ;Ԛ;Ԛ;Ԛ;Ԛ<( Skڿ;Ԛ;Ԛ<Ԛ*<ԚB<Ԛ[<Ԛu<Ԛ<Ԛ<Ԛ<Ԛ<Ԛ=Ԛ$=ԚD=Ԛ( Skڿ=Ԛ=Ԛ=Ԛ=Ԛ>ԚD>Ԛn>Ԛ>Ԛ>Ԛ>Ԛ!?ԚQ?Ԛ?Ԛ( Skڿ?Ԛ"@Ԛ[@Ԛ@Ԛ@ԚAԚOAԚAԚAԚBԚcBԚBԚBԚJCԚCԚCԚHDԚDԚDԚ^EԚEԚ&FԚFԚFԚjGԚGԚTHԚHԚMIԚIԚVJԚJԚoKԚLԚLԚ8MԚMԚ:) Skڿ,OԚOԚPԚRQԚRԚRԚSԚTԚ`UԚCVԚ.WԚ XԚYԚZԚIkzV?6\ԚQ]Ԛt^Ԛ_Ԛ`ԚbԚacԚdԚfԚ~gԚ˚@ujԚlԚn) SkڿBoԚpԚrԚtԚfvԚSxԚPzԚ]|Ԛ{~ԚԚԚ<ԚԚc(* SkڿԚEԚԚǔԚԚԚԚݠԚ!Ԛ* SkڿԚԚ>Ԛ ԚԚ Ԛ7ԚԚԚԚLԚ.Ԛ6ԚhԚԚJԚ+ SkڿԚԚ.Ԛ ԚIԚ&Ԛ:!Ԛ, Skڿ0Ԛ7Ԛ?ԚHԚPԚlYԚ}bԚkԚ~uԚrԚԚLԚ8Ԛ|ԚԚԚsԚ3ԚZԚԚԚWԚ:!Ԛ0Ԛk@ԚPԚaԚrԚԚfԚyԚ%ԚI3 Skڿ]ԚԚ7Ԛ/*ԚAԚNZԚsԚԚRԚԚԚԚGԚU8 Skڿ[Ԛ.}ԚԚԚԚ6 Ԛ4Ԛ4\ԚԚ>ԚAԚ Ԛz8ԚhԚԚԚԚ9Ԛ#E Skڿ2Ԛ0ԚDH SkڿeԚԚԚ1ԚyԚnԚJԚCQ SkڿVԚԚ]ԚjԚԚpsԚԚz;Ԛ>ԚMԚԚԚOiԚԚaԚԚ!jԚԚ`ԚԚԚKKԚԚԚ?ԚԚԚdԚH'Ԛ Ԛ!ԚԚ qԚITԚ>Ԛ Skڿ)Ԛ +ԚY4ԚFԚD`Ԛ SkڿԚ5zV?$Ԛ}nԚfԚ!ԚԚԚ`Ԛ8 ԚԚLԚ<ԚkԚԚy Skڿ[ ԚW Ԛcd ԚNԚ>ԚԚP@ԚԚԚv Skڿ]G Ԛ`"Ԛ1%Ԛ~(Ԛ+Ԛg.Ԛi Skڿ 5Ԛy8Ԛ Skڿ?Ԛ#6CԚ SkڿrJԚ NԚ>+SԚzWԚ[Ԛ`Ԛ%;eԚpjԚ#oԚStԚyԚ1Ԛ8ԚrŠԚАԚ@ԚفԚV'ԚZԚԚ_ԚԚ"ԚsBSkڿԚvnԚ6Ԛ-FԚ[ԚAԚ2ԚiSkڿ%Ԛ¿Skڿ:1;ԚFԚbRԚ_ԚGkԚxԚ9.SkڿԚsԚFϱԚ%ԚԚvIԚaԚa SkڿcԚ'Ԛ:ԚNԚibԚwԚ MԚ7Ԛ|Ԛ&Ԛ*ԚXԚFԚU}8ԚTԚXpԚY8SkڿSԚ%ԚԚ Ԛp/ԚeRԚXwԚ|ԚNԚԚ4=ԚF?ԚkԚ.ԚԚ3Ԛ)ԚQL]ԚG>Ԛpj#'Skڿ.ԚvH;Ԛ6wԚRԚXԚ@/,Skڿ`zԚ7XԚԚRԚ[fV?Ԛ{@ԚܔԚԚ3hEԚݡԚ;Ԛ#8aV?4Ԛ1ԚԚ# Ԛ8Ԛ&NԚ}pԚڃԚpԚ&ԚyԚ">TSkڿWԚo:Ԛ[[SkڿtoxԚ=Ԛ4Ԛ{Ԛ³2Ԛ5Ԛ@nSkڿ3zԚIԚ yxSkڿԚvSkڿǫԚ.ԚKԚW=ԚDԚԚԚo Ԛk6ԚpkԚ Ԛ0ԚGԚԚ8ԚՃԚ+ԚԚ|)Ԛ>Ԛ%EԚBԚ08GSkڿl0Ԛ8՚_{՚Y՚՚ - ՚k ՚O՚ ՚Z՚8XTkڿ9՚ mTkڿx?՚R !՚oзU?y_''՚ΜO*՚F-՚ҪTkڿ8d4՚V7՚;՚xTkڿ' UkڿIkG՚4]K՚ O՚vxUQUkڿťcUkڿvUkڿ]b՚g՚&U?#r՚w՚A}՚wq|*e?`o,՚{ j՚5LT?R}՚[Vkڿg՚VD՚#4՚Q!WkڿdY՚2՚+՚0Jz՚CWkڿ՚4Wkڿk֚B֚;֚F!(֚zXkڿ>֚|J֚`BW֚mYkڿ3mYkڿYkڿ֚;֚ܩ֚:(/֚/֚J֚Qu֚W[kڿέU ך-ךaD2ךy]kڿ8j]kڿoך:ך%cWךc ^kڿ"ךmo;P?-_kڿgv_ؚXI!0ؚKؚN%2hؚ;bkڿ]`bkڿ`ؚNؚRٚ Hdkڿ.JٚTʦnٚ,EٚҁٚPٚ1hkڿhkڿdtbښn@jkڿ ښ\gkkڿ; ۚWI?‚#nkڿ6ۚ|4okڿ+1ܚmܚЭrkڿo$ܚZtkڿeukڿw}ݚ.(ݚ HޚWޚdޚ=aY6ߚ*~kڿPkڿ~kڿ4<<"X |kڿO&]kڿEqt~Tad-?Okڿ+e'to*JXkڿ kڿ6" kkoqb8an$2|=&?lkڿTkڿBkڿŏIy~=D? e8>gNkڿ֭kڿdtsjGskڿXfkڿn_[4DmmKDoÅd?:Olڿ 9 +1lڿ];8lڿ]w? Z{œ!U]P #)z%ylڿ~*@"V-3p0/2ŸNlڿX\lڿplڿ>m?7 mڿ=F?'mڿ~M+Emڿ˳5UYM?#j]]0a mڿyjl%qo$:;mڿ]Sy)?,|_nڿ)Ng%nڿ >ۿiE }r?8ѝ?p"2{?CM2T1 z('?ܿrHv @ pbt@*: '?z=.tSn @jj'tMݧ?lЋܿ/[?{tYܿi09?meDnE?ua?2YU@Dkn{J?]/ݿ"51?Uƃrm%zt/ ?0?'#v?$B޿%a޿N9?|_ȷ?j?sF?z ߿=1߿ţvW߿W@2s]}?s.գ*?]??4-?guU @lm @X'k·?REc?Q]p#࿛q~?&U?{+`?O?ߧ ??Ndض?w.@?L%??e C: :?)RZ⿢ՏM?LM'?&eS"?~?h# @zD.?U!a?kmk~@#׊N#?ʼn| ב[I=5?z1דd?ے@]?pVQW濘T%K@tD{o?Hl^d #4 ?@ $@wt @ Fb?֊`?X@)T?0O?']]'뿤J Za?{0@HwA)ƀ?c5z?1j?@C _2!?G jP?T@V@ b? H;˵ų5CF?rZ2hfxSp?: .j@WZ'1_N ?b-]u @b-?;r?YjN?^PK"?KWLM?DNk?gȆPLuQ࿮RR@Է!rM@o?6y.#tc@C8k@ Tov?V`tj\?P"͂;?8@5'6m;񿡨7v倀(ZTi `?vr@_ տxЮe@jȖ?p#࿤#:k 큲@`y翜ˮ@^9?R@@IU?vo[?0B΢ @-&|L)@h?!L@^?  @cmu @8؝ *\?+v ??%ݿ 桐S8v+tg?"c>@g<U,b@di$ @ $k?4hP? @-р@h[`@4e[?x4iCNV@ 9 #?p-P6?η @,h. Ru@ xMƿtwV؛ @8G @ȃl?<]*/@^ O?D㥀SS@>}؆_?|@l)_@ʨP$s꺘 @0%yzą( @f;?'{ ]g@R1 1 `DXij.)uE-IL@uͨkLtD @@9llӿ"@`7J@ 2;@ a<@HwE@4aH @ Y @IĿ@ho[@5?'+@UgF\C9 @0Ъ@H,++@ @U5@/CW0@dQ|4m @@3(^5|@0 "֘$$Y`isWc?!@`Xz?.@'R, ?u=?E0m%AW躦ܿ>SXT2~mwv(ۿ |s؅!aTf D|ҦCѣ*RՉCПAL(Dќ_^fGr2`azx8+H52K3mV!H h]T/6ݚlפښؚY~ך*|֚"֚î՚X8T՚#՚C՚kjԚ;Ԛ)Ԛ~Ԛ&яԚ&Ԛ+ԚHԚ Ԛ:}ԚIPԚԚԚ Ԛ׋ԚԚԚԚԚԚQBԚԚϗԚMqԚLZԚLԚDԚ?Ԛ<ԚX;Ԛf:Ԛ9Ԛ9Ԛ\9ԚB9Ԛ39Ԛ+9Ԛ&9Ԛ#9Ԛ"9Ԛ!9Ԛ!9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ( Skڿ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ( Skڿ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9Ԛ 9ԚP Cy RkRkBkg_Ni_kev_HistX.yxa????ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ִ?ƀHRkRkblepswaveX????ư>`kRkPeak 0 CoefsepsX????ư>ư>ư>ư>>HkRkMPF2_CoefsBackup_0X????XX<:%?=`kRkMPF2_CoefsBackup_1X????㥯@O8XZQ@dRSH RkRkM_CovarX???? e? z y̜2/ç^_? z)A2>>Bp?[S:Ҿ y̜>\>yĸt?<þ2/çBp?yĸt?vYD+@j 7z^_?[S:Ҿ<þj 7zj7>hRkRkW_sigmaX????!ԲwG??q^?MX?!EL @0<i?^HXRkRkW_sigma_0X????"ԲwG?`RkRkW_sigma_1X????#?q^?MX?!EL @0<i? MPF_SetFolder_4!!LJ_1Jɕ"_F-C?rĸC^MPF2ConstraintsShowingnegativePeaksdisplayPeaksFullWidthpanelPositionMPF2_UserCursorsMPF2OptionsShowingXPointRangeBeginXPointRangeEnd>@XPointRangeReversedAutoFindNoiseLevelVf?AutoFindSmoothFactor@AutoFindTrimFraction>@MPF2_FitCurvePointsk.G@MPF2_FitDate33;dAMPF2_FitPointsz@MPF2_FitChiSqK@YWvNameroot:pulse_hist_combXWvNameGraphNameMultipeakFit_Set4MPF2WeightWaveNameMPF2MaskWaveNameeinterPeakConstraintsFuncListStringaints&{Constant_BLFunc, root:Packages:MultiPeakFit2:MPF_SetFolder_4:'Baseline Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_4:blepswave, STRC=BLStruct}{MPFXEMGPeak,root:Packages:MultiPeakFit2:MPF_SetFolder_4:'Peak 0 Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_4:'Peak 0 Coefseps'}SavedFunctionTypessConstant;ExpModGauss;8HKsM'ḱ'kBaseline Coefs????Su8e#@F`A8MsM'kͣ'kHoldStrings????Js0T8OsV'kV'kW_AutoPeakInfo????IFQHC=iDAB5aB `8Rs\'ḱ'kPeak 0 Coefs????1Ch[l@ .Vfu@dmA6T [pN@hV'k\'kconstraintsTextWave????hMINK0:;MAXK0:;y }'ḱ'kPeak 0L @???Ch[@ рRw?ݭ @ 3a@m.@T@s6@Hnn@@p" @0 @'l@JN^@[^@F+@X@+vpO@&s@X/@*K$@q@x <@xI @:!@!"@eu\$@i%@ZLR'@![t)@{cRl+@ʊ-@%I`./@Ob\$1@QYuw2@E3@6Gn5@67@2@Q88@K:@<@?@^p@@CV B@vZoC@pEe2D@ȷ9F@e\^LH@kEy,J@}b2L@ @N`N@g|\P@q=tQ@ ^R@J1vsT@T:V@<@(W@o:Y@皮Y[@m/]@p_#&v_@`/a@6 b@Z;.c@hne@6ag@FPGh@BT~j@@qll@ 3XIn@R-gQp@Wq@4Kn r@r[Pt@Ledu@~1w@=@x@TXSz@߼"{@Kʟ}@e@YkВ@†s@ džS@\W/@e@ݒԄ@ @6@!{WK@C@"Q}@Htg'@2@rU@?N@C33@fĈ@C@)r@w@5{`@E@扠ދQ@u:f@)5F@!( @t6@A*|@I`Y@7c~@&|@4Qy@Gpww@j@u@Ojs@z!q@?umWn@H\j@Yog@"Icd@7`a@,y <^@@%e Y@QX2U@<'6SR@N@xy$۟XI@"/?@Y3?2F(?L:;?/?2?8٥K2>q.}>(88>䘎N>nmF$q>})>ah>lk>4þe>I?>0q >zIr>w9җd>+LtV>H(H>hy;> s>-> =YS>i>{Ȁ60> DJf=;=9Pdй=$01=˺|$= 6ׯ=[䞳=*a=} Ct=8@c=6>S=:8&B=&ДX1=K =wzI=6#^<󥫆{<h3(3l'ḱ'kz fit_pulse_hist_combz Ur^ 4@???@>,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A-A-A-A -A-A-A!-A*-A6-AD-AT-Ah-A-A-A-A-A.AZ.A.A.Ae/A/A0A81A2A"3Ad4A5A7A9A<A?ACA-HAMAbTAi\AfAqAAAŤA'AAAO(At[AAA=<AA(A AA#` Ao!A"AJ=$Am&AM(At*Aj0.A2AŶ6A>QD 0DKDDrCC COCC?BB@bq&J@bq&K@V18LQ@V18LR@V18LP@V18LQ@V18L[@V18LZ@V18L^@V18LV@V18LW@V18LSX@V18LS@bq&N@V18LSR@bqD@bq&F@V0M=@bq&B@V0M5@a @a(@*i@Z4@U18L?Su8e!3, p< p<Su8e# p<Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e# p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e!Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e# p<Su8e#Su8e! p< p<LxhU??U18L?V0M0@V0M9@V0M=@bq&D@bqJ@bqL@V18LQ@V18LST@V18LST@V18LY@V18LS[@V18LW@V18LW@V18LZ@V18LV@V18LX@V18LSU@V18LQ@V18LQ@V18LP@bqK@bq&D@bq&B@V0M9@Z4@a(@ p<Lx p<Su8e! p< p<Su8e!Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e#Su8e# p<Su8e#Su8e#Su8e!Su8e!Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e# p<Su8e!Su8e!Su8e!Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e! p<Su8e#Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e!Su8e# p<Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e!Su8e! p<Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e!Su8e!Su8e!Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e!Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e# p<Su8e#Su8e#Su8e#Su8e#Su8e!Su8e# p<Su8e! p<Su8e! p<*i @ p<LxZ4@Z4@a$@V0M8@V0M;@bqD@bqG@bq&D@V18LP@V18LT@V18LQ@V18LS@V18LS]@V18LY@V18LZ@V18LZ@V18LZ@V18LV@V18LST@V18LQ@V18LSR@V18LP@bq&I@bq@@V0M=@V0M6@V0M6@Z4@a @3, p< p<Su8e! p< p< p<Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e# p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e# p<Su8e#Su8e#Su8e!Su8e#Su8e!Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e# p<Su8e!Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e!Su8e#Su8e!Su8e#Su8e#Su8e# p<Su8e!Su8e# p<Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e! p<Su8e#Su8e#Su8e#Su8e! p<Su8e#Su8e#Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e!Su8e!Su8e# p<Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e# p<Su8e# p<Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e!Su8e# p< p<Su8e#Su8e!Su8e# p<Su8e!Su8e# p< p< p<Su8e!Su8e# p<Su8e! p<Su8e! p<Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e# p< p<Su8e# p<Su8e!Su8e#Su8e#Su8e# p<Su8e# p< p<Su8e!Su8e#Su8e!Su8e!Su8e#Su8e# p<Su8e!Su8e#Su8e# p<Su8e!Su8e!Su8e#Su8e#Su8e#Su8e!Su8e!Su8e!Su8e# p<Su8e!Su8e!Su8e! p<Su8e#Su8e#Su8e#Su8e!Su8e# p<Su8e! p<Su8e# p<Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e! p<Su8e!Su8e!Su8e#Su8e#Su8e! p<Su8e!Su8e# p<Su8e#Su8e#Su8e#Su8e! p<Su8e! p<Su8e!Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e!Su8e# p<Su8e#Su8e# p<Su8e!Su8e!Su8e#Su8e# p<Su8e#Su8e# p<Su8e!Su8e# p<Su8e#Su8e# p<Su8e!Su8e!Su8e#Su8e# p<Su8e!Su8e!Su8e#Su8e!Su8e!Su8e! p<Su8e!Su8e#Su8e! p<Su8e!Su8e! p<Su8e!Su8e#Su8e!Su8e!Su8e#Su8e# p<Su8e!Su8e#Su8e! p<Su8e# p<Su8e#Su8e# p<Su8e!Su8e! p<Su8e#Su8e! p<Su8e!Su8e!Su8e#Su8e# p<Su8e!Su8e! p<Su8e#Su8e#Su8e!Su8e! p<Su8e#Su8e!Su8e!Su8e!Su8e#Su8e!Su8e! p<Su8e# p< p< p<Su8e!Su8e!Su8e#Su8e#Su8e! p< p<Su8e#Su8e# p<Su8e! p< p<Su8e! p< p<Su8e!Su8e#Su8e! p< p<Su8e! p<Su8e!Su8e#Su8e! p< p< p<Su8e#Su8e#Su8e!Su8e#Su8e!Su8e#Su8e!Su8e#Su8e#Su8e#Su8e! p< p< p< p<Su8e!Su8e! p< p< p< p<Su8e! p< p< p< p< p<Su8e!Su8e# p< p<Su8e# p< p<Su8e#Su8e#Su8e! p< p<Su8e! p<Su8e#Su8e! p< p< p< p<Lx p< p<Su8e# p< p<Su8e! p<Su8e# p<Su8e#Su8e! p< p< p<Su8e#Su8e!Su8e! p<Su8e!Su8e! p<Su8e! p<Su8e!Su8e! p<Su8e!Su8e! p<Su8e! p< p< p< p< p<Su8e!Su8e# p< p< p< p< p< p< p<Su8e!Su8e! p<Su8e#Su8e! p< p<Su8e#Su8e# p< p< p< p< p<Su8e# p< p<Su8e! p< p<Su8e#Su8e!Su8e! p< p< p< p<Su8e!Su8e! p< p< p< p< p< p< p< p< p<Su8e! p<Su8e!Su8e#Su8e! p<Su8e!Su8e# p<Su8e#Su8e#Su8e!Su8e! p<Su8e# p<Su8e! p<Su8e! p<Su8e# p< p<Su8e! p< p<Su8e#Su8e! p< p< p< p<Su8e! p<Su8e! p<Su8e#Lx p< p< p< p< p< p< p< p< p<Lx p< p<Lx p< p< p<Su8e# p< p< p< p<Su8e# p< p< p<Lx p< p< p< p< p< p< p< p< p<Su8e! p<Su8e! p< p< p<Su8e! p< p<Lx p< p< p< p< p< p< p<Lx p< p< p< p< p<Su8e! p<Su8e! p< p<3UgY3UgY濦 p<Mx p< p< p< p< p< p<Tu8e! p< p< p<FUgY濩 p< p<Tx p< p< p<Wu8e# p< p<T18L? p< p< p< p< p< p<du8e! p<R18L? p<xx p<S?? p<YgYpxO p<3,&3,3, p< p<x p<93,& p< p<x p<Vx p<rx bx p<;xgY濂"??g p< p<z p< p<M p<xz p<_(x g8e! i@{R??ekxQx 4|jY5x kYۇ p< p< p<Ex ] x gx xHp<x={x rp<)@,؉p<=;"xp8L?)%xup<xR,kp<4u\,bp<ȟp< 9x Qi@,]Kx BSxi\x 9gxX??\Y濅 xLx YBLx f8L?6/i @ a4@lx Bp<i @)x.5i @ i@3q<q<p,xi @/x8L? m4@.,*Bx f8L?bjrxzDi @4@öYlI?OG @xy0ԅh@L@j\=zh @V4@lrE4@e?.4h@ @2hg @ $b濬{ș(@,F<,@ z'3@,NC2@>M$@rqA2@5$@򘲘&@;m"@6g<0@Nb/@/w.@#-@P O%K4@'VqG+@9,@((@r%@a/CБ(@yr,@"s@'.l"@0u8@9n @K% @ϴA(@K@+ y(@@=ё@2te72@÷53=@hjz_"@*sV,@tN"*%5@_H?.@B3@02@$Ve 3@O 4@o-@ *Q6@)eJ-@JQp-@ g4@_e /@-d:@?6@iE{w1@9ȅ)A3@m͑5@&_հf2@a&'8@/ [A;@YW3@|(37@vR<@*;د8@| Sa?@^?@u:@l}?@3~D>@ \ E@Z!dN>@0%E@<yB@AtK@׏?@ kX J@v G@1:[E@>@xA#|@x5H6@d63<@W!@̱W@8"c- 8+0Pm)p4 { .3QnyC@ usE| e!9e!N8e!@x48e#8e#8 8e!|8e#A8e!W8e#y8e!kv8e#u8e#bu8e#Vu8e!Tu8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e!Su8e# p<Lx U18L?*i @Z4@a"@a.@a"@bq@@V0M=@bq&C@V18LS@bqO@V18LT@V18LV@V18LSY@V18L\@V18LSW@V18LY@V18LY@V18LW@V18LY@V18LS@V18LP@V18LQ@bq&C@bq&F@V0M:@V0M>@V0M7@a"@a"@hU??0UgY濦 p< p< p<Su8e#Su8e! p<Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e!Su8e#Su8e! p<Su8e#Su8e! p< p<a"@Lx Z4@Z4@V0M6@V0M8@bq&A@bqD@V18LP@V18LP@V18LT@V18LT@V18LU@V18LZ@V18L^@V18LU@V18LV@V18LW@V18LT@V18LST@V18LP@V18LSP@bqM@bqH@bq&C@V0M7@V0M6@a.@Z4@hU?? p<Lx p< p<Su8e! p<Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#Su8e#P ѭ j'ḱ'kBkg_pulse_hist_comb,B`@???@,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A,AxH('ḱ'kblepswave????ư>`g'ḱ'kPeak 0 Coefseps????ư>ư>ư>ư>rHHg'ḱ'kMPF2_CoefsBackup_0?????@SF`g'ḱ'kMPF2_CoefsBackup_1????o@(\`p= Q@ClRH<HT'ḱ'kM_Covar????hsݦ? d/̿ALuTvg(? d/̿nT@,]F@a%>@4ALuT,]F@uݳ@^n5"<@]5.aa%>@^n5"<@2x@uJoNvg(?4]5.auJoNl5)@zhV'ḱ'kW_sigma????hR&?/R'*@}E? s3@([g @*HHU'ḱ'kW_sigma_0????hR&?1)`V'ḱ'kW_sigma_1????/R'*@}E? s3@([g @ MPF_SetFolder_5!!`vJ_1Jɕ"_F-C?rĸC^MPF2ConstraintsShowingnegativePeaksdisplayPeaksFullWidth?panelPositionMPF2_UserCursorsMPF2OptionsShowing?XPointRangeBegin@XPointRangeEnd@XPointRangeReversedAutoFindNoiseLevelw@?AutoFindSmoothFactor@AutoFindTrimFraction?MPF2_FitCurvePointsJfڼ@MPF2_FitDate_ggAMPF2_FitPoints@MPF2_FitChiSq;孰@YWvNameroot:Ni_kev_HistXWvNameGraphNameMultipeakFit_Set5MPF2WeightWaveNameMPF2MaskWaveNameeinterPeakConstraintsFuncListStringaints{Constant_BLFunc, root:Packages:MultiPeakFit2:MPF_SetFolder_5:'Baseline Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_5:blepswave, STRC=BLStruct}{MPFXEMGPeak,root:Packages:MultiPeakFit2:MPF_SetFolder_5:'Peak 0 Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_5:'Peak 0 Coefseps'}{MPFXEMGPeak,root:Packages:MultiPeakFit2:MPF_SetFolder_5:'Peak 1 Coefs', EPSW=root:Packages:MultiPeakFit2:MPF_SetFolder_5:'Peak 1 Coefseps'}SavedFunctionTypess!Constant;ExpModGauss;ExpModGauss;_HxMsr9k:;kBaseline Coefs`v????nTf7?\A\xNsr9k;kHoldStrings`v????$8Ns0%hxOs ;k ;k W_AutoPeakInfo`v????@'1@rn;_Eg???????t?]?F?1?? ?????????????????? ? ? ? ? ?????)???V?o??????&?J?p? ?!?"?$?F%?u&?'?(?*?F+?~,?-?.?20?r1?2?3?;5?6?7?9?a:?;?<?Q>???@?RB?C?E?dF?G?%I?J?K?UM?N?*P?Q?S?xT?U?aW?X?SZ?[?M]?^?P`?a?[c?d?pf?g?i?k?l?In?o?}q?s?t?[v?x?y?O{?|?~?Y? ??x?2???n?2??‘??\?-??֚???h?I?,????ի?ƭ??????????????!?=?]?????)?[????C????_???W?? ?m??7???? ?m ??h??r???? ?I#?%?(?*+?-?~0?.3?5?8?T;?>?@?C?hF?7I? L?N?Q?T?W?gZ?S]?C`?7c?/f?,i?-l?2o??B?,G?kK?O?S?PX?\?a?le?i?In?r??w?{?O??z???k??ؠ??`?.??߸?½??????????*?]???!?r ??*?? ?x%?*?~0? 6?;?CA?F?L?PR?X?]?c?i?ao?Ju?<{?6?9?D?Y?u??ʥ??A??ݾ?8?? ??????`??? ?X?.?"?(?/?6?=?E?L?ES?vZ?a?h?Fp?w??t??s???B???t?F?#? ???????l ???;$?,?5?u=?E?N?W?_?th?3q?y?ւ?????̯??$?c?? ?q??i?? ?C? ?*?4?~>?pH?pR?\?f?p?{?J?? ?~???9???}?^?N?N?]?|?&?1?;=?H? T?_?k?v?q?4??????.?i??? ? ? ?C- ?9 ?F ?S ?` ?m ?z ?҇ ? ?Z ? ?/ ? ?Q ? ? ?!?!?~!?+!?9!?G!?>V!?d!?s!?!?G!?!?ɭ!?!?!?!?!?!?Q"?"?,'"?6"?aF"?V"?e"?u"?م"?"?"?d"?"?5"?"?e"?! #?#?*#?;#?M#?6^#?o#?#?j#?#?#?#?f#?e#?}#?$?!$?d4$?F$?Y$?8l$? $?$?$?!$?`$?$?0$?%?q%?;-%?"A%?%U%?Fi%?}%?ݑ%?T%?%?%?k%?Y%?e&?#&?8&??N&?c&?jy&?.&?&?&?6&?x&?&?\'?*'?A'?X'?o'?φ'?'?~'?'?'?'?r(?,(?D(?](?u(?((?(?ο(?(?(?S )?$)?a>)?X)?r)? )?8)?)?)?)?i*?U+*?gF*?a*?}*?*?8*?*?*?5+?$+?@+?]+?iz+?\+?z+?+?2+? ,?*,?H,?f,?,?Y,?,?,?,?-?)>-?]-?P}-?'-?,-?^-?-?O.??.?_.?.?d.?.?.?i/?v)/?K/?#n/?Đ/?/?/?/?;0?@0?d0?0?߬0?J0?0?1??1?e1?t1?1?1?1?]"2?H2?o2?2?2?2? 3?43?\3?؄3?X3?3?3?6(4?Q4?F{4?(4?F4?4?8$5? O5?z5?n5?5?5?(6? U6?6?t6?6?7?W67?%d7?47?7?7?8? M8?j|8? 8?8? 9?<9?Em9?A9?9? :?2:?d:?T:?:?:?(0;?c;?y;?;?;?4?S>?>?R>?>?5??=o??ڨ???? @?W@?@?@?a A?KEA?A?"A?A?T8B?uB?B?5B?0C?oC?;C?C?/D?toD?@D?hD?2E?tE?E?E?~?'??P)?t?? ?xY???B??\߂?.?f~?΃?9?Pp???Rf??? ?`?Ӵ? ?^?? ?a?Ӹ??h?d??At?pΊ?!)?T? ?DH?????6:??$?Q??? r?)? ??XV????dK?R ?R?f?Q??4??Fi?1????"`?.????s? H?~?$?? ?T?Z?7???:???8~?c?J?2?,???\??"??L?j??ă?|?u?p?*m?k?Rj? k?6@j@:@7@8B@@tL@@Y@n@i@8@C}@@@ @<@2; @ @Y @ @{ @ @ڟ @{3 @ @<]@]@V@("@Ժ@[T@@@ &@!@a@@p@?@s@σ@'@E@ap@j@b@Ie@!@@b@_@ @h@I @ @rw!@)"@"@"#@C$@J$@%@g&@, '@'@(@aP)@7 *@*@+@J,@5 -@f-@.@U/@0@0@Ҩ1@q2@;3@4@4@A5@n6@r>7@I8@M8@}9@݈:@o^;@25<@+ =@Y=@>@`?@;y@@TWA@6B@DC@C@>D@E@QF@HG@uH@_I@IJ@-6K@#L@M@N@FN@+O@lP@ Q@ R@qS@:T@iU@V@W@sX@QY@Z@c[@\@I]@q^@_@4`@a@b@ d@e@}-f@Ag@Wh@ni@χj@Nk@cl@m@Xn@<p@>q@br@s@t@.u@w@\0x@y^y@Hz@˿{@|@'~@^@K@@@u%@4ł@e@e@٩@6M@}@@<@@ወ@4@މ@@X5@@׏@>@<@螎@P@;@嶐@k@@!@ג@@qH@<@@x@5@@@s@R4@@@~@D@ @Ҟ@@e@0@@ʢ@;@i@9@ @kߦ@鳧@@|`@8@@g@&Ȭ@"@[@b@C@%@@N@ӳ@6@@N@Qw@c@LQ@J@@0@L"@V@ @@@4@$@{@<@h@@ @@u@@@@@<@@l+@L;@L@_@'t@8@ڡ@@@K@Q@/@@Q@-t@Ę@@@@;@h@ȗ@R@@.@d@?@@@LN@a@[@A@V@@@s0@F}@'@@4p@p@lA<;A,A@A~HAAAj`AAAA<AA߲ Ap A. A A At A9AAA3A,^A ,AAAAwAOAh*AVAAA?AA~AkA[APOAE A?!A="A>#AC$AL%A#Z&Ak'A(A )A\*A+A -A7.AJl/Ak0A1A,3Ay4A5A,'7A8AR9Aa;AA@?AtAALCADAX`FAvHAIATKAzMA\OAHQA@SAEUAZUWA*rYAě[Ap]Ay`A(hbAdA5gAرiAAf(AA]A7A.#A$6APAsAAϨAArGAڍAڱA-AAAJAVAP!AA AA'A(AAA AA*AģA*AQAE6AUA9AA1AFAA͆AAOAAAA$BFBkcB@|B@B0BըBBTB B B BLg BE BBgBBzB4BBUB6BBfBvBFvBBeB(B4BB BR.BqBάB5B B/B LB`BDnBltBpsBvkB\BGB*B|BBB5|BABB?BqB!BBsBB-BjLBBrBB(BB"BBMBkBQxBBXB9B,B+ B BS BE B} B_ B| B& BNBzBBB)]BB;BBA/BqYB=B AAJzAAAA"A A.AMA:AƱAĀADAA'AFA[AaArAMAAATAA,AAA +A|6AD8A0A A#AAhAIA^A$A1AA]ARAʐA~A2AAA;RAzAӏsAmAXfA0`AYASAAMAGA,@A:A24A/AmE)A#AAxA:A A:AAV&@my@< @@@C,@@4~@X@ͮ@U@-@) @c@@@Y;@s@ԉh@]@S@I@}@@H7@.@&@@,@5@ @@,????$? ?}y?f?̯?B????R?+R?R? R?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?Q?~@~x:;k:;k͠Res_Ni_kev_Hist`vMb`????qn?BJ⿫Z7⿅|4 J?AR? ?y(⿺2棂'⿳`8D㿵ga> idu 9?ȳ$c*ϸ%D՛ ?Xo:?2sQ;#uӪq?4䜎x>mQ|? ?>Nt.nmҿ+uE%hWs',?  %?QsG sy a. K?  |튻 㿆5A \ *|o㿨чQ?Ӱ? l$uGu,?J=䁑?y i$F%8v?B6z?A{?ݸ@cj D5Ӝ??To+-@4-? i"?P$ uټ;A{4s+V9һ4#ѿ?b*i? 2?D"㿬v#VܿJ$Ģ?A=&㿈j'ꃷ? t )©*o\(+㿲-VL?ב[C/ߕe4j0㿥o1&r?H=?%t75㿪ɸw65z7p9㿏Y:OE;kza?&* M&?W?${}?_2B/D5f˯E:d\?EH'g?WJюh?)}d?ާR;O~P㿾Ux!-S??GW㿣PY;5[㿲f]r_,ga&'@',5? xgL8Ai㿺⮢(?9)P$?h( p㿘gEra{tcvov"21y?{㿧_u~Afw㿬}$$㿳rXθ5:?4al)^P%㿁?v$?r?qr?u㿧t$? 'in?o㿘A?y?ǡ_$?c\㿛&y%{?_{k{|CB-%e?sV7qv?xON?F?fN=?Crn ?Z-?A;|X~M㿽ms ?֧[?8C?2?̂]7mG/cri?P-"?u`N}?{#i?|X)@t~LPؿ(9ًI|ڿonܿPth޿d]iy Bp^ҝ,{EJÝU?Px$c?C W激 2?I)8(P hyj3Šr?@OhGE@w*~ ?md?*^^{d˿@>@ ;k<ֿ7@ ?Xf-d?Ե6'5xZ?X¸念sg[ȣjx3?Pots?:1?hB=(V԰?>$ <@dZocǿOO!$Jf_ ^6N*T"@$^P꼔@"h ڸ>#P2 ?P 4 @8ԙs?ORmHFF&S'@6t@ 5.D?VX>&5?p@ uhx@`Q1?'W"@`.fM0Mq0@mT(@Xu &./|h*&xU @)V#P@*R5 dC#Y@",׿-{&ƿ; %@9-@t$~xd+&@๙_@k2 `ƮdH\M H+6= @G8gl:2m%H!@|q>M#lӎH>@ZAtx<6ѲN"@ RD¯#;ǿ?&[,%$@6nND @@ȋ!s^@&X@` 'Fn,[?г{V@\Z[(@MG%zX'ZQ?@M2^q(@@BtT/8\q͸@.z 8/d @"b @bwi@n-\z$|l@ ce4  @mF?v9 @}'@W⿨ ؿH]?zFH? ?8`?i쿂=? 迦 ?>jc |B}n俹ԣa俦PCb&C'R2溕|1ԪwS㿋/f?}|ZXVϿ?G&(+⿍AK/5⿉⿺z⿑K⿻gz ⿌T⿗ecT_nIB5> ;/\9bS8z)H8! 7; ͳ7œ+7U7u7⿏n7(bj7⿍@h7⿿[g7g7f7f7"tf7%x`(W9k:;kPeak 0 Coefseps`v???? ư>ư>ư>ư>`h9k:;kPeak 1 Coefseps`v???? ư>ư>ư>ư>`X9k͉9kPeak 2 Coefseps`v????ư>ư>ư>ư>U `9k͉9kPeak 3 Coefseps`v????ư>ư>ư>ư>Zh`(e9k͉9kPeak 4 Coefseps`v????ư>ư>ư>ư>:`Б9k͉9kPeak 5 Coefseps`v????ư>ư>ư>ư>X[`(p9k͉9kPeak 6 Coefseps`v????ư>ư>ư>ư>`9k͉9kPeak 7 Coefseps`v????ư>ư>ư>ư> `(9k͉9kPeak 8 Coefseps`v????ư>ư>ư>ư>s7`09k͉9kPeak 9 Coefseps`v????ư>ư>ư>ư>@`9k͉9kPeak 10 Coefseps`v????ư>ư>ư>ư>OA`M9k͉9kPeak 11 Coefseps`v????ư>ư>ư>ư>'`f9k͉9kPeak 12 Coefseps`v????ư>ư>ư>ư>x`9k͉9kPeak 13 Coefseps`v????ư>ư>ư>ư>\`P9k͉9kPeak 14 Coefseps`v???? ư>ư>ư>ư>`9k͉9kPeak 15 Coefseps`v???? ư>ư>ư>ư>`x9k͉9kPeak 16 Coefseps`v???? ư>ư>ư>ư>=`P9k͉9kPeak 17 Coefseps`v???? ư>ư>ư>ư>:`S9k͉9kPeak 18 Coefseps`v???? ư>ư>ư>ư>`9k͉9kPeak 19 Coefseps`v????ư>ư>ư>ư>`9k͉9kPeak 20 Coefseps`v????ư>ư>ư>ư>"`j9k͉9kPeak 21 Coefseps`v????ư>ư>ư>ư>; HD9k:;kMPF2_CoefsBackup_0`v????hCY?<`Q9k:;kMPF2_CoefsBackup_1`v????n@ru6C`k}?5^)A@R^+;`O9k:;kMPF2_CoefsBackup_2`v????/$@zBowd;OwL@mOT6`O9k͉9kMPF2_CoefsBackup_3`v????h@@}s}?H?X;,n`0\9k͉9kMPF2_CoefsBackup_4`v????Q@`u?@EH@H.?`E9k͉9kMPF2_CoefsBackup_5`v????`@t?fk@(`p9k͉9kMPF2_CoefsBackup_6`v????n@zv?tXu@>`9k͉9kMPF2_CoefsBackup_7`v????@O@`JBl?a| @ ?ݷ`9k͉9kMPF2_CoefsBackup_8`v????v@@|r? Nh\@(~`Џ9k͉9kMPF2_CoefsBackup_9`v????@@3h?H.Gx@{?k`P9k͉9kMPF2_CoefsBackup_10`v????v@`λ|?.9#!@ ?`}9k͉9kMPF2_CoefsBackup_11`v???? @.t?28U"@7:`n9k͉9kMPF2_CoefsBackup_12`v????`I@@wAx?o^-)@V?`n9k͉9kMPF2_CoefsBackup_13`v????x@ l?_jk@;?[` y9k͉9kMPF2_CoefsBackup_14`v???? @@wzr?@Հ3 @<?|`S9k͉9kMPF2_CoefsBackup_15`v???? @`hg|?J&M=@4?z`W9k͉9kMPF2_CoefsBackup_16`v????!@(h?xɏ @S?x`X9k͉9kMPF2_CoefsBackup_17`v????"M@`Yml?*#@24@7q'9Cȥ$=?!B33?) 68eV? sk??U\Z ? Kt ?HQ ?W>\"?-_/@ sk?yyz@j 0.\s?kS7S?2:Y@3ԘZءm*}K?Uj 0Fk?a?2%N S'!Rc`JΗM8?* * # S?\Z ?.\s?2%N S5<>;fZ>,"?¬1)c|~_w R? Kt ?kS7S?'!R;fZ>795>İ>?I7:!ç&Ԫ>24@HQ ?2:Y@c`,"?İ>?b_]eQ@3顄< WVF?7q'9W>3ԘZءJΗM8?¬1)I73顄,7aW"?ݦ}R:;k:;k W_sigma`v ????Vǭʿ??ܙ&?0e`4@_A&?qIj?hUc?{:I7 @9?\`hR;k:;kPeak 0 Coefs`v????(!W¾@^ƞdH|0@#V`(R;k:;kPeak 1 Coefs`v????0@ECST@NtB  R:;k:;kPeak 0`vQ:W????@:i>8QKuhJhnmÄYrS%BTcmTW$->FEI']U@goCVDOpd/ޥn/nO3|rB JMrQ:zt!.YH"EkƧ]4mtRK+3kuᏣ鳼;|!2=8h&fi }3U&WK; '-c4Sz|ޒ xjhF A (DY cI(!+ʰ79 8QǬh 6WSg[gIjk!A٥Jn0A'1-!(P@=V; pȭ2T ȵ'LdCRǥ\)s}4U6'(pv3}NKFhɤ&c* zm~;7ؒV'}o(MŊ [>q n!ge:.9]ҩQIht`{;a@Vtar"dBV1݇g*-Gaeb9'׸}WJ@D^9V epşGO|wC  3$Ιgj c)݉Uk5] .;v|EĪ ]E߼tP_:OgOk9ҟj1LM/*n(H/pDp3) |DKܫ|7 c(2~z`Lђ{m;f,GGTɽ,.8힊 KN!M%9kQ<$zhZ8%[g,X~ѻD;/pZh57?X1'jD@ p8V/p =otLk}bw'"6A9 vZ e+-8Sd}.}M E5F/]+UtB/ HvtӀ`E˕G R ׻x]{Ji3W;Ko'c2͢zquh˒#|\mO}QפLM1Pq >!D#&9z)*uQhC2UucPI؄ 7 x;TD&,uʂ1i)'t:g>@$hO:VYo:l9tT=j}\6Ľs ʉ}t2=\ U- 7E ow.|] {N[t Z  _]Y ȋ Cj xIx %t!y1& !ٖ~b3!7N*w1K!;,+,c!WHz!y^RqĒ! S!ZFBQw!GQڎ!Gm+! } "Q"!"WyY9"11EIQ"ڻbHh"9N"GG"[h"Ϟ"" "P|#WE?G!'# !}:9@#>t5V#bXo#}d#Yi# (]#u#k}#=oi#T$fچ-$4&D$'gq]$5,t$dN$1$R@Q$׀$i$|VI $^Żk% u%)bZ3%kE%K%EJM c%'Gz%˺%}#oE%X哢l%ppʇ%tV%fj &1q!&8&jLԆQ&dݓh&muL;&&3@)&g!&POzϾ&7N괤&n3T&ʯ{Z)Y'q&'8 @' |V'2?qCo':.G'ȶ'۴'f]~D'']ݟ-'Pf' x(,(%EҪ?D(Q4K\(_(s(3Q"(Nx@(Ѫ"ۺ(gع(s($G-)M)j^1)yH)'Ya)Ww)2a)ȥd)̧%x)FYd)wK )=$@BP*37*3*>,PK*b*jPy*X *|1ܜ]*CÈ*LA*hm;A*ƝUmW+7δ+(-g>3+:-=J+xsUQb+yD)x+hj ֐+Ʀ+zľ+e+͢+Dl,aL-<,G,0, S`DF,2C{uC^,Z m0t,:w},bB,<,u,LЇ,xW|,M[-c'-L9T?-}CpT-Q.j-Qd-yI-dI,ӭ-W R[`-vmy&!- C-_.9i .'&p1.%_sfF.r\.QAV_r.3v.,H.[J%'.S$.&x͖.|GV.[nf/}/O3/'u7H/_PO^/rr/׊E/ڊY/i i7/Үaې/BV3D/pSp4/jd.0Z#0e~K/0\րC0bW0d̸m0'Xá0C c0g03FD07CW0Xʨ0hAn_10H1w^t#1c/H:271jK1Q0b`1EnНhs1'FJ11<&~ٯ1=qZ18j1H+1Zt1TOg2mt7$2rYn72ȯAK2t;F_2H;r2S2Tշ2Aa!2l2.l*2~ 2gE,2 3f3YV03\B3ÕT4e4vyw4Y%D4kHr4r4߉QԿ4=mo4! R-4t3nH\4pL5e)o5{X[g'5\85BUI5CZ5nEVmDl56}5܎5zר5^5%!O5≌F5qy5C5`m6h6@H }$62b46ETHE6~U6=Ye6w#(v6쿌Z6`6Q6y36$:G6=t6A0z6sG'Q6 7{F&7*Eڎ%7jr6577cD73:R@:P̉>L:<`JX:uqe:\ݹPr:;X:Y v6:=:b,Σ:%Iְ:u0Ð:Wt,:yPi:q>2:?::i==:4G;;m$2;wm';BJl3;`i@;Q3J;VGU;q-d.a;)Ycm;9D7x;Y;׊;<N;䒑;o;o1`;|` ; ;9ϿS;;a3 ;k?G;ӟg^<,j X~=Ev=ƾ=YTTɖ=Ҕa=LR?=hWѰ==<G=›P=OgG==޵d=E7=oZu?=>k! =&=<>2wN>qe9>y|B>ʴV;>d^o%>->|34>rH+.%<>aVQGC> ZJ>!BQ>̤Xi@rX>88 B`>ؿxf>c\n>Q"wt>б{>((w>>LBL>vc~>)0B>g>jT6>6>J묷V>dlm=\>v#@>Rӹ/> Qwp>>"xh>̺%F>* >hP>!:f> R̗]>>(> R C`?]ɟ ? ߉?'p?YB^m?54n ?(hr2%?O!Ū*?+W0?Zg'4?.27jp?\j?Sԑf?Q淛 b?hyXi]?@TFW?<iS?B'SoO?3x(dI?dZvD?s,qat@?Lf:? 5? 0?4*?զu]%?cP ?$?h()? ?L/ ?_F~׆? ?^ǸF >s(J>VK>C.MHy>׀-%>+>.>w(>]{V>&/]>4>~/#v>}K >JJþЩ>>cxye>\>P9i>1o7ӈ>-a>| {>pEk@ވt>y*un>[?f>S3Y`>X>T!KJR>fJ>tCNC>[-<>1Le24>m->ݘ%>x)4:>?p>SK6>{G>A`j>'%==[ gw/=%mE)~*=k IO=-=d 6=d= = ¹=z"\=4TbG=%;bƟ=bmd=(޸=}=`._t=dl= I vc=>РZ=NO6,R=޹H=@@=s6=_}x.=X$=!jyG=ǡ^=б+ =%(g=U*Qp<<~<<È|a?<XW;};n 濘;/gtq;=C$v;"pv;_k;_W/a;rڗT;L?~I;Hz4g>; R][2;&1&;DX;";r68;:}":foGj:sK:7:1v:K1^:L~[l:jǖ:ޏHȂ=: ANp}:=v{!q:Kc:}M) W:  R:;k:;kPeak 1`vQ:W????@Vab?ΌAb?= lnb?_)K c?/+Hc?Lc?qc?"AAoc?.L9d??@xd? MHd?}d?Q+C7e?0gxe?lEe?*M(e?Af?+9f?.f?Og?J Xg?Ȱg? Wqg? 3h?*0}h?h?F5nNi?bi?n_ci?1i? Oj? j?j?`Ek?#;әk?dk?ѦDl?'`ܛl?_+l?pMm?T.Rm?n?A ӟ_n?ƌn?*0o?nZbzo?Ho?%p?XPPp?߂p?흶p?G&*p?,<q?WFkdQq?Bq?nȓ;q?q?Hο!+r?jDcr?R3zr?Ær?s?çIs?RT s?0%s?Y1C@s?;t?@)\yt?"R-t?nkɮt? A9u?uCzu??x佼u?Qu?hCv?_v?Vv?@܋w?4ҙZw?<"͑w?f"Hw?(]4x?ژ|wx?%x?H=y?GYdy?jvծy?pKz?ıeQz?z?Fz?G{?^W{?}O{? F|?W ܬ|?g.|?ct[O}?}m}?F~?b7Y_a~?dʳ~??l$d}?z2ZZ?Zd= ?E? x?`揘φ?pR?L6f\?~T?g|B ?*+,6?LZ?@̈?+? ,sf?On?@?"IAS?#*?? J?6Tϝ?!?&T#|,I?~D?Q?^7|?a??s5q?A &Θ?ލ?$khh?l.?)?DU??l?C?f&L?4?x;D?CZK?%y?BTs?+?șC?pbN"?]{hT?*g??$?A?N0!?@yU? O?ĂU??}LT/?eRg?q|?YV٢?w\`?N?p?fţ?:]?zT}4@?`~?kF.f?'3l?U)>?t‘?'42?s?H?b*?TyҦ??_g_?JB?ɾ?W:?>!?#*1Ш?R ?D9L]j?z??YpW?vJ?D,?@N?2!T?>Ek??TM?:??07c!V?T{u? p ? dh?+㖒Ʈ?$?$Jܫ?6W'?}#?_fU?,0?9ܺ?<`?r="?DW?8?4!±?x_b? P0?쁟h?/wl?6ڲ?^bi?9^O?j;? /<dz?k"?n,A?Ŷ#?tFC?Q7%? ˲??h?$?>fs? ?/'Gn?A(&Y?uhK ?R?\?8$1?nsT?MuR?03Z??UQ?: ?&$MV?!-6Z?/?8!6Q?u m?͛?c)?S1?S?MYt&?E.X??Lp?1Q?ܫ%%?沑Y?vά]?|]5{o?oԬ'?@*[3?ik?_OK?|g?O{?'(ےR?f?MH?vŷ7?D?qL?xeu?j-a? z-C?,Ȑ?5?V+P ?y&M?,`?٢,?Jj7?7;fe?9p?o X?JT @?`mˊ?.4]?F*H"?R?c?*Ezko?Ӵ"?ڊ>+?m?m_&? {'?VpY?%ȋ?Ԑ?XܙI?cw&?F[?v;??Z8?ʮ+4?(l?(κ?%?+Sb?ކ?r@(?rZ?sIS?}g?푙? '?lTȜ\?"\r7?A,?Niw?JV6?iQin?I>i*?P?K{?3c͌U??^7A|T?V}M ?%2<H?t?e=? ?ڹ3XF?39ڇ?nV%?^[= ?6#Q?Ɂە?Ne?8O!?J i?A??>6C?O@8{7@ Bo@ؑ @ @Z2@w W@t@e^@J @` I@rԚ @>NA@ <@lG@]@2(U3@-s@ꮵR@H>@D@͋(@x #@PNj@@Ʃ^@x׮E@Knw@,$@K( @tJv @ë @? @a_i&d @Hi @æ @ZZ @( @Y @ A/Z @q% @Ġ?G @Ec @130 @_@'sv@DX=@@20Q-3@(r>@#Gw@?0n+@u7]@@QK,@Qa4@s}n*@fiI_@ǔ@K @ӏ^\@Tu=@Dg@0 \@]!@|! @8fQe@4vz@+U|@9x@\@`5@ #@{7@ , @:z^ @t @ @R @:+!@`!@!!@S4H!@z"@Y~:"@EHr"@G`y"@g"@##@ ҔZ#@#@#@ $@ L$@%83$@Ճt$@5By %@,¸BK%@ :ӌ%@(4.%@QWU&@ϭKV&@A>&@߽]#&@Yz''@9oin'@+ (w'@-]'@%xI(@}gT@(@g(@x~`,)@A* z)@Zʆ{)@da*@`i7h*@Ԇ*@tuš +@3_+@P_+@&_,@eX ^,@r=|W,@,-@v8h-@E|-@R >g.@Yz${.@K.@MT7/@m.,/@Ns_/@ -0@_0@#6#"0@@%0@!0@ZI-1@a1@`1@z1@G2@;2@~s2@/"prv2@d2@3@>$~Z3@O0˕3@"3@ݦxI4@(rK4@.714@6V}4@CO5@ŇHtE5@Q5@j c5@ʹEG6@.+FF6@6@rq6@7@?G7@sR87@8&7@Dߵz8@|p?8@mxz8@48@0oN8@@bK9@:^>M9@>(z9@!z9@^Ll9@В9@9@=E:@ϥ:@n#:@oX :@@˦:@9@&*ō9@ų09@.?2?!5匏?R\0ш?F1p?o‹S~?c&ގw?6#9r?եl?5%Ee?bzs`?*.Y?JնBR?%ŽL?7lyE?Nt@?L7?B1?b2*?YC#?K5?r_?\,~ ?=RL?ű^>z?E>W&>C>>k>$v> 4ƍ>tB }>+F>nW>sW%>u>>m>w)> aaaw>Oq(n>̫pd>F/{ppJ[>sR>RPG>MZi?>^q?4>!dK*>$ I >t1>K >Yf:>rK=!䈆=O~O==ݸ=3`==Č=Nuֵ=ē= =Ǹ/=!Wx=J}=%lq=NYQe=m/Y=eN=&:-B='&"t5=7,6)=P'=DT.={&=2|<ޙt<HHij ;_ I:ۿ:?xk:-_}:{WI:rG R:t[raq:͖?}:EEDzv:zˊ je: }OT:).C:?GR6 2:`]S :su$y:[.49Y?9=,94>$K9Q)94Ѣ99^K~9mk9)zwX9HdE9A܂639$-R 9,FHR:;k:;kW_sigma_0`v????Vǭʿ?,F`R:;k:;kW_sigma_1`v?????ܙ&?0e`4@_A&?H`(~R:;k:;kW_sigma_2`v????qIj?hUc?{:I7 @9? WM_WaveSelectorList!8 WM_HierarchicalList!X HierarchicalListInfo0!Ks55ȄR ;k:;kͰListWaveKs ????{RBaselinePeak 0 GaussX0 GaussWidth Height ExpTauPeak 1 GaussX0 GaussWidth Height ExpTauConstant\JR\W523ExpModGauss\JR\W5234.9529-0.03005616.676-0.0014011ExpModGauss\JR\W5235.0264-0.02175182.391-0.1209HoldHoldHoldHoldHoldHoldHoldHoldMin:Min:Min:Min:Min:Min:Min:Min:Max:Max:Max:Max:Max:Max:Max:Max:Peak 0Peak 0Peak 0Peak 0Peak 1Peak 1Peak 1Peak 1BaselinePeak 0Peak 0:GaussX0Peak 0:GaussWidthPeak 0:HeightPeak 0:ExpTauPeak 1Peak 1:GaussX0Peak 1:GaussWidthPeak 1:HeightPeak 1:ExpTau'1;ALZdn~ #'+//37;??????????????EKQWW]ciow}͠R ;k:;kXSelWaveKs ????|BBB?@@@@@@@@BBBBBBBB@@@@@@@@@@@@@@@@ *F// Platform=WindowsNT, IGORVersion=6.312, architecture=Intel, systemTextEncoding="Windows-1252", historyTextEncoding="Windows-1252", procwinTextEncoding="Windows-1252" Silent 101 // use | as bitwise or -- not comment. DefaultFont "Arial" MultiPeak2StarterPanel() MultipeakFit_Set5() Graph3() Graph4() Graph6() Graph2() Table1() Graph1() MoveWindow/P 490.5,43.25,951,497.75 MoveWindow/C 5.25,318.5,349.5,533 Graph0() KillStrings/Z root:gWMSetNextTextFilesTextEncoding Window Graph0() : Graph PauseUpdate; Silent 1 // building window... Display /W=(35.25,44,569.25,407.75) Ni_kev_Hist,fit_Ni_kev_Hist ModifyGraph lSize(fit_Ni_kev_Hist)=1.5 ModifyGraph rgb(fit_Ni_kev_Hist)=(0,0,52224) SetAxis left -0.757188088255586,50.09262778674 SetAxis bottom 4.60745960805773,5.13545304652694 Cursor/P A Ni_kev_Hist 1993;Cursor/P B Ni_kev_Hist 2659 ShowInfo TextBox/C/N=CF_Ni_kev_Hist/X=47.81/Y=0.49 "\\JC\\f01Curve Fit Results\\f]0\r\\JLFit Type: least squares fit\rCoefficient values one standard deviation" AppendText "\tw_0\t=1.5031 0.432\r\tw_1\t=-5.1293 1.88\r\tw_2\t=38.323 1.11\r\tw_3\t=4.9693 0.00185\r\tw_4\t=0.04099 0.00142\r\tw_5\t=0.029264 0.00312" EndMacro Window Graph1() : Graph PauseUpdate; Silent 1 // building window... Display /W=(143.25,127.25,807.75,490.25) pulse_hist_comb,fit_pulse_hist_comb ModifyGraph mode(pulse_hist_comb)=6 Cursor/P A pulse_hist_comb 3514;Cursor/P B pulse_hist_comb 3798 ShowInfo Tag/C/N=Peak_0/X=7.48/Y=27.24 pulse_hist_comb, -27504, "Peak 0\rE=-27507.1 keV" Tag/C/N=Peak_1/X=4.93/Y=19.36 pulse_hist_comb, -21136, "Peak 1\rE=-21141.1 keV" Tag/C/N=Peak_2/X=8.21/Y=28.57 pulse_hist_comb, -16624, "Peak 2\rE=-16618.5 keV" Tag/C/N=Peak_3/X=7.48/Y=15.89 pulse_hist_comb, -12032, "Peak 3\rE=-12037.4 keV" Tag/C/N=Peak_4/X=11.22/Y=27.90 pulse_hist_comb, -7488, "Peak 4\rE=-7490.28 keV" Tag/C/N=Peak_5/X=9.49/Y=14.95 pulse_hist_comb, -2944, "Peak 5\rE=-2946.3 keV" Tag/C/N=Peak_6/X=13.50/Y=26.30 pulse_hist_comb, 1504, "Peak 6\rE=1502.13 keV" Tag/C/N=Peak_7/X=11.77/Y=15.75 pulse_hist_comb, 6128, "Peak 7\rE=6130.92 keV" Tag/C/N=Peak_8/X=10.04/Y=6.68 pulse_hist_comb, 20992, "Peak 8\rE=20988 keV" Tag/C/N=Peak_9/X=4.56/Y=22.96 pulse_hist_comb, 24256, "Peak 9\rE=24251.8 keV" Tag/C/N=Peak_10/X=1.73/Y=14.69 pulse_hist_comb, 28784, "Peak 10\rE=28785.3 keV" MoveWindow 0, 0, 0, 0 // Minimize the window. EndMacro Window Table1() : Table PauseUpdate; Silent 1 // building window... Edit/W=(5.25,43.25,510,237.5) pw ModifyTable format(Point)=1 MoveWindow 0, 0, 0, 0 // Minimize the window. EndMacro Window Graph2() : Graph PauseUpdate; Silent 1 // building window... Display /W=(69,98,601.5,441.5) Ni2_kev_Hist,fit_Ni2_kev_Hist ModifyGraph lSize(fit_Ni2_kev_Hist)=1.5 ModifyGraph rgb(fit_Ni2_kev_Hist)=(0,0,65535) SetAxis left -0.360613810741688,45.7979539641944 SetAxis bottom 3.1452808988764,6.12366934189406 Cursor/P A Ni2_kev_Hist 1968;Cursor/P B Ni2_kev_Hist 2843 ShowInfo TextBox/C/N=CF_Ni2_kev_Hist/X=47.67/Y=10.49 "\\JC\\f01Curve Fit Results\\f]0\r\\JLFit Type: least squares fit\rCoefficient values one standard deviation" AppendText "\tw_0\t=0.38264 0.296\r\tw_1\t=-0.51264 1.32\r\tw_2\t=33.529 1.06\r\tw_3\t=5.2668 0.00233\r\tw_4\t=0.030526 0.00166\r\tw_5\t=0.010925 0.00142" EndMacro Window Graph6() : Graph PauseUpdate; Silent 1 // building window... Display /W=(415.5,43.25,951,320.75) Ni_kev_Hist,Ni2_kev_Hist,AL_kev_Hist,Sn_kev_Hist ModifyGraph rgb(Ni_kev_Hist)=(0,0,65280),rgb(AL_kev_Hist)=(0,0,0),rgb(Sn_kev_Hist)=(0,34816,52224) ShowInfo MoveWindow 0, 0, 0, 0 // Minimize the window. EndMacro Window Graph4() : Graph PauseUpdate; Silent 1 // building window... Display /W=(35.25,43.25,779.25,468.5) Sn_kev_Hist,fit_Sn_kev_Hist ModifyGraph lSize(fit_Sn_kev_Hist)=1.5 ModifyGraph rgb(fit_Sn_kev_Hist)=(0,0,65535) SetAxis left -0.15916955017301,17.0679233801063 SetAxis bottom 2.62682905596331,4.51319474982871 Cursor/P A Sn_kev_Hist 1128;Cursor/P B Sn_kev_Hist 2442 ShowInfo TextBox/C/N=CF_Sn_kev_Hist/X=46.43/Y=5.54 "\\JC\\f01Curve Fit Results\\f]0\r\\JLFit Type: least squares fit\rCoefficient values one standard deviation" AppendText "\tw_0\t=0.34746 0.292\r\tw_1\t=0.1736 0.82\r\tw_2\t=11.003 0.343\r\tw_3\t=3.8349 0.00448\r\tw_4\t=0.13864 0.00423\r\tw_5\t=0.16563 0.0336" EndMacro Window Graph3() : Graph PauseUpdate; Silent 1 // building window... Display /W=(138.75,104,925.5,533) AL_kev_Hist,fit_AL_kev_Hist ModifyGraph lSize(fit_AL_kev_Hist)=1.5 ModifyGraph rgb(fit_AL_kev_Hist)=(0,0,65535) SetAxis left -0.824644549763033,25.8388625592417 SetAxis bottom 0.674091116173121,3.68017312072893 Cursor/P A AL_kev_Hist 538;Cursor/P B AL_kev_Hist 1595 ShowInfo TextBox/C/N=CF_AL_kev_Hist/X=-3.87/Y=-3.32 "\\JC\\f01Curve Fit Results\\f]0\r\\JLFit Type: least squares fit\rCoefficient values one standard deviation" AppendText "\tw_0\t=-1.5807 0.491\r\tw_1\t=2.9092 0.554\r\tw_2\t=7.7663 0.218\r\tw_3\t=2.2653 0.0112\r\tw_4\t=0.25679 0.0102\r\tw_5\t=0.24308 0.05" EndMacro Window MultipeakFit_Set5() : Graph PauseUpdate; Silent 1 // building window... String fldrSav0= GetDataFolder(1) SetDataFolder root:Packages:MultiPeakFit2:MPF_SetFolder_5: Display /W=(35.25,43.25,672.75,413) ::::Ni_kev_Hist,fit_Ni_kev_Hist AppendToGraph/L=Res_left Res_Ni_kev_Hist AppendToGraph Bkg_Ni_kev_Hist AppendToGraph/L=Peaks_Left 'Peak 0','Peak 1' SetDataFolder fldrSav0 ModifyGraph rgb(fit_Ni_kev_Hist)=(1,4,52428),rgb(Bkg_Ni_kev_Hist)=(2,39321,1) ModifyGraph lblPosMode(Res_left)=1,lblPosMode(Peaks_Left)=1 ModifyGraph lblPos(left)=48 ModifyGraph freePos(Res_left)={0,kwFraction} ModifyGraph freePos(Peaks_Left)={0,kwFraction} ModifyGraph axisEnab(left)={0.25,0.75} ModifyGraph axisEnab(Res_left)={0.8,1} ModifyGraph axisEnab(Peaks_Left)={0,0.2} SetAxis bottom 3.85088888888889,5.29497222222222 Tag/C/N=PeakTag0/F=0/B=1/A=MB/X=0.00/Y=1.00/L=0/P=1 'Peak 0', 4.95287487487487521, "\\Zr0800" Tag/C/N=PeakTag1/F=0/B=1/A=MB/X=0.00/Y=1.00/L=0/P=1 'Peak 1', 5.02659259259259272, "\\Zr0801" SetDrawLayer ProgBack SetDrawEnv xcoord= bottom,ycoord= prel,linefgc= (56797,56797,56797) DrawLine 4.95287612591145,0,4.95287612591145,1 SetDrawEnv xcoord= bottom,ycoord= prel,linefgc= (56797,56797,56797) DrawLine 5.0264340340513,0,5.0264340340513,1 SetDrawLayer UserFront SetWindow kwTopWin,hook(PopupWS_HostWindowHook)=PopupWSHostHook SetWindow kwTopWin,hook(MPF2_DataGraphHook)=MPF2_DataGraphHook SetWindow kwTopWin,userdata(MPF2_DataSetNumber)= "5" NewPanel/HOST=#/EXT=0/W=(0,561,265,561) /HIDE=1 as "Multi-peak Fit Set 5" ModifyPanel fixedSize=0 CheckBox MPF2_UserCursorsCheckbox,pos={10,4},size={107,14},title="Use Graph Cursors" CheckBox MPF2_UserCursorsCheckbox,value= 0 Button MPF2_HelpButton,pos={205,1},size={50,20},proc=MPF2_DoHelpButtonProc,title="Help" DefineGuide UGH0={FT,25},UGH1={UGH0,130},UGH3={FB,-173},UGH2={UGH3,-89} SetWindow kwTopWin,hook(MPF2_PanelKillHook)=MPF2_PanelKillHook SetWindow kwTopWin,hook(MPF2_PanelResizeHook)=MPF2_PanelResizeHook SetWindow kwTopWin,userdata(MPF2_UPDATEPANELVERSION)= "2.15" SetWindow kwTopWin,userdata(MPF2_hostgraph)= "MultipeakFit_Set5" SetWindow kwTopWin,userdata(MPF2_DataSetNumber)= "5" NewPanel/W=(0,86,265,149)/FG=(,UGH0,,UGH1)/HOST=# ModifyPanel frameStyle=0, frameInset=0 GroupBox MPF2_LocatePeaksGroupBox,pos={8,2},size={249,126},title="Locate Peaks" GroupBox MPF2_LocatePeaksGroupBox,fStyle=1 Button MPF2_AutoLocatePeaksButton,pos={53,21},size={158,20},proc=MPF2_AutoLocatePeaksButtonProc,title="Auto-locate Peaks Now" Button MPF2_AutoLocatePeaksButton,fSize=10 CheckBox MPF2_NegativePeaksCheck,pos={90,44},size={94,14},title="Negative Peaks" CheckBox MPF2_NegativePeaksCheck,variable= root:Packages:MultiPeakFit2:MPF_SetFolder_5:negativePeaks CheckBox MPF2_DiscloseAutoPickParams,pos={14,45},size={16,14},proc=MPF2_DiscloseAutoPickCheckProc,title="" CheckBox MPF2_DiscloseAutoPickParams,value= 1,mode=2 SetVariable MPF2_SetAutoFindNoiseLevel,pos={28,65},size={119,16},bodyWidth=60,title="Noise level:" SetVariable MPF2_SetAutoFindNoiseLevel,limits={0,inf,1},value= root:Packages:MultiPeakFit2:MPF_SetFolder_5:AutoFindNoiseLevel SetVariable MPF2_SetAutoPeakSmoothFactor,pos={11,86},size={136,16},bodyWidth=60,title="Smooth Factor:" SetVariable MPF2_SetAutoPeakSmoothFactor,limits={0,inf,1},value= root:Packages:MultiPeakFit2:MPF_SetFolder_5:AutoFindSmoothFactor SetVariable MPF2_SetAutoPeakMinFraction,pos={22,107},size={125,16},bodyWidth=60,title="Min Fraction:" SetVariable MPF2_SetAutoPeakMinFraction,limits={0,inf,1},value= root:Packages:MultiPeakFit2:MPF_SetFolder_5:AutoFindTrimFraction Button MPF2_AutoPickEstimate,pos={157,83},size={85,20},proc=MPF2_EstimateAutoPickPButton,title="Estimate Now" Button MPF2_AutoPickEstimate,fSize=10 RenameWindow #,P0 SetActiveSubwindow ## NewPanel/W=(66,86,199,260)/FG=(FL,UGH1,FR,UGH2)/HOST=# ModifyPanel frameStyle=0, frameInset=0 CheckBox MPF2_DiscloseConstraints,pos={115,2},size={99,14},proc=MPF2_DiscloseConstraints,title="Apply Constraints" CheckBox MPF2_DiscloseConstraints,fSize=10,value= 0 ListBox MPF2_PeakList,pos={6,20},size={249,121},proc=HierarchicalListListProc ListBox MPF2_PeakList,userdata(MPF2_DataSetNumber)= "5" ListBox MPF2_PeakList,userdata(HierarchicalListInfo)= A"!!*'jBk;P0K0;P2K1E;sFD4Q_@;@Vp@;]Xm,>^/rzzzzzzzzzzzzzzz" Button MPF2_SelectMaskWave,userdata(popupWSInfo) += A"!!!!n:e!3I;e9cV@rtFRF)+icG%CXRzzzzzzzzzz!!!!n:e!3I9jr*Y=(-8`;e9cV@rtIaFD5?4zz" Button MPF2_SelectMaskWave,userdata(popupWSInfo) += A"zzzzzzzzzzzzzzzz5]Asgz5]-Q%zzz^[M4'z^[M4'z5O\\XQzzzzz" Button MPF2_SelectMaskWave,userdata(PopupWS_FullPath)= "_none_" Button MPF2_SelectMaskWave,userdata(PopupWS_SelectableStrings)= "_none_;" TitleBox MPF2_WeightWaveTitle,pos={8,99},size={69,13},title="Weight Wave:" TitleBox MPF2_WeightWaveTitle,fSize=10,frame=0 Button MPF2_SelectWeightWave,pos={75,95},size={179,20},proc=PopupWaveSelectorButtonProc,title="\\JR_none_ \\W623" Button MPF2_SelectWeightWave,userdata(popupWSInfo)= A"!!*'oF_l/6E+NHn7VQsO;e:&.,>E;sFD4Q_@;@Vp@;]Xm,>^/rzzzzzzzzzzzzzzz" Button MPF2_SelectWeightWave,userdata(popupWSInfo) += A"!!!!n:e!3I;e9cV@rtd`BkM+$=(-8`zzzzzzzzzz!!!!n:e!3I=(Q)YBQR Function Peaks(n) // This function is used to create n Peak waves. // These waves are used to list the coefficients and parameters // of the FitPeaks(n) function. // It can be called from the command prompt in the following // manner: Peaks(3) // This will produce three waves named Peak_0, Peak_1, Peak_2 // The 7 points in each Peak_i wave correspond to the following values // which should be inputed by the user: // // P0 = Background Slope // P1 = Background Offset // P2 = Area of peak // P3 = Centroid of peak // P4 = Sigma of peak // P5 = X start (in points, not X value) // P6 = X finish (in points, not X value) // // The X start/finish should be determined by placing a cursor on the desired start point // and finish point on either side of the peak and inputing the corresponding X point values. // The FitPeaks function will -not- use the cursors themselves as start/finish markers. // This must be defined by the user. Variable n // Parameter variable Variable i String i_string String WaveNameString // Create a table Edit as "PeakParameters" For (i=0;i= w[3]-w[5]) tail = w[2]*exp(-(x-w[3])^2/(2*w[4]^2)) Endif // Returns the combined fit Return tail End Function GaussTail4 (w, x) : FitFunc // Parameter declaration Variable x // X coordinate Wave w // Wave with the coefficient of the fit // Local variable declaration Variable bg // Background Variable tail // Asymmetric Gaussian with low-energy Tail // Calculate the background bg = w[0]*x + w[1] if (x < w[3]-w[5]) //tail =bg+ w[2]*exp(-w[5]*((2*x-2*w[3]+w[5])/w[4])^2) tail =bg+ w[2]*exp(w[5]*(2*x-2*w[3]+w[5])/(2*w[4]^2)) // tail = 0 // Observe gaussian side only elseif (x >= w[3]-w[5]) // Calculate the peaks tail = w[2]*exp(-(x-w[3])^2/(2*w[4]^2)) // tail = 0 // Observe low-energy tail only endif return tail End Function SingleGauss (w, x) : FitFunc // Parameter declaration VARIABLE x // X coordinate WAVE w // Wave with the coefficient of the fit // Local variable declaration VARIABLE bg // Background VARIABLE peak // Gaussian Peak // Calculate the background bg = w[0]*x + w[1] // Calculate the peaks peak =w[2]*exp(-(x-w[3])^2/(2*w[4]^2)) // Return the function value return bg + peak End