4Misc_Start4Platform@ KROGIXXK -E`%winspool\\ustms18\Civil 8cel8.ce.ust.hk\\ustms18\Civil 8S odXXA4PRIV0''''\K\K=&}SMTJHP LaserJet 6P/6MP PostScriptJCLResolution600dpiJCLEconomodeOffPageSizeA4PageRegionInputSlot*UseFormTrayTableHPHalftonePrinterDefaultSmoothingMedium KROGIXXK -E`%winspool\\ustms18\Civil 8cel8.ce.ust.hk\\ustms18\Civil 8S odXXA4PRIV0''''\K\K=&}SMTJHP LaserJet 6P/6MP PostScriptJCLResolution600dpiJCLEconomodeOffPageSizeA4PageRegionInputSlot*UseFormTrayTableHPHalftonePrinterDefaultSmoothingMedium KROGIXXK -E`%winspool\\ustms18\Civil 8cel8.ce.ust.hk\\ustms18\Civil 8S odXXA4PRIV0''''\K\K=&}SMTJHP LaserJet 6P/6MP PostScriptJCLResolution600dpiJCLEconomodeOffPageSizeA4PageRegionInputSlot*UseFormTrayTableHPHalftonePrinterDefaultSmoothingMedium K ROGIXXK -E`%winspool\\ustms18\Civil 8cel8.ce.ust.hk\\ustms18\Civil 8S odXXA4PRIV0''''\K\K=&}SMTJHP LaserJet 6P/6MP PostScriptJCLResolution600dpiJCLEconomodeOffPageSizeA4PageRegionInputSlot*UseFormTrayTableHPHalftonePrinterDefaultSmoothingMedium^Graph*@@??.WDashSettings#  ! Normal@ Arial<HHHH$$ Normal@ Arial<HHHH$$444444 (ONormal@ Arial<HHHH$$4 4 4 4 4 4 nhome:2dE:Gtemp:Excel:Igor:E:Gtemp:Excel:IgorgE:\Gtemp\ExcelIgoratagE:\Gtemp\ExcelIgorl\Igor\#025 Modified.pxpT0RRVUSdRecentWindows0FitSetupPanelGraph0:X025_modified vs TimeW;... 4Misc_EndXOPState_Start`Data Browsert= 0.000411828Gizmo...A FitSetupPanelMultiPeakFit\4XOPState_EndV_FlagS_waveNamesR||sTimeW;X025_modified;S_pathamesR||sS_fileNameR||s ClipboarduDisplay X025_modified vs TimeW ModifyGraph highTrip(bottom)=100000;DelayUpdate SetAxis bottom 0,3000 ModifyGraph nticks(left)=4,minor(left)=1,sep(left)=10,lowTrip(left)=0.01;DelayUpdate SetAxis left 0,0.03 Set Y data= X025_modified, X data= TimeW, fit wave= fit_X025_modified, residuals= res_X025_modified Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr GaussFit coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFit(coef,TimeW[p]) coef={0.017764,-0.0096433,63.097,-1134.5,5.0144,1.2794e+005,-37393,0.011322,1598.5,880.96} V_chisq= 0.00143828;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0.0301,0.0116,429,1.74e+03,53.1,2.48e+06,2.39e+05,0.012,392,305} Coefficient values one standard deviation K0 =0.017764 0.0301 K1 =-0.0096433 0.0116 K2 =63.097 429 K3 =-1134.5 1.74e+003 K4 =5.0144 53.1 K5 =1.2794e+005 2.48e+006 K6 =-37393 2.39e+005 K7 =0.011322 0.012 K8 =1598.5 392 K9 =880.96 305 FuncFit/M=2/H=X025_modified_HoldStr GaussFit1Width coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: coef[4],coef[5] Fit converged properly Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFit coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFit(coef,TimeW[p]) coef={-0.0036726,-0.019929,112.9,-10.788,-0.10069,0.018195,403.3,39.929,0.021607,0} coef[9]={0.10239,1160.6,987.85,0.0010631} V_chisq= 0.00123923;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0.0035,0.355,94.8,30.6,2.17,0.00947,15,11.3,0.0127,0.0354,109,131,0.000283} Coefficient values one standard deviation K0 =-0.0036726 0.0035 K1 =-0.019929 0.355 K2 =112.9 94.8 K3 =-10.788 30.6 K4 =-0.10069 2.17 K5 =0.018195 0.00947 K6 =403.3 15 K7 =39.929 11.3 K8 =0.021607 0.0127 K9 =0.10239 0.0354 K10 =1160.6 109 K11 =987.85 131 K12 =0.0010631 0.000283 Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFit coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFit(coef,TimeW[p]) coef={-0.0040059,0.14877,167.71,39.714,0.082403,0.02714,329.3,69.061,0.0034037,0.038737,939.51,348.84,0.00025693} V_chisq= 7.52828e-005;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0.00161,0.0272,0.957,2.5,0.00561,0.00203,5.58,3.61,0.000317,0.00155,13.4,7.65,1.7e-05} Coefficient values one standard deviation K0 =-0.0040059 0.00161 K1 =0.14877 0.0272 K2 =167.71 0.957 K3 =39.714 2.5 K4 =0.082403 0.00561 K5 =0.02714 0.00203 K6 =329.3 5.58 K7 =69.061 3.61 K8 =0.0034037 0.000317 K9 =0.038737 0.00155 K10 =939.51 13.4 K11 =348.84 7.65 K12 =0.00025693 1.7e-005 FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFitBL(coef,TimeW[p]) coef={1546,2892,-0.0046587,0.0061129,-0.0012453,-0.028259,0.17954,168.99,40.984,0.092007,0} coef[10]={0.028321,321.17,70.068,0.0024272,0.036378,949.81,307.29,0.00021663} V_chisq= 4.71626e-005;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.0207,0.0334,0.0187,0.0147,0.00914,0.957,0.765,0.00135,0.00346,8.71,0} W_sigma[12]={4.47,0.000937,0.0108,47.1,23.1,0.000568} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =-0.0046587 0.0207 K3 =0.0061129 0.0334 K4 =-0.0012453 0.0187 K5 =-0.028259 0.0147 K6 =0.17954 0.00914 K7 =168.99 0.957 K8 =40.984 0.765 K9 =0.092007 0.00135 K10 =0.028321 0.00346 K11 =321.17 8.71 K12 =70.068 4.47 K13 =0.0024272 0.000937 K14 =0.036378 0.0108 K15 =949.81 47.1 K16 =307.29 23.1 K17 =0.00021663 0.000568 FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified 9 iterations with no decrease in chi square Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFitBL(coef,TimeW[p]) coef={1546,2892,-0.0047769,0.0070913,-0.0029297,-0.028761,0.19284,168.28,42.849,0.090753,0} coef[10]={0.028821,317.95,69.03,0.0022196,0.035706,956.76,301.89,0.0002071} V_chisq= 4.63235e-005;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.0198,0.0341,0.018,0.0142,0.0415,2.64,3.36,0.00137,0.00445,10.7,5.71,0} W_sigma[13]={0.000857,0.00933,41.8,20.3,0.000574} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =-0.0047769 0.0198 K3 =0.0070913 0.0341 K4 =-0.0029297 0.018 K5 =-0.028761 0.0142 K6 =0.19284 0.0415 K7 =168.28 2.64 K8 =42.849 3.36 K9 =0.090753 0.00137 K10 =0.028821 0.00445 K11 =317.95 10.7 K12 =69.03 5.71 K13 =0.0022196 0.000857 K14 =0.035706 0.00933 K15 =956.76 41.8 K16 =301.89 20.3 K17 =0.0002071 0.000574 FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFit1ShapeBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified **** Singular matrix error during curve fitting **** There may be no dependence on these parameters: coef[13],coef[14],coef[15] Fit converged properly FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified 9 iterations with no decrease in chi square Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFitBL(coef,TimeW[p]) coef={1546,2892,-0.0047769,0.0070913,-0.0029297,-0.028761,0.19284,168.28,42.849,0.090753,0} coef[10]={0.028821,317.95,69.03,0.0022196,0.035706,956.76,301.89,0.0002071} V_chisq= 4.63235e-005;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.0196,0.0323,0.0164,0.014,0.0133,1.07,1.09,0.00132,0.00346,8.46,4.3,0} W_sigma[13]={0.000862,0.00935,41.8,20.5,0.000558} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =-0.0047769 0.0196 K3 =0.0070913 0.0323 K4 =-0.0029297 0.0164 K5 =-0.028761 0.014 K6 =0.19284 0.0133 K7 =168.28 1.07 K8 =42.849 1.09 K9 =0.090753 0.00132 K10 =0.028821 0.00346 K11 =317.95 8.46 K12 =69.03 4.3 K13 =0.0022196 0.000862 K14 =0.035706 0.00935 K15 =956.76 41.8 K16 =301.89 20.5 K17 =0.0002071 0.000558 Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr ExpConvExpFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified 40 iterations with no convergence Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpConvExpFitBL(coef,TimeW[p]) coef={1546,2892,0.0096538,0.0011562,-0.009407,-0.00404,-0.005624,664.26,2.1494,1.3565,0} coef[10]={0.0066164,338.51,0.037504,0.00049033,0.019757,885.08,0.0030175,0.00044253} V_chisq= 0.000666206;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0.0264,0.00766,0.00298,0.00126,0.000262,1.6e-06,3.1e-07,1.57e-06,0.0149,0} W_sigma[9]={4.2e-07,0.000235,0.103,0.0134,3.38e-07,0.024,0.234,0.000215,0.000211} Coefficient values one standard deviation K0 =1546 0.0264 K1 =2892 0.00766 K2 =0.0096538 0.00298 K3 =0.0011562 0.00126 K4 =-0.009407 0.000262 K5 =-0.00404 1.6e-006 K6 =-0.005624 3.1e-007 K7 =664.26 1.57e-006 K8 =2.1494 0.0149 K9 =1.3565 4.2e-007 K10 =0.0066164 0.000235 K11 =338.51 0.103 K12 =0.037504 0.0134 K13 =0.00049033 3.38e-007 K14 =0.019757 0.024 K15 =885.08 0.234 K16 =0.0030175 0.000215 K17 =0.00044253 0.000211 FuncFit/M=2/H=X025_modified_HoldStr ExpConvExpFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpConvExpFitBL(coef,TimeW[p]) coef={1546,2892,0.0037356,0.003964,0.011821,-0.026538,-0.0043308,664.06,2.7494,1.1843,0} coef[10]={0.010198,311.55,0.026709,0.00020946,0.033907,848.42,0.0017583,0.0010325} V_chisq= 0.000588312;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.0124,0.0392,0.00663,0.0547,NaN,NaN,NaN,NaN,0.000997,5.04,0.00738,0.000904,0} W_sigma[14]={0.0671,10.2,0.00371,0.00353} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.0037356 0.0124 K3 =0.003964 0.0392 K4 =0.011821 0.00663 K5 =-0.026538 0.0547 K6 =-0.0043308 -1.#J K7 =664.06 -1.#J K8 =2.7494 -1.#J K9 =1.1843 -1.#J K10 =0.010198 0.000997 K11 =311.55 5.04 K12 =0.026709 0.00738 K13 =0.00020946 0.000904 K14 =0.033907 0.0671 K15 =848.42 10.2 K16 =0.0017583 0.00371 K17 =0.0010325 0.00353 Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr VoigtFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified 40 iterations with no convergence Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= VoigtFitBL(coef,TimeW[p]) coef={1546,2892,0.018885,0.016721,-0.036278,-0.013877,-0.10415,-0.037717,840.12,-9.21,0} coef[10]={0.040358,-0.054461,451.4,4.0476,0.053259,0.0040871,1293.8,2.678} V_chisq= 0.00070604;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0.0272,0.00789,0.00307,0.0013,0.000596,0.00115,1.79e-07,4.71e-06,0.000767,0} W_sigma[9]={0.000403,2.85e-07,5.2e-06,0.00328,0.0275,1.75e-07,4.24e-05,0.000228,0.000224} Coefficient values one standard deviation K0 =1546 0.0272 K1 =2892 0.00789 K2 =0.018885 0.00307 K3 =0.016721 0.0013 K4 =-0.036278 0.000596 K5 =-0.013877 0.00115 K6 =-0.10415 1.79e-007 K7 =-0.037717 4.71e-006 K8 =840.12 0.000767 K9 =-9.21 0.000403 K10 =0.040358 2.85e-007 K11 =-0.054461 5.2e-006 K12 =451.4 0.00328 K13 =4.0476 0.0275 K14 =0.053259 1.75e-007 K15 =0.0040871 4.24e-005 K16 =1293.8 0.000228 K17 =2.678 0.000224 Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr VoigtFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified 40 iterations with no convergence Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= VoigtFitBL(coef,TimeW[p]) coef={1546,2892,0.018885,0.016721,-0.036278,-0.013877,-0.10415,-0.037717,840.12,-9.21,0} coef[10]={0.040358,-0.054461,451.4,4.0476,0.053259,0.0040871,1293.8,2.678} V_chisq= 0.00070604;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0.0272,0.00789,0.00307,0.0013,0.000596,0.00115,1.79e-07,4.71e-06,0.000767,0} W_sigma[9]={0.000403,2.85e-07,5.2e-06,0.00328,0.0275,1.75e-07,4.24e-05,0.000228,0.000224} Coefficient values one standard deviation K0 =1546 0.0272 K1 =2892 0.00789 K2 =0.018885 0.00307 K3 =0.016721 0.0013 K4 =-0.036278 0.000596 K5 =-0.013877 0.00115 K6 =-0.10415 1.79e-007 K7 =-0.037717 4.71e-006 K8 =840.12 0.000767 K9 =-9.21 0.000403 K10 =0.040358 2.85e-007 K11 =-0.054461 5.2e-006 K12 =451.4 0.00328 K13 =4.0476 0.0275 K14 =0.053259 1.75e-007 K15 =0.0040871 4.24e-005 K16 =1293.8 0.000228 K17 =2.678 0.000224 Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr LorentzianFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= LorentzianFitBL(coef,TimeW[p]) coef={1546,2892,0.0094907,0.035317,-0.0071794,-0.088965,0.035817,104.97,-82921,115.09,0} coef[10]={461.9,13062,9827.4,1360.1,4.9616e+005} V_chisq= 0.000742223;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.00534,0.00631,0.013,0.0215,8.97,6.84e+04,3.94e+07,47.4,6.12,4.43e+03,5.85e+03,29.3,1.58e+05} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.0094907 0.00534 K3 =0.035317 0.00631 K4 =-0.0071794 0.013 K5 =-0.088965 0.0215 K6 =0.035817 8.97 K7 =104.97 6.84e+004 K8 =-82921 3.94e+007 K9 =115.09 47.4 K10 =461.9 6.12 K11 =13062 4.43e+003 K12 =9827.4 5.85e+003 K13 =1360.1 29.3 K14 =4.9616e+005 1.58e+005 FuncFit/M=2/H=X025_modified_HoldStr LorentzianFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.023732,0.019468,-0.087047,0.050155,0.02123,163.86,69.487,0.015127,0} coef[10]={420.92,201.84,0.0049341,1346.2,-481.45} V_chisq= 0.000123919;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000718,0.00197,0.0057,0.0133,0.00107,1.7,2.67,0.000822,4.61,7.19,0.000799,20.1,46.4} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.023732 0.000718 K3 =0.019468 0.00197 K4 =-0.087047 0.0057 K5 =0.050155 0.0133 K6 =0.02123 0.00107 K7 =163.86 1.7 K8 =69.487 2.67 K9 =0.015127 0.000822 K10 =420.92 4.61 K11 =201.84 7.19 K12 =0.0049341 0.000799 K13 =1346.2 20.1 K14 =-481.45 46.4 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.023961,0.01894,-0.088845,0.054193,0.021504,163.38,70.012,0.015242,0} coef[10]={419.68,202.58,0.0046957,1347.6,-466.71} V_chisq= 0.000123831;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000652,0.0018,0.00549,0.0128,0.00106,1.68,2.61,0.000813,4.59,7.12,0.000721,19,44.2} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.023961 0.000652 K3 =0.01894 0.0018 K4 =-0.088845 0.00549 K5 =0.054193 0.0128 K6 =0.021504 0.00106 K7 =163.38 1.68 K8 =70.012 2.61 K9 =0.015242 0.000813 K10 =419.68 4.59 K11 =202.58 7.12 K12 =0.0046957 0.000721 K13 =1347.6 19 K14 =-466.71 44.2 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024146,0.01852,-0.090444,0.05773,0.021766,162.93,70.549,0.015371,0} coef[10]={418.55,203.34,0.0045044,1348.1,-454.51} V_chisq= 0.000123767;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000601,0.00168,0.0053,0.0124,0.00104,1.65,2.55,0.000806,4.53,7.06,0.000663,18.2,42.6} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024146 0.000601 K3 =0.01852 0.00168 K4 =-0.090444 0.0053 K5 =0.05773 0.0124 K6 =0.021766 0.00104 K7 =162.93 1.65 K8 =70.549 2.55 K9 =0.015371 0.000806 K10 =418.55 4.53 K11 =203.34 7.06 K12 =0.0045044 0.000663 K13 =1348.1 18.2 K14 =-454.51 42.6 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024296,0.018186,-0.09181,0.060738,0.021999,162.54,71.033,0.015497,0} coef[10]={417.57,204.06,0.004352,1348.1,-444.47} V_chisq= 0.00012372;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000562,0.00159,0.00514,0.012,0.00103,1.63,2.49,0.0008,4.48,7,0.000619,17.7,41.3} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024296 0.000562 K3 =0.018186 0.00159 K4 =-0.09181 0.00514 K5 =0.060738 0.012 K6 =0.021999 0.00103 K7 =162.54 1.63 K8 =71.033 2.49 K9 =0.015497 0.0008 K10 =417.57 4.48 K11 =204.06 7 K12 =0.004352 0.000619 K13 =1348.1 17.7 K14 =-444.47 41.3 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024414,0.017924,-0.092935,0.063211,0.022196,162.22,71.439,0.015609,0} coef[10]={416.75,204.7,0.0042327,1347.9,-436.4} V_chisq= 0.000123688;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000532,0.00152,0.00502,0.0118,0.00102,1.61,2.45,0.000795,4.43,6.96,0.000585,17.3,40.3} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024414 0.000532 K3 =0.017924 0.00152 K4 =-0.092935 0.00502 K5 =0.063211 0.0118 K6 =0.022196 0.00102 K7 =162.22 1.61 K8 =71.439 2.45 K9 =0.015609 0.000795 K10 =416.75 4.43 K11 =204.7 6.96 K12 =0.0042327 0.000585 K13 =1347.9 17.3 K14 =-436.4 40.3 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024505,0.017722,-0.093837,0.065188,0.022357,161.95,71.768,0.015704,0} coef[10]={416.08,205.25,0.004141,1347.6,-430.02} V_chisq= 0.000123666;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.00051,0.00146,0.00492,0.0115,0.00101,1.59,2.41,0.000791,4.39,6.92,0.000561,17,39.6} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024505 0.00051 K3 =0.017722 0.00146 K4 =-0.093837 0.00492 K5 =0.065188 0.0115 K6 =0.022357 0.00101 K7 =161.95 1.59 K8 =71.768 2.41 K9 =0.015704 0.000791 K10 =416.08 4.39 K11 =205.25 6.92 K12 =0.004141 0.000561 K13 =1347.6 17 K14 =-430.02 39.6 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024575,0.017569,-0.094546,0.066739,0.022485,161.74,72.028,0.015782,0} coef[10]={415.55,205.7,0.0040712,1347.2,-425.09} V_chisq= 0.000123653;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000494,0.00142,0.00485,0.0114,0.001,1.58,2.38,0.000788,4.36,6.9,0.000542,16.7,39} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024575 0.000494 K3 =0.017569 0.00142 K4 =-0.094546 0.00485 K5 =0.066739 0.0114 K6 =0.022485 0.001 K7 =161.74 1.58 K8 =72.028 2.38 K9 =0.015782 0.000788 K10 =415.55 4.36 K11 =205.7 6.9 K12 =0.0040712 0.000542 K13 =1347.2 16.7 K14 =-425.09 39 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024628,0.017453,-0.095092,0.067934,0.022584,161.57,72.228,0.015844,0} coef[10]={415.14,206.06,0.0040187,1346.9,-421.31} V_chisq= 0.000123645;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000481,0.00139,0.00479,0.0112,0.000995,1.56,2.36,0.000786,4.34,6.88,0.000528,16.6,38.6} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024628 0.000481 K3 =0.017453 0.00139 K4 =-0.095092 0.00479 K5 =0.067934 0.0112 K6 =0.022584 0.000995 K7 =161.57 1.56 K8 =72.228 2.36 K9 =0.015844 0.000786 K10 =415.14 4.34 K11 =206.06 6.88 K12 =0.0040187 0.000528 K13 =1346.9 16.6 K14 =-421.31 38.6 FuncFit/M=2/H=X025_modified_HoldStr GaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= GaussFitBL(coef,TimeW[p]) coef={1546,2892,0.024668,0.017366,-0.095511,0.068849,0.022661,161.45,72.382,0.015892,0} coef[10]={414.82,206.34,0.0039791,1346.6,-418.44} V_chisq= 0.00012364;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.000472,0.00137,0.00474,0.0111,0.00099,1.56,2.34,0.000784,4.32,6.86,0.000518,16.5,38.3} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.024668 0.000472 K3 =0.017366 0.00137 K4 =-0.095511 0.00474 K5 =0.068849 0.0111 K6 =0.022661 0.00099 K7 =161.45 1.56 K8 =72.382 2.34 K9 =0.015892 0.000784 K10 =414.82 4.32 K11 =206.34 6.86 K12 =0.0039791 0.000518 K13 =1346.6 16.5 K14 =-418.44 38.3 Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) Reset using same data Range set from graph: points= [0,371] ( equivalent to x= (0,3000) ) FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFitBL(coef,TimeW[p]) coef={1546,2892,0.002321,0.03007,0.0014388,-0.065853,0.15811,168.01,40.202,0.084201,0} coef[10]={0.028979,325.34,72.025,0.0030491,0.041895,959.03,344.96,0.00081538} V_chisq= 5.83403e-005;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.0129,0.00518,0.0315,0.0288,0.0207,0.98,2.09,0.00188,0.00433,11.1,5.66,0} W_sigma[13]={0.000918,0.0122,56.7,28,0.00047} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.002321 0.0129 K3 =0.03007 0.00518 K4 =0.0014388 0.0315 K5 =-0.065853 0.0288 K6 =0.15811 0.0207 K7 =168.01 0.98 K8 =40.202 2.09 K9 =0.084201 0.00188 K10 =0.028979 0.00433 K11 =325.34 11.1 K12 =72.025 5.66 K13 =0.0030491 0.000918 K14 =0.041895 0.0122 K15 =959.03 56.7 K16 =344.96 28 K17 =0.00081538 0.00047 FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFitBL coef :::X025_modified[0,371] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,371] fit_X025_modified[0,371]= ExpGaussFitBL(coef,TimeW[p]) coef={1546,2892,0.0046946,-0.001103,-0.032394,0.0063017,0.1902,171.1,41.033,0.10678,0} coef[10]={0.019936,322.57,50.62,0.0019631,0.021376,1015.9,216.87,7.2733e-006} V_chisq= 3.22209e-005;V_npnts= 372;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 371; W_sigma={0,0,0.00708,0.0174,0.00635,0.0078,0.00513,0.717,0.636,0.00134,0.000888,3.46,0} W_sigma[12]={1.92,0.000511,0.0023,15.2,8.87,0.000344} Coefficient values one standard deviation K0 =1546 0 K1 =2892 0 K2 =0.0046946 0.00708 K3 =-0.001103 0.0174 K4 =-0.032394 0.00635 K5 =0.0063017 0.0078 K6 =0.1902 0.00513 K7 =171.1 0.717 K8 =41.033 0.636 K9 =0.10678 0.00134 K10 =0.019936 0.000888 K11 =322.57 3.46 K12 =50.62 1.92 K13 =0.0019631 0.000511 K14 =0.021376 0.0023 K15 =1015.9 15.2 K16 =216.87 8.87 K17 =7.2733e-006 0.000344 SetAxis bottom 0,20000 Reset using same data Range set from graph: points= [0,2583] ( equivalent to x= (0,20000) ) Reset using same data Range set from graph: points= [0,2583] ( equivalent to x= (0,20000) ) FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFitBL coef :::X025_modified[0,2583] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,2583] fit_X025_modified[0,2583]= ExpGaussFitBL(coef,TimeW[p]) coef={10048,19895,0.0013982,-0.0067454,0.067413,-0.12991,-0.58989,-70.397,-167.69,0} coef[9]={-0.037642,0.071254,462.01,87.374,0.11513,-0.24566,591.27,-374.31,-0.010822} V_chisq= 0.00443198;V_npnts= 2584;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 2583; W_sigma={0,0,4.04e-05,0.000243,0.000435,0.0017,654,2.86e+05,4.5e+04,0.000619,166,0} W_sigma[11]={7.09e+04,6.7e+03,0.0443,0.0027,0.812,1.13,1.75e-05} Coefficient values one standard deviation K0 =10048 0 K1 =19895 0 K2 =0.0013982 4.04e-005 K3 =-0.0067454 0.000243 K4 =0.067413 0.000435 K5 =-0.12991 0.0017 K6 =-0.58989 654 K7 =-70.397 2.86e+005 K8 =-167.69 4.5e+004 K9 =-0.037642 0.000619 K10 =0.071254 166 K11 =462.01 7.09e+004 K12 =87.374 6.7e+003 K13 =0.11513 0.0443 K14 =-0.24566 0.0027 K15 =591.27 0.812 K16 =-374.31 1.13 K17 =-0.010822 1.75e-005 SetAxis bottom 0,2000 Reset using same data Range set from graph: points= [0,243] ( equivalent to x= (0,2000) ) SetAxis bottom 0,20000 Reset using same data Range set from graph: points= [0,2583] ( equivalent to x= (0,20000) ) SetAxis bottom 0,2000 ModifyGraph log(bottom)=1;DelayUpdate SetAxis bottom 100,20000 Reset using same data Range set from graph: points= [0,2583] ( equivalent to x= (100,20000) ) Reset using same data Range set from graph: points= [0,2583] ( equivalent to x= (100,20000) ) Reset using same data Range set from graph: points= [0,2583] ( equivalent to x= (100,20000) ) FuncFit/M=2/H=X025_modified_HoldStr ExpGaussFit coef :::X025_modified[0,2583] /X= :::TimeW /D=:::fit_X025_modified Fit converged properly Curve fit with data subrange: X025_modified[0,2583] fit_X025_modified[0,2583]= ExpGaussFit(coef,TimeW[p]) coef={0.0011117,0.1244,174.48,32.461,0.11671,0.01924,346.8,52.349,0.004297,0.037402,989.54,388.08,0.00041183} V_chisq= 0.000524157;V_npnts= 2584;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 2583; W_sigma={1.36e-05,0.0022,0.649,0.435,0.000675,0.0004,2.01,1.73,0.000269,0.000146,6.28,5.36,1.42e-06} Coefficient values one standard deviation K0 =0.0011117 1.36e-005 K1 =0.1244 0.0022 K2 =174.48 0.649 K3 =32.461 0.435 K4 =0.11671 0.000675 K5 =0.01924 0.0004 K6 =346.8 2.01 K7 =52.349 1.73 K8 =0.004297 0.000269 K9 =0.037402 0.000146 K10 =989.54 6.28 K11 =388.08 5.36 K12 =0.00041183 1.42e-006 PrintPeakParams() For ExpGaussian peaks: Peak#1: position= 174.485+/-0.649112, area= 1.06587+/-0.018023, Gauss width= 77.9782+/-1.04602 Exp constant= 0.116712+/-0.000675001 Peak#2: position= 346.799+/-2.00787, area= 4.47751+/-0.221187, Gauss width= 125.754+/-4.16071 Exp constant= 0.00429697+/-0.000268766 Peak#3: position= 989.537+/-6.28413, area= 90.8184+/-0.288331, Gauss width= 932.254+/-12.8728 Exp constant= 0.000411828+/-1.42443e-06 RemoveFromGraph Peak3#1 PrintPeakParams() For ExpGaussian peaks: Peak#1: position= 174.485+/-0.649112, area= 1.06587+/-0.018023, Gauss width= 77.9782+/-1.04602 Exp constant= 0.116712+/-0.000675001 Peak#2: position= 346.799+/-2.00787, area= 4.47751+/-0.221187, Gauss width= 125.754+/-4.16071 Exp constant= 0.00429697+/-0.000268766 Peak#3: position= 989.537+/-6.28413, area= 90.8184+/-0.288331, Gauss width= 932.254+/-12.8728 Exp constant= 0.000411828+/-1.42443e-06 VQFQ TimeW ?)A)AY@@[@@]@_@`@a@c@c@`d@ e@@f@@g@`h@i@ j@@k@`l@`m@n@@o@ p@p@0q@q@ r@r@0s@s@@t@t@u@u@v@pv@v@ w@w@@x@x@x@Py@y@0z@z@@{@{@0|@|@}@}@~@~@@@@@@@Ȁ@@P@@ȁ@@8@h@@؂@ @`@@؃@@H@@Є@@`@@Ѕ@@X@@І@@X@@ȇ@@X@@@ @h@@ȉ@@P@@@@H@@؋@@H@@Ќ@@`@@@(@p@@Ў@@X@@@@4@X@|@@@ؐ@@@4@H@l@@@ԑ@@ @0@P@t@@@В@@@,@P@p@@@ؓ@@@@@X@p@@@̔@@@@<@T@x@@@@@$@D@h@@@Ė@@@,@P@d@|@@@ؗ@@@4@X@x@@@Ԙ@@@$@H@l@@@ș@@@$@D@h@@@К@@@,@D@d@@@@@@@@@`@@@@Ԝ@@@<@T@t@@@ȝ@@ @$@D@h@@@Ğ@ܞ@@@8@L@p@@@؟@@@@&@6@H@X@j@v@@@@@Ơ@ؠ@@@ @@(@:@D@P@b@r@@@@@ȡ@ڡ@@@@@ @*@<@N@X@j@|@@@@@@Ң@@@@@(@4@D@V@f@x@@@@@£@ԣ@@@@@@0@<@H@X@j@z@@@@@Ƥ@֤@@@@@"@2@D@P@`@r@~@@@@@Υ@@@@@@0@B@R@d@p@z@@@@@̦@֦@@@@@(@2@D@V@`@r@@@@@ȧ@ԧ@@@@@@*@<@F@X@j@t@@@@@@ʨ@ܨ@@@ @@,@8@D@T@f@r@~@@@@@Ω@ީ@@@@@*@6@F@X@h@z@@@@@ʪ@ܪ@@@@@&@8@J@Z@l@x@@@@@«@ԫ@ޫ@@@@$@4@F@R@b@t@@@@@Ĭ@֬@@@@@ @,@>@N@Z@f@v@@@@@έ@ح@@@@@$@4@@@L@X@h@z@@@@@Į@֮@@@@@&@8@H@T@f@v@@@@@@ί@ޯ@@@@@@@#@,@4@:@@@E@N@W@\@e@n@s@|@@@@@@@@@@ǰ@ϰ@ذ@@@@@@@ @@@ @)@1@7@@@H@N@W@_@e@k@p@y@@@@@@@@@@DZ@̱@ձ@ޱ@@@@@@@@ @(@.@4@=@E@N@V@_@h@m@s@|@@@@@@@@@@ɲ@Ҳ@۲@@@@@@@ @@@#@+@1@:@B@H@Q@Y@_@e@m@v@|@@@@@@@@@@ɳ@ҳ@س@@@@@@ @@@"@(@.@7@?@H@P@V@\@b@j@s@y@@@@@@@@@ƴ@ϴ@ش@@@@@@@@@@"@+@1@9@B@K@S@\@d@j@s@{@@@@@@@@@@ɵ@ҵ@ڵ@@@@@@ @@@"@+@3@<@E@M@V@\@d@m@s@x@@@@@@@@@ö@̶@Զ@ݶ@@@@@@@@@"@+@3@<@B@G@P@Y@^@g@p@u@{@@@@@@@@@@Ʒ@̷@ѷ@ڷ@@@@@@ @@@"@+@3@<@D@J@P@Y@a@j@r@x@~@@@@@@@@@ɸ@Ѹ@ڸ@@@@@@@@@@@%@-@6@<@D@M@S@X@^@g@o@u@{@@@@@@@@@ù@˹@ѹ@ڹ@@@@@@@@@%@-@6@>@D@M@U@^@g@o@x@~@@@@@@@@@ƺ@κ@Ժ@ں@ߺ@@@@@@ @@@$@*@3@;@D@M@R@[@d@l@u@{@@@@@@@@@Ȼ@ѻ@ڻ@@@@@@ @@@!@*@3@8@A@J@R@[@a@f@o@x@@@@@@@@@@ȼ@Ѽ@ټ@߼@@@@@@ @@@$@-@5@;@D@L@R@[@c@l@u@}@@@@@@@@@@Ž@˽@Խ@ܽ@@@@@@@@@@'@-@5@>@G@O@U@[@`@i@r@z@@@@@@@@@@¾@˾@Ӿ@پ@@@@@@ @@@$@-@5@>@F@L@R@[@c@i@o@t@z@@@@@@@@@@ſ@ο@ֿ@ܿ@@@@@@@@ @ @@@@@@#@'@,@0@4@8@;@>@C@G@J@N@R@W@[@^@b@f@i@n@r@u@y@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@@@@ @$@'@*@-@1@5@8@=@A@D@G@K@O@R@W@[@^@a@e@i@l@p@u@x@z@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@!@&@*@-@0@4@8@;@>@B@G@I@L@Q@U@Y@^@b@f@i@m@r@v@z@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @$@'@+@/@4@8@<@A@D@F@K@O@S@X@\@`@c@h@l@o@s@w@|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @$@'@+@/@2@7@;@?@C@F@I@N@R@U@X@\@`@e@i@l@p@t@w@|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@!@%@*@,@/@2@5@9@>@A@E@I@L@P@U@X@Z@]@b@f@i@m@q@v@z@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@!@$@(@,@/@3@8@<@@@C@H@L@O@R@U@W@\@`@d@i@l@p@t@w@{@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@!@%@)@,@/@3@8@;@=@B@F@I@L@O@S@W@\@`@c@g@k@n@s@w@z@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@!@%@)@-@2@6@:@=@@@C@G@L@O@Q@V@Z@]@a@f@j@n@q@u@z@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @#@&@*@/@2@5@9@=@A@F@J@N@Q@V@Z@]@`@c@g@k@o@t@w@{@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@ @#@'@,@0@4@7@<@@@D@I@K@N@S@W@[@`@d@h@k@n@q@t@x@|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@@@@"@&@)@-@1@6@:@=@@@C@F@J@N@Q@T@X@]@a@e@i@n@r@v@y@|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@@@@!@&@*@.@1@6@:@=@A@E@H@K@O@T@W@[@_@b@e@h@l@q@s@v@{@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@#@&@*@.@1@4@7@;@@@B@G@K@N@Q@U@Y@\@_@c@h@l@p@u@y@|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@!@&@*@.@1@4@8@=@?@B@G@K@N@R@V@[@_@b@e@i@m@p@s@x@|@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@@@@ @#@%@*@.@1@4@8@<@?@D@H@L@Q@S@X@\@`@e@i@m@r@v@y@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @ @@@@@@@@@@@@!@@#@%@'@)@@+@,@.@@0@2@3@@5@6@9@;@<@>@@@C@E@F@H@@J@@L@M@@O@@Q@S@U@W@@Y@Z@\@_@`@b@d@@f@g@i@l@n@@p@r@t@v@w@y@{@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@ @@@@@@@@@@@@@@!@"@$@&@@(@*@,@.@0@@2@4@6@8@@:@@<@>@@@B@E@@G@@I@J@M@O@P@R@T@@V@W@Y@\@]@_@a@@c@d@f@i@@j@l@n@p@q@s@u@@w@y@{@}@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@@@@@@@@@@@ @@"@$@&@(@@*@,@.@0@@2@3@5@8@:@@<@>@@@B@D@@F@G@J@L@@N@@P@R@T@V@W@Y@[@^@@`@@b@d@f@@g@h@k@m@n@p@r@u@@w@x@z@@|@@~@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @ @@@@@@@@@@@@@@@@@!@#@%@&@(@@*@@,@-@0@2@3@5@7@@9@:@<@?@@@A@D@@F@G@I@J@L@N@@P@R@T@V@@X@@Z@\@^@`@a@c@e@@g@i@k@m@o@@q@r@u@w@@y@@{@}@@@@@@@@VQFQ}X025_modified ?)A)AS{И;?! OK\?K&p? *(G,z?R,9?ۯI(?hMmU?{U_Dx?9V;?22 ?έ?>EdԊ??5rCw*?㥅?QΌ?ELhl?{ q?]8W?$ ?uM ?@?}#?* "??XM(Ҋ?խ"̂Ê?ul?vq?D+?r*?bP{Ȋ?]Tي??n8.?Lm%?~&SM?J |?KBO?Q)?G(.?aqu?'n}?w.ތ?v5? D?ӂҍ?Tw#9??#?XdU?C;?@=E?fcq?1px?O7ӗ?{X?Oj M?s?ft+w?K9qy?Ow?󽼉F?6`f?/4攙?bQ?3?%`]?X6U-?,M%Q?: u?ܢ$?O^?bRXӚ?-E ?| ?;"?†2? ZA? 6bP? ?e?bx?'2?4. ?Z]?4Lᰛ?L?0Yț??.՛?dQs?'?o?q[t?%8g?9|?΄? @?= >?"%?.)?u  y-? M0?H׺2?hJ c4?u6?'~>*7?TI8? *]9?Ca9?59?kI #9?l68?f~Q\7?5?!6+3?E/2?h?o0?Ug-?=*?S$M&?YJ"?d`?M?q6/?'?[T0g ?s*v?Gf(?mnN?f$?)u?*y?֥-Kޛ?M֛?jY=ћ?{TEț?L뿛?\﹛?.ұ??! z0?C!?()I?u?0q? - ? v[?\LM{ә?ə?e?e:?@Zە?2&‘?2e?ˮr?1c?<4FT? ZćD?:?7Ak*?ж?[8 ??wj?` ?՘?GŘ?ȣ?*Z?|3 ?_?pn-By?n?)/,^?+*EM?lB?%ʅ7?vl~&?w> ?e ?ԩ?r;?܈ݗ?ώ5җ?[v?RK$寗?H\?!?.e? :Xp?^?^XM?mIp;?X0?Ҩf?S ?k??#?8$Aז?.VŖ?A^?si?z3Vc?L[?_Q}?X*k?ΨX?سuL?|&ߒ:?TP(?}(w#?9Kd?9ܕ?6? ؕ?~Qhƕ?("&?*Xޭ?!Mf? g숕?]lv?J^c?3W?E?kEԁ2??d&?;?:%?)??՛0lϔ?f62 Ô?|FCBk?ם?*o?H~?ժ Il?[7-Y?o9F?kYv:?UG'?Clp ?,y?7;?ݓ? QQWʓ?!{_⽓?ȳ&q?I#AϞ?U5g ?9?nܮm? %0)Z?xy?N?d䦲A?/?hr?*ݐX ??j?5| ?& zؒ?CօŒ?;&/?-z? 1%?<^?{yo?mʂz]?ǰǚJ?$]a1R>?T+?{[~?@N9 ?zl?S;=?Pބ?B*9PБ?uP'đ?!+?Cٟ?d7뽓?Μ0?I̶u?W pc?W?aK?9?h (?0D-?i3t ?d-1۽?n6?l׆sՐ?ӒTɐ?u??*R?^ԉ,?}?wz?t? K?Ȋx?ez>g?ZV? D?;3?c"?u?\&?WK>?Տ?g?u}?Љ \?8#9O+;?Em? !?=&Bَ?0]Î?j Vv?7f?7>+c?C?^%$?_}?d?` ڍ?R܆?Tz ?Blި}?0^?\{zJ?ܳ{,?OF7 ?&Q?)?H^} nj?d4멌??r?6ޖ~x?[?PR=?8xk ?-?΃L?I.<ԋ?x?kQAs ?-83?Kvk?kO? 4?[?La?G9w?(Jϊ?>?@L?eE ?`-u?\Z?8??ʢ`.?>]?]\?#w?Ή?G3:?\?Xx"~?Ap?g"D_?V#5F?P|-?]Y?{'?|p`?0ڈ?ّ6ʈ?AwԹ?Gi?N6?M6$y?JO*a?:g2I?p~H9?#Ŭ!?` ?ꉆCq?Jㇲۇ?zPnˇ?~N?R?a?7o?ʡ`?VRJ?/4?PW%?9K?Mp ?ܥ]?Wߒۆ?#ņ?wɁi?So#?o6?0"]w?7b?HGL?PCD>?]Z#1?hC?B?&r?K/Y?jHޅ?wGʅ?*?,슕?aLq?o?<Gs?z(n_?K?ӷ>? +?})K?0+[ ?'?"*?ׄ?Dʄ?<(?IF",?V9{??kts?S{rY?k?zނ?"7+l΂?K&N?,GI?x,?ڙ?7:?88py?R/i?@aUZ?7+1J?y @? ?9-?uԖ? $?Jv?gGu,???0?x?U?et? \?NM?i75?CH1??OY~?X=~?WD-~?:~?f~?k~?bdCu~?^ i}_~??[?I~?D53~?z/~?P"c~?/ }?@1}?!}?+% }?(8}?Js!B}?#/$}? ~}? 5di}?T}?vF}?;iu2}?W9z}?lu}?,eVEq|?o|?&߃|?ť%|?C|?m눏|?C{|?_ Cg|?#:G0T|?^ AG|?rc3|?o~v?{ųarv?4ev?;T]v?_OPv?&lCv?7:67v?PA*v?FE"v? (v?Fj` v?NEv?CĴ u?Cu?{oKu?yqu?sgu?h\u?`Bu?.Ħu?D7Qu?du?xu?O{u?Zpu?gT du??;Xu?邫Pu?+"Hu?tٴ@u?K5u?'')u?z1_!u?Fu?u?N u??t?0kt?#Jуt?6жygt?V9t?qQt?X!6oԾt?6@6t?"Ut?X6;at?27t?Wt?Wk^^Kt?0lуt?g4;P|t?. qt?Cft?v/_t?St?zsCIt?E9u>t?\Yc3t?i)(t?-,t?xt?g#iB t?0t?K$Ls?iXs?~s?8v2s?lCs?- 1Vs?{;\s?ݰcs?VNs?Js?/seL"s?.Us?s?iqbs?s?rur?(1Hr?pSr?(?xr?r?Aur?)jr?Zr?lȊr?,r?psr?ir? wY Qr?P*r?Tr?Lbǁr?Lշxr?؂>or?*4q?67',q?<&q?Ʈq?Q}q?q?oZhn q?XxIq? Gp? K>p?;Zp?ip?Sxp? "Hap?<p? pp?r,p?.lp?:1p?޸F}p?).Gp?αp?fp?2p?u(ap?Np?.a{p?mXAvp?np?}$ :gp?R_p?)?Xp?M4Pp?Ip?)6fDp?y?p?jK:p?E8n3p?Q2_+p?D 'p?ep?|j4:p?p? p?Iap?REp?WIo?>+o?7]o?0o?_׆Ro?%o?o?Sno?% zo?\o?1O:||o?YVno?? xA`o?F5RRo?rsDo?v:o?a1o?Tڭ(o?9>{o?p o?twn?)n?Sʂn?D@j|n?,vn?93n?.^$Hn?aڳn?93n?psKn?\0Xn?19n??un?΀]ln?(7.<_n?^߯KRn?ec?:^In?)^emS;l?߽~/l?QvNb$l?8l?H`l?bi l?3fk?xk?k?i[bk?k?rk?!wk?U-k?D*k?Nk?)k?nk?ԽFyk?\ xk?2&#nk?Rfk? [k?@Pk?cjHk? (\=k?VA2k?y*k?d;c1#k?^k?}6k?Tb7ik?y/j?66;\j?;Rj? c`*j?n#Tj?9j?-"Wj?ꓶj?xcpj?.j?9Tj?G2̊j?oj?Byj?e߿Fnj?f$gj?F\j?-;Rj?)7Jj?qz@j?GB5j??M.j?,$j? j?̀ j?=`j?)0i?hANi?i?~&`Pi?Wi?s;i?gONi?\f?i f?/$J0f?5Cf?;Ҹjf?&jf?}+:ۡf?67Zf?]f?nMi摋f?#"J%f?=2zf?*Arf?.?jf?2af?.#Xf?w+JPf? Gf?#Bf?d؈e?CX!e?;ͼe?Ce?%%De?V*e?Qe?}pb?S7:b?FXb?6!.a?).'RVia?DJ5ca?A ]a?>HwYa?=Ua? rOa?'Ja?Q_XEa?UAa?j#;a?y4a?l@T0a?@y,a?ph_;(a?"a?oa? da?a?|\g a?a?) 5`?fr`?`?+v`?l`?i`?3d`?f`?4@`?=HƟ`?Kw `?ȇHi`?m7)`?&ہd`?禢`?K`?t}􍵭`?I\bq`?Ksy`?g`? x`?`ǖ`?'jѝ`?w|EƉ`?֋*`?Ok`?nF|`?oI-w`?n]5q`?,k`?*B8\g`?͙aa`?qOs[`?a=X`?3#yR`?2L`?iKH`?lxB`?u=`?|r87`?-|1`?#.`?I0[*`?N&`?ka!`?,N`?\`?`? G h `?7%+O`?lnE`?M_?R}2_?4_?ԙ>_?9WS)_?S}^_?TK_?&_"Ae_?6ԩ_?DQ._?ǵb_?_?]?ã$]?-նuX?bZmX?feX?ډ ;`X?!gzVX?-MX?ěEX?˞Q>X?܏yG8X?M/X?ϊ'X?y!X?9vFX?y)X? 1+ X?-'{-X?f]W?]W?J=CW?-7W?NrMW?utŐW?0W?mW?LjW?lW?CfbW?1W?0çW?PB5W?pW?W?8I d*W?/B"0W?\zW?U?O.7U?!L2U?U`1+U?ī$U?E>U?\U?:U?Wg)U?.U?HT? T?UT?@T?v?~ T?FgT? T? T?1łfT?-PT?,oT?WiOT?%[~\T?υPT?T(T?|͙T?1T?xL sT?0T?nnT?8+&|T?ԎFwT?%pT?,)htiT?Re=fT?>bT?PS*]T?-TT?YLT?HT?Y;uBT? Ç;T?!nc4T?ɮ0T?r,T?e&T?S?wH'.8S?19_3S?Y+S?jF$S?K`a+ S?V AS?vS?( S? mn S?S?;`R?J΀R?T_-R?Zp޶R?{%^R? 4R?b0R?R?u^3R?ACR?h;R?0r0JR?.zR?BѵR?:R?NU9R?CSZR?!R?AMR?jiR?1R?R?4uR?3||R?@>vR?SyoR?;/iiR?H]eR?_R?`%YR?lVR?9RR?> JR?Ȳ0yER?<~@R?N(13GK?Z1K? K?Q4?K?qo]K?oK?6!?ѧK?"›K?dK?u*qK?߻)K?X€K?"ڠwK?UpK?kK?HcaK?INXK?QK?{IK?\}>K?0y8K??^/K?VT'K?C"K?K?u K?t8lK?<~J?G)#J?-J?^;/J?tW%zJ?Um]J?J?G9w;J?~ZcJ?HWgJ?o0J?檚J?ao/WJ?t;؟J?w{J?4౐J?A %J?\{J?~쁘|J?tc*sJ?.mJ?qH fJ?L {^J?,GUJ?׷cOJ?y3FJ?4*f@J?N8J?m4%0J? *J?>#J?-GXJ?CNJ?iA J?I3qJ?S]J?FI?_I?SfI?tC7cI? O1I?\(HI?BiI?tI?$cI?CA=>I?^I?k++I?KI?A,OޝI?c4AI?Ax^I?9LCsI?_ԁ҃I?G}I?$IuI?+Eφ,mI?{y7dI?;[I?`Ɠ+\YI?$PI?蟫puGI?![O?BI?':I?Q1I?+g,I?h1c'I?͹(;| I?I?brOI?Ёɳ I?閏7I?3sI?=UH?]ޮH?FH?H? RH?xH?uH?0܌H?MEyH?7fH?'CBH?:еH?ʽH?(إH? `H?{RUH?3xXH?#ƦV(oG?hG?2`G?#Xf[G?SdqYG?6*F?PktF?F?OgBF?8F?F?5]F?Q9F?SjF?~F?y#OF?߲zF?_G]RF?^=F?܃ӬF?HڻvѦF?$tؠF?Q=F?h*E?xpE?߼8E?hE?f'2\E?¬E?nE?иE?⋛E?YnvE?!E?J&QvE?AEE?LVkE?AE?2QE? $E?QdܚE?xxDE?o禐E? E?ՄE?Œ[}E?i xE?0HrE?-"lE?}FgE?ZW\sE?UKE?N E?vGD?ӣD?l 2,D?%*D?rCsD?~]ԎD?' fD?6D?Oÿ!D? 6D?DD?,D?5BkD?^D?d=zD?il=D?ﳫ?D?wD?~~ D?3KD?ʬD? Q\D?sΌD?%qD?ND?N5{D?vn3uD?*%1,rD?x oD?؞uqlD?NNjfD?lu3P`D?S\D?~YD?TD?B*PPD? &xJD?B CD?3,=D?Py5D?ݖ0D?`Pl+D?z]c&D?s D?O ZD?G.:D?D?P'tD?F1 D?NpD?cD? i(qC?0C?2{C?t"$C?qC?mC?1ඕC?^7C?i4C?^C?$aC?C?! ڜC?+ܽC?"=չC?DICC?VC?cdC?ϩwC?DxC?ҰšC?BC?Eu{C?܇&ʊC?xOϕC? 3C?5pFC?/X|C?lp|C?&|C?Θ.6@xC?7;pC?2oJ{lC?F[iC?\lgC?|CS ^C?yWC?K^o+UC?ݖNC?>g{KC?q"v}QHC?E DC?É}H?@c9N? 9O?PF JO?Cry9@& 5e:B.k)%׷rϘE/>(# ?:yH'?AF0?I}4?@TK:? s6'>? .@?@1 B?`3D?% F?&}G? ɳI? ZJ? 8K?gA RL?\L?6Ca/N? 5CRyN? UN? :MO?0I!O?LQQO?PZQO?OBPؘN?^N?@(M?jќL?`3@!)L?!OTK?,PfI?A\3I?/?G?F?f@PD?98C?GA?!@?@C=?@ch>;?@89?xuC-5?ւ2?@H_0?+?Ә"#?m?!$?`"e6>ژ/]5 į"W/=C(CvV.q"2@A5@&H7@9@C{U<@.ֳ&?2@җA@BB@Ǜ#~C9P6,D X= E̗WE GsF8G&gG3BH )'\H둵JIK-=I,I@MJ@J}JC) J@HJ ?1C9JЛK@sG$Kk{K Qs@KJ>J7gۤJ@k~Jt2J~ZWI B+I@2!`,I@H@t䐊H@er(HNƥGWEFG`&tF@NyBF =E*g&E DbS2D`ݼ&uC B9O(BA`A@z@#a?`p0> &z< R;^:7U8t@%7h 5@&$4ލP2@ޚ*1ef0V-1kj*>6(Pd$K* !F. ̙)Rr)׹>0@ Ӿ'X>g? ~?'??* ?ܪ~"?B&?Q;N(?0C+?yf .?;0?@J]_1?>_=S2? :3?#45?jA7?',T8?H9?@Œ8:;?@9;?@Cs&=?GBƣ>?Q5x??"s??d@?"4A?`}A?vyB?@gcB? 5C? b=C?@PqD?PD? ^KxHG?4G?ɔMG?@Ӓ$H? //6H?@V*âH?`!cH?ۂaI? WI?sI?ۿ.J?}GJ?`J? ^dK?` K?vx^K?@?K?_%K?@9ݿK?`IRK?]L? [L?u,NL?Sk8rL?`izL?]~L?dL?`ZlyL?`lUBL?L?`LL?@L?@ʵL? LL?C[L?Z L? L?̄L?SرL?LmqL?`'v˽L? sL?FTL?o=?L?`]=L?F9L?S$K?K?`cK?XK?ͺjK?jf4vK?'H K?`"5 K?`S%J?t`J? hJ? xrJ? n@kJ?Z)I?I?QiI? 뷽MI?l#I?H1H?! H?@<,XH?`ƥcG?@eǍG?`+!G? -G?TF? v*F?D'XF?FF?~`E?3vvE?9IE? uːE?@$D?DM*FD?58D?wۗC?7K%NC? 6TC?@<6!ΕB?'E;HB?@q#A?zIpA?oA?h́@?NP?@?#K+@?8R>?YC>?e=?3bU=?@r;?@[s<;? +:?x9?gG8?S 7?b7?@3$6?@f&5?@_5?@'@͘4?`7[p3?_2? <2?1?f?a0?L/?-?{ ,?T+?U[(?Cf\'?/i&?y,q%?9 #?+D"?a ?W8G?>Z |??N?g{-{?F;o<?6*ע?ᢇrV?з0>!>fӢ1Z6ք Y ?Pm ޷haQt4o1|#s"n\m Xv!l#HsJ$,v%u{\'&YӇ(@;e@I)+&4,J&(,@OR_.@$r/@\@0ߣaW0{1wG1G[R2`gUY3 9-4 d4gp4n5-866IQ7 7308 8?W9@aM9D#`\:` s:@[Z&; cY;୊z;?:[<+o =ಪB>0P>`5?Xy8?OG@?7T@XǨYo@@Cp@ p@iO@`@!A0y"jA~#RYA%Am菰A]AQTB߸ .B=YKsBPcreB7̦BZhB@xC@O6JCPM?fCP vyCг+CC cC/#Dp7Zf1D`Y1GDb҆D`u7Dm4<]D fDPoKDD_ DL<2EPD7:E`;IE;{E E3E E2e,E (Eu|F0PF@I@. F@hk4FQ5Fp F@F)-F0TGրG:ëGpаd@GP >GGB=G$&)^G`K\G%XG0#vG08tGF7 pG[XmG1GXG&GH|GPG |6vGJPGŤGЅG0s'GG쾟G@TGh0G`@'JGFGhGVG1GGp~^Gm'G&y]|GGjG0~_vG NziG`"raTGJ_GLGVG/uTHGp,<a;G@{,&Ge+Gc}GCG0 ÉG"gF F@_9FWHF`_>F1WFïRFg P±FlFYp$FF0!\uFPRB[F>ǵZFPh?Fn S%FJV=,F RDFd6FÌ5E Ґc.EyE!Z^E@ttEpl E%EMACEP9pE`fpQEME`{8EfEiSEp~D3DPڛdD(laiDH2 شDxpDpj_ȍDBwD0$n{D`-ZD9D8}i?N4?%>px >04>^#S>/0>U-w=h=@6|n=#=#< <.YLo0/_V/C.Y.-q-7B,@PSY,H+ s})+6,*@Gg*7I*`S)I!)`˴( (@D-+( NT'f'@&@jUf&u & ñu%?o%W$(4T[$j #Cǟ#`b # q" 6;a"@=0!`s{ P> `* >E2M?@@mRnWmx-de'!W\Z@?D-,T-y@߆fx=k74i7hlT@[%:5TW/V uf &% ˀ _xpRm ?l9Ao.W8$B^VF8Xt$>DR>J>M">(rz>4&d>|>g>|.> >I&?V??@?L??[6? ?`s ?_ң ?w8?@cpP? f?$/?I?@I]?{7`?0?~? *}=i?Yx?@x ?y~?q!?32??0Up?qV?_?y:-|?@5M^?I?+=?I \ ?@k9h ?W=R ? mW-F6!?Rέ!?XEo0!?@\D5"?+I"?` "?כ#?G#? ^e#?ßM$?g$?`~%$?oE%?%?``%? 8OL%?@e΋P&?ʻ&?f7&?bBi'?i'?)'?`d](e(?;s(? )?`(AKP)?)?cK)?`$A+? ,? ӸD,?`I)H,?@<-? #,D-?vl-?:-?Ʋ&.?`Q.? -.?G0/?{/? 4/? KV:/? ^+0?0X 50?P71f0?0?0??n0?~U>0?ά$1?]81?Zh1?-}1?`6 1?N e1?Hi1?P~2?X612?@y7I2?r2?۝2?h'2?0Xc2?xm2?x#(3?reF3?)`3?}3?= 3?d3?K׏3?CH3?ՌX 4?~ߪ}74?2"b4?1Wz4?p֔4??o"4?8`4?/~ 4?%5?xg.5?uU5?)A}5?5?@_5?<%5?5?xl5?KY6?pI016? !J6?^s6?Pfc6?306?`^6?(2=6?hq}6? ) 7?U"7?yO67?3[7?#2p7?`uɃ7?07?8t7??R7?@?U7?m֔=8?Hd$"8?#*C8?gTc8?`kt8?@ۋ8?UCQ8?:yT8?h[. 8?":8?1b8?({AU9?X?69?ر99?ZĻ&S9?ȝ]v9?hK9?A8J9?s9?Hj9?*Y~K9?1:?xs:?hL5(:?eG:?ҀY:?Xۡl:?`Yċ:?n™:?:?x:?Έ:? *" ;?yd((;?,&7;?:@S;??Gb;? Ou;?p;?xxlNK;?'2;?h;?u.;?@)_;?9;?}T?V6>?`1>?X<>?7*K>?X5Y>?KBr>?H/}>?hjΉ>?X!Ơ>?Ɖ>?pU>?`J `>?hS >?ثs>?pڸC>?R??nJ??,ށ??T.t:$??J=??;$iH??0(V??@Zy&k??Op??(z????(Ó??0??` > ??ɛе??(??(M??^*:??R@?? /R"??и7u??M#E@?\] @?%@?t*v@?@?L @? <(@?t|/@?\x01@?8@?, ?@?dFz>@?$4=F@??#N@?h)M@?vk[=U@?d9\@?Z[@?E9d@? l@?t[3p@?۳x@?Ɲ{@?.{@?dL@?䀂e@?@.l@?/o@? t/@?|3@?j˓@?L6@? @?l1@?LX@?4d@?t%ͻ_@?d|@?,?@?3`kѶ@?ZǺ@?e@?@?"F@?,e@?0Q@? @?=y{@?lyi@?6P@?SH@?$h5@?T'܎@?Pc1@? @?dT?x@?Kn^@?(ŗg?@?pXK@?Q @?R9@?EU@?0+AK@?a׹@?ܫ-@?`EfA?hA?gpA?%?n'A?hւ A? B A?LĶݱ A?h3A?m{A?8Z:A?rA?CA?rA?pNA?W(A?3JA?5 A?(j\A?dV#A?Oja'A?ՇHm$A?C{c&A?hUB$A?3&A?ا!*A?`H*A?\2X+A?s9,A?PYhR.A?TUd,A?eă-A?ܼ3Y.A?Ҁ +A?ئiZ.A?$ߨ00A?9?3.A?x/A?+1A?㔽.A?Q1A?Hw4A?pϏ1A?,uE2A?hN 4A?Xd51A?K3A?~t4A?S3A?H15A? A?5t/A?ݗNA?A?uA?C A?,*> A?2 A?A?-A?,}A?J|A?:A? WA?|6A?X7@?pE@?WSn@?@?0@?`i#@?#į@?dX 2@?0z @?8XTͣ@?0HN@?iz@?xE@?ZW@?Th`@?x׊@?;͚@?w@?e@?l`az@?nZ@? @?PSH@?.@?&d@?@?8@?\Q@?\<ٵ@?<@?d$1@?( 2@?TÅ@?(h@?Bztޥ@?=Y@?4I@?7BН@?%AF@?e*ř@?DX@?l(@?DPM@?@@?W @?$9@?PN.}@?ҥy@?| (bv@?3[!q@?D/n@?͓Khk@?4wpd@?t~b@?`\^@?G`V@?0noT@?Z`YN@? {J@?@H@?C@?*٦uv@@?E\V=@?QcJ6@?Y3@?n\h/@?NĕD'@?&[_$@?Q @?|7@?λ3>@?_@?rj` @? @?k,@?DIǫ??M+?? b?? ضY??TTMN??TI??CB??w5??HT-??_.a&??X b??r ??% ??Ўg>?8@O>?d2EJ>?[k>?p?>?x s>?__>?\z>?H1>?D5(kk>?u>?g>?~4>? jmw>?l>?8pb>?k*fW>?`dM>? UE>?tF Ҍ>>?(W5>?P~m%#>?(#)~>?LI>?y=?p 2=?L㳿F=?`q=?\=?|=?=?0 {Q=?N=?`0=?Ȍ=?pxBA=?@B}=?x=?yp=? Yvh=? B-=? =?/d_=? /=?8*`\S;?y@;?Q;1;?&N);?82;;?Č56 ;?SA:?C*?:?Y:?hSnv:?# :?:?8I:?$:?8]\m:?!'~:?h+p:?$g*g:?0B^:? VjL:?4Јt?:?$]7:?YA(:?h::?am :?ʅ9?Lu;9?Ћ>9?, 9?QĴ9?(GrT9?Ž+9?[_â9?T'9?`lH9?B[w9?X}f9?h6&\9?hRH9?Wf;9?05o39?e+ !9?Y)49? T9?xh8?(0W{$8?4T8?`Ld8?ܸ8?#q8?8?|覐8?h~c8?@vmt8?dPqg8?\b/X8?MPK8? 2C8?$-58?MVA!8? +:8?Y 8?PS7?h7?4t†`7?!˳&7?&zh7?(Ry27?E7?T7?|K7?h6s7?:Ηc7?|JQ7?! RF7?l 47?EN7?57?>V"7?w6?Pg`6?*w6?yFH6?d֯6?゛6?-籟6?I ێ6?/ ~6?Is6?TFei6?HnT6?mC6?q1<6?5*6?LM6?5|6?U05?I5?PGJ5?5?gt5?\ ݱ5?PO5?7o?5?LT5?<m5?P2b5?=IP5?l=5?`3iH25?߉J,5? ZL'5?ܲ}5?̟B074?:4?O4?W24?$P4?p4?tqԔ4?'i}4?0\!k4?Ⱥ_4? ƣM4?R5:4?ȂF&4?$^4?3 4?xUg3?LT3?Y?Y3?$;3?843?Dݖ3?TRV3?pnkz3?i3?x'AV3? F3?4xrg=3?Hqm-3?0U+3?^/ 3??2?<2?$~P^T2?s2?Pe>c2?2?*tJ2?d/|2?ؖ[n2?DY2?D)J2?`82?L(2?TA8*2?Аy 2?9!1?P1?* 1?l1?4|*5^1?4QN1?H~w1?<_r1?p1q1?*a1?-P1?@1?`q..1?0?PI%0?KAxy0?i;/d0?|.0?c$0?|:^0?袩Yl0?\,Y0?V`BG0?|80?B#0?y10?81/?lhĒ/?_/?/D/?6}/?בZ/?þD/?nM*/?@2N/?HT.?0ڵH.?H{b0.?z}.?Ȥ-Jc.?pSHI.?`t+&.?p}.?(a%-?㠁-?(s-?Rԅ-?(|Xh-?cC-?`%F^-? fO,?{,?pH2,?0I,?@ f,? k"!:,?eH ,?~,?+?ݖ+?.C+?0b#+?h+w+?H@F7R+?86/*+?k*?l*? *?PI1Ԉ*?H+6m*?@1J*?(KP#*?8c *?)?!~)?"Pְ)?` gՌ)?0 3i)?hFkjJ)?w@n.)?8k:)?Zy@(?H x(?:(?Fr(?zN(? *(?rjy(? '? '?5O'?xv@Y'?%|'?p5tR'?@ 3'?,'?{bO&?pY*S&?n3&?G~i &?p3]&?y3&?FH &? m%?ձ%?pmo%? Μ%?x5>j%?ME%?%?`ۆ$?4o$?$$?P$?`¯Gt$?W$?G$?<β$?##? T#?gI#? Kp#?82l]#?Ќ֫=#?B$#?w "?04"?0f"?JT}"?hVb"?hد 7"?(ud<"?ӱq!?*SKc!?XQ!?q\!?Wgq!?XCI!?(U"!?puڻ ? ?Vg ?Xzc ?A{ ?X_ ?B ?PJ_ ?0N-?0?V? -ꨟ?GK?gl?P)I)?0C?|'?p1Q?G?:˸?0_L_?p2 M?ЋJ??0z2?b7?d?)a"m?"?@?`ऑj?X?ʨ?=|?dqS?pc?&9?Ppqr?,a ?nv?ݙ?: bF?p֚?AL?@dnd?m?@$3[?W}?P35K?$2?šE?HzWw?Bc*?Ь(?tR?7x>?$hJ?0Ω)?]Y?pw8O^?Z2 ?pk? (Lޕ?lFZ?F?2?@! ?@$,d?@u.s ?@TX ? i ? ?ڇj ?@['i$ ?\(eI ? ?5 ?@/?+~%?@'׻?r? $r?s?`+C?`V'p?@u*? \K/l?*w? ]N8?`,!?0tLv?@b?`ŒQ?kz>X>*T>x>Q>ˆ:>I>lev>@FU>> zw|> p)> >|=>o >K=T>sdݷ>s܂Z>"~>T߬>F~>r:>">>Į>>P>(f<>p$m>XP*xqEԹTfƾhξѾ ?mzվpؤپEӫ%޾, ᾀӍla㾀Om s>pd Of#n~.@"W|蹋!:8@yrѲ3>?e@!!y@]P`O4nQ/`O3@o㍸>Ak``>M`@h5T 3.Fy Fq4yc IjlU`},@0aLK, ÆI +. t d|` ,h y n# 4QkB `/ uk_Rc@bO r W ttsșs/ Ic  X @qy~Y y J>\4[}nk/-`Q>mmWNԙR"m0@}zB}Y7Wwpe /TȧSpT G2=w9ВŬE LOOpξ0c`~#@=p˘jJ% [P@&r c@;mSG~@Wd 6G 0CKo| ֦gr4"̖jH0FBд_[{Ҙ|0F'0Pl T0qؕ ] : pP g PB+( pAbC `In , @pb!X $![>E!ЩZ]l!>T!s!-$!S!ȩĥh"pv80"`N5W"_əp"|MK"4<Φ"@C|"8Q!"}#8#$C)#];D#p՝ d#XTxs/#p#0ϣ#0SE#8;I$4$!T$mj$P]`J $-n$PF$о$@ef%!+%(yc!X%P4Ka~%% *bk%g1%ژ%h9&z 7&hd*V&J L~&`5ŷ& &<& č&'("#'EJ' S_'$'' Lbe'*M'Z(0h8'(DJ(m`Qn(x,-(@# `((hG8(Q4(@[0")+=)@lwX)1f))V)!) ~9D@)Д *0*oS*0bp*`Q***8}a*x]ܨ*U+H(/+@NN+Rt+$c+94ڮ+Fz+U+i,hr(,q<C,pld,LAȃ,,<R,L) ,-([)6-ԣV^-%cs-.-DrJ-@ v-_-G>9. VB.4bdN4.a6Y.`1r.s~.!g.I#.<.~.T.,?/:/aR/Lfr/߫%/Ԍ//(/(Ѣ/ 0/(I0#0̻cА109|>0̟J0A_0>\'o0j"}0:570&f00j0%0Ǐ70(+t0 H0tS1M 1C> 1:d"'1d/11sdA1JKS1I>`1oLm1Tu1\31Y5)1jİ%F1t|Sn1'1h%1GѪ1( m1n|1j 2\H2W2v.%2A,}52'D2N2($#_2g~q2W|26ό2)'2S2:kw2]S22dY2VPX2A24-3a38n#3 "33ĭ X<36aA32ZS3ؾ^pd3vh[w3^b ڄ3LӾg3PnA3-i>34ȸ3*fj3}v3x3*^d3(Z 3Ho4r 4~4*S(4dy͋94xWK4X4/5h4ʴ(u4b4 4h1,4,ί4vV!4.y4_4(G4434J[4 6_B4 5 5)5xV#5N /5a|75GF5KW5~NEb5ƈo5h5ice5Zr~;5FNӋ%55B85|xS5 KG5`a5J]5Ɣ6Ƌġ6yO}6Vy,6`Ò56E6qAQ6dt Z69qb6$"m6R{6;6^oh64p6ꧧ6npu6Ve6Kk766m@'Z6.2960@ 7<17B(d#7pA.7KB:7:H7DtT7]7;K`j7DJw7xQWJ7$x77xO7m7q:7)$}7n\797/ p7(78407N]!8.8Oc%88v18n@8]F8"x,R8j,|Y8t6Kk8|Pu8A88 __f8d԰8s)B8z4zv80W$:8dI 8L84̖V8rM9&R 9O94]9MM(9̥C49@G=9D9/1N9&6X9J<~G<@US<^ y= b=S}I=<Y=:u=^ 1=h)L =j=W=N=ɰ-=p>2 >6>A*>/5>&hF=>p:#r5H>kS>Ĉ]>zi>Rs>xZ'~>lT>.:21>>bBH⬤>_g>huԾ>Lsb>h{>U>eIa@>뗫+> W>"f>P٨?)/ ?L!?!z%? YJ3?dF7??" E?iM?">Z?~sC}h?p;p?Аz?2AS†?xTZ܏?(?i ?4n?j^k\?@́s?@1?%?E?vv? NS ?'S/?%.7@9R@b5y @q/@+aӔ@ @ZAwp @()%@OP(@"K /@xm3@ =K7@B\S%;@WA?@^\E@DLK@'N@WHFJS@oygW@il}Z@Džq_@Ԃ!e@fj@rd~9o@iLt@<9y@^V~@?S@@/ZI@p|l@Kto(@4F @va@B@ү{I@ܣA@oE1@! /z@x*@-@)d@7b@*j4@ _s@CW@q:@#Iu@)ɈW@@0Z@'l@3i@{"S@b&@wO@I.=@*AB|Ax$E Ap+A.ŖA_huA4AoK8 A#Ay dI+A^c'n0A )2A.6A3y;A[;CA9DArYVHA$~MA,\RA\()WA!"DWAƳ'_AL'dAiANwoAiDC8sAglfvA>5vA`{AAH7~A;AEz߂Al^A\ԍA.u@A5I2AʘAz(A5!A5z9&A䢏٫A猬A`qA\7A.:AR{A0m*Al 8AHAO5:AqһAdAf[oARF<9A Q,AnAی AAA1iLB&PB Z B>G|ABZ_B^dTBHu75BK<BVQFQ fit_X025_modified ?AA`?'ce?W؆vk?"r?br?y?'?O5v?B?Gp`?Zz? c? w3?gq ?J-df%?\ Q|?"?Ƥ6~?6x?<=t?aFr?jq]tqp?*:p?0p?EZTr?\pT s?bpv?"vVy?t 똸}?׺?.N2?-4?G-'? ?hSP?vm,?=jꮋ?DH[??f?&>V?#.͒H?g¨`z?§)?dܷ?ă۲??1ү?tA`?,<0?Rx\?l?L&$?p?gH];?WzǍ?5~?ʷ.YQ"?w¡.Œ?o7jj?t#? Đ?)?{?Ī X?lA 9?F z?I?Y*ފ?Fʊ?|깊?79IJ?mu?o?j="?U;Gx?~_ˊ?+ J?Y^?(eHC?N!2?~ZT,W?Lt?z&ץ?#hIՋ?g?,/M?beq?4RRZ?Fy(?V|"C?J5o ?@I>ݍ?]@3?Duo?ehfu?x?;Xu`?? n?= S1?`?@떐?)Q͐?@l傪?e"q%?$^?f Y?L8kZ͑?]gA&?]7%=>?zz?!?$Ga`?=+y?༧/@?0w?TD?_?xZꆷ+?5V0 j?b*g?{Mߔ?|?P{>??Kd}?=?-O*˨+?aԾU?{"z?~Tꡚ? $+?5՚?S?7 ?+0?C? Y?r(:y?j?~ڨ?5dś?mޛ?r +I?K7D?V(`6e&?RI!:$?̖O?{[?*??@?%?#30?}??'fI?ǁ?w@?9Y2?-*?>cT?}V?X??^ӣnڜ?KOќ?dBi]Ȝ?|~-x?\ڴ?nՈm?xIT?=Y?ދD?9m肜?Wu?cT{}l?);_?N?gP?2 UCF?'yo8?z(?uD?0> ?Qt2?_ Rc?c??0h}Л??1;j?Erz?x 3?tZU~?ޗ3q?4y7d?>R?O#>??1?hԡ?L ? 7 ?ʤ6Y?Թ;֚?M۷Ț?g?ξO?o?`(?_svq? g~\?DHTmI?@3?3 ?v ?a?bSe/?M;ڙ?Tř??Y? e?Wg y?<3(d?HHU?Oj1B?b)^,?"??4+?fb?'ט?`˘?5tѵ?hj ?b?09?zs p?P"\?xo"VG?лq1?y3?,5!b ?tMKg?Ls>?oҗ?Z2ė?>[?MrԜ?~ǎ?#ש?@n?&$+Y?M?:|E8?Â#?C`r?)y ?tk_?`?O+k֖?#?`}?-M(?䆖?u?Ae?/q=ES?$i%G?_u7?d:$?1;?rlg?6|?ʻ0?B _ۓ?ărޣɓ?`B۽?D=@0?|֟? ?{v?{?`kp?a^?u.XO?!>?QY,?X? ?q?ɷq?)$?P֒?̒?ū|C?(V?07\?bN?EFƆ?2F!x?sg??~\W?LYLN?V: >?!@-?$?LR#?Mδ?qE}?U?lpؑ?+Eȑ?(D?QF?Yp?{S??㠋?X ?3Vzs?ͽ1Hd?q$x[?˲sL?twR1sl? ՔJ?Qy?!b?: G?+i5?{.'?rV ?g?dBۍ?,?I ϟ?.W?1~?|Nym?-_?xE?\z+?=?>]?^ ?/Ԍ?s t?44-?l4?Y{?P e?ӺL?S2Ї\?13?G?/χ?u?RD ?M?C!?}y?vg?LZ?L?/A?3] .?өd>?[G?.g?:+?s݆?ǭEɆ?Z2?o?9?m? Sᄆ?){8z?^ZHum?_Z?wI?7R 7~?G ~?np4~?N(~? (p~?u~? "_~?6خO~?UI7~?}?0lj|?ٰ|?A۷9|?ɮ|?-Q|?/l|?iC-|?Xdzn|?o;W|?XC|?[(_-|?E{|?¯.|?p{?H{?[׾8{?o={?1ř{?+1{?zp{?@#%b{?S]S{?y'>{?&iP +{?Mկ{?¼%{?uWdz?֮3z?nz?Ӕccz?* 6gz?TfϏz?Yzz?qzmz?}٘az?2'Lz?ȃS8z?;t&z?Yz?=Ay?2TR4y?r0y?+; y?NEy?Ry?\בy?N\C}y?jy?n_ϊXy?Dy?av 7y?)f,y?ŋy?R-^ y?/x? x?Ń}x?N-jx?j޲Fx? x?ۥmx?4/x?ޢsx?2hx?ǪUx?mk}Cx?!8x?B,x?Ӎhx?slPT x?*1w?jw?jbw?zrxw?ƚnw?@g{w?^+#w?%w?/{w?}}w?ɍkw?&NwYw?R}Ow?:Pw>w?\DR,w?\w?Д1 w?dv?ql, v?qv? v?6yZiv?+7ﶁv?}?v?7*֑v?Ytv?\ouv?,ڳ[fv?tUv? b |Fv?$I;v?S0v?"jv?:v?tT v?A1/Yu?蓲\u?u?"!au?l=u?EPЦu?q0ju? fFu?Jۡ}u?ctu?wղiu?;Yu?-+Ku?\?BAu?Cϩ6u?@W:M&u?&Nu?Nu? (n]u?CǷ6t?ept?sGoXt?ذ=t?JFmqt?Xcgt?j3 Zt?fCKt?"At?F3t?&%t?sSt?X?!? t?BHs?)r0s?|s?[s?rPW}s?\s?t#s?uMs?[s?Epzs?0zus?_xwls?rb^s?NsQs?|TCs?ȑ 7s?nBRmE.s?Ij s?bg%s?{ecs?">-r?}>r? r?2er?ףr?[gar?r? r?dc]r?9vr?r?7?xr?Xtkr?bd_r?nVr?Z(Mr?!QhFr?>"B9r?Qk,r?Wt$%r?P[r?J r?~r?z q?ouTq? Jq?9.Zq?eCq?)nq?ˤtq?q?V6q?їq?7"nxq?q?|=Dtq?flq?PGaq?5!Uq?YBIq?!f] O>q?PJ2q?G'q?#q?=#fq?!xIq?.zp?(to2p?J8Kp?p#p?"ADp?Ep?Up?F ȴp?7p?PĘp?.lp?@.s p?*{p?Q tkup?$jp?/^p?LrTp? Ip?-dBp?5":m? Ƅm?DԨhm?]9m?Fum?ҀOm?tMm?􄺄m?Աeqm?NF`m?>wSm?H2Fm?3m?׆5"m?W4m?<_@e m?W4l?9* l?)Ll?(Dfl? l?j'l?i /l?qt﹆l?v uzl? p%jl?3Wl?JHHEl?DF5l?.?o)l?дel?#Kcl?`n9ll?`M,k?\xk?lobk? Yk? *Ck?yk?ek?Wk?,k?;7+eFnk?lM^k?~7eNSk?X|@ Bk? 2k?V'k?{U?k?*k?'+$j?*j?%TRj?] j?OKj?$~f?A6L7f?y*+f?f?f?0 f?Jhce?E4e?!F^e?FGe?|BBe?Mye?^ve?o`%жe?p7~ߪe?dxhe?zVe?ԓpe?Bce?")~e?b)Vve?Pje?pnE`e?8m9Xe?ePe?I9Ee?_R :e?rS3e?F 'e?We?pd\#e?:ېؑe?e?%:d? d?=Cd?Z-md?Pi})d?1d?fGd?D;/d?w"Wd?D>۞ld?5yd?FlŖd?`9d?md?4~*{d?f_sd?,ܟld?bad?$Xd?J@OeQd?PJd?_n@d?V6d?ڝR/d? h})d?Z4d?<d? [3Y d?+ed?87c?V8f`?Ó[s`?,l$`?X`?h9`?-G,$`?)/`?V5f`? q`?˸cZ`?t`?ʥ`?op[`?_R`?^/m;`?Ԅ`?Fn@`?I:`?Hz`?;Lv`?iGo`?ʖh`?\>d`?·Q``?z/oY`?VS`?B|L`?8 1E`?PEA`?ʜ$;`?-t5^e4`?oHgk.`?Cw5'`?d/\ !`?Ǘ!`?嵵`?.X`?= `?:ݤ`?pi_?#_?7_?w|_?'g7_?ֲ_?qsL_?ݾ_?363"ɛ_?ͽlԁ_?e_?/u{_?ݛIp_?{Mg_?DLp[_?c,_P_?N$ C_?8_?F0_?(_?xL_?աIp_?CFbQ _?7_?>r^?_^?Т2X^?>i^?u^? OͿ^?K?^?u[-[^?Tq^?o^?>,G^?ޫ핃^?W:y^?{q^?&մi^?L=|_^?AWBS^?IPL^?rY*,$B^?j6^?a1'/^?h-%^?B^?C^?NG^?Fn]?]?JW]?(֫]?Ţ]?<]?Zх]?;]?ܼU]?۸`]?)F2]?tԘ 3]?a%o]?<^W~]?x]?}Шq]?68j]?4!a]?V]?YO]?(B /F]?t;]?Aӿ4]?(Yg~+]?o!]?_`8]?wW]?y ]?S {[]?Nw5!\?>v\?&?\?<\?H)\? :0\?C$!\?3sqq\?~о\?^0\?͹\?C>(\?ԟI\?,M\?E\?FT\?඘C|\?Rt\?h\m\?-d\?.Rk[\?I{}R\?0nH\??\?*଍r6\?:k!0\?Cr'\?.Q\?mK\?vh\?8 \?B7\?>b[?[?̰Ř[?Z! o[? KH[?0T#-[?([?S [?A6C[?#N[?Ñ[?=-[?[?ȰI2[?A ~S[?r0i[?D[?>6ϧ{[?s[?k[?ۂq>Ie[?LJ#][?Ŗ+JT[?.@L[?z`D[?@x<[?o|3[?u.[?tB&[?n [?G;[?&b[?& O[?`k4[?Z6Z?Z?Vw0Z??PZ?mZ?? Z?=Z?9lZ?Z?&Z?tVPZ?þZ?,rZ?gn7Z?'gKZ?huZ?7Z?BhZ?8lZ?+t|Z?zf|wZ?2xpZ?M)hZ?.vcZ?l'\Z?͹TZ?&OZ?:֐IZ?"`AZ?O:Z?H3Z?\-Z?I(Z?zY!$Z?e>Z?i-Z?RZ?% - Z?ϙXZ?FBJY?7YY?~eY?O5Y?nbY?*/(Y?%cuY?uY?Gi*?Y?/Y?JkY?WY?Z,Y?诅߯Y?˨Y?Q҆Y?Y?EY?e9Y?RiݧY?9Y?!}~Y?դFzY?)pesY?qMmY?,UhY?"aY?n/ݢ[Y?(bWY?=SRY?LY?R .FY?.EҸAY?gE=Y?(4l[7Y?e=%0Y?PvkQ,Y?K(Y?r"Y?ˏY?ZGY?;FY?56Y?Уr Y?ulY?dTX?ByX?+X?4-4X?ObX?TX?PAyX?7kX?|;X?K'X?ټrX?)IX?炞3'X?⧸X?-a0~X?3QTZX?ЯjX?ϒzѠX?X?n`}\X?88TX?aQX?^X?t|fX? hzX?DtX?opX?2y֙kX?7yeX?o}_X?T/ ZX?bmYTX?A**OX?KX?FX?Tz̮\@X?zIG;X?ۻU5X?U1X?jt.X?4(X? )[#X?FFG= X?dmX?[X?}X?ȯ X? hX?0fX?>W?drW?&W?FpW?W?$`W?>8~W?kW?\egW?LIdW?4Ga_W?;;ZW?V&C;+VW?*MDQQW?NW?LiKW?IVřFW?$AW?I&?W?Y#o;W?v77W?V}3W?J.<8/W?c%+W?F,&W?Q#W? 3 W?vW?nW?#"ZW?z^N!W?Xݼ0 W? # W? zNW?h2b W?@V? zV?r V?QizV?V?T, V?I=V?BL"V?H/V? 4?V?cH2`VV?*EQV?W V?1#V?ZdbFV? V?MV?f(ϼV?^pV?V?\Б}V?nV?ߤV?/+V?jMFV?4zV?0(V?eٖV?=`qV?~V?E~.V?diXV?t>V?(V?8OV?)V?~<%V?<فo#V?-V?v}dmV?`SV?:\hV?v[>V?!oV?Ӭ&V?l V?IyV? '$V?"WV?U?U?8LU?zU?lU?tf:HU?U?7lU?7AOU?>^U?; ZU?EFgmU?ؑU?0T? T?T?̂kT?8T?yT?+mN7T?#aϿT?[T?ō{S?L*S?zsS?U S?yjS?US?9vS?jS?3 S?NLyS?$c^S?WS?U]S?'QS? 2S?Z[hS?#rsS?hhS?,o.ȝS?활S?^BGS?sS?,6z:S?[GڒZS?#Gk8{S?_IERS?&`S?5 (S?S?eH8S?ݐS?`6S?pC>sS?S?OyS?~5S?L0^S?%@S?$BS?K]<+S?zS?[:S?zXH=S?:9#S?%^"S?&]!S?H S?NS?E S?0<S?2ZS?iS?h VS?V@}S?S?CNWS?} S?{OOS?(S?e2S??^S?w>S?~YCAS?cBS?XDMS?HS?BZ,S? sS?ӇS?0RS?Y0dS?T4S?T4S?p_Y S? 3 S?2V< S? { S?\xG S? ?A S?R S?ZqS?S?\VS?YbPS?acS?В_S?B/oS?QS?˻mS?juRS?S?٬QS?B?_S?tXS?K2R?R?/R?'VrR?_R?R?HUR?,R?+lRR? {R?3R?\R?hCR?˹~q+R?K{R?R? >[R?~R?BR?WtlR?FR?SNX>R?'R?M|eR?ٙR?aZ?R?t9R?vKv.R?VR?L R? qR?_+R?%QR?sjѸR?5`~ R?tAͼuR?m?R?hZR?}6R?(%R?VJsR?ѫR?jR?OR?0c&cmR?R?* R? }R?a"ZR? R?JR?\R?R?淹!R?R?rX<}R?QR?^YR?;R?7YR?T"R?ȸR?ѓR?KR?3T\R?ȠR?@TkR?cR?~AIR?Ƒ?R?=IxJR?ۑR?<*ԋ^R?[R?0½sR?'-R? yR?[*R?`R?2R?\R?Q]R?YPR?R4]2R?xR?`:R?<8LLR?]R?8R?\@MR?AIR?q^R?SR?H`QR? CR?QFR?øR?\R?NqR?WiR?A}R?BPR?acOR?*R?KR?5GR?|;R?i:R?qCrR?g^K:R?{SR?hR?{-LR?@]R?αR?3bR?CR?&R?b:R? aӜR?; ZER?wTRR?f@'QR?t^'%R?A R?$>NR?rJ*ܽR?F\R?.[ܼR?kR?QOR?0haR?M)R?XpպR?$XR?tk4R?MzbR?Q4R?W֭R?{2R?NŷR?4ttR?!R?CR?]R?3:R?w2R?ȺR?ů=kR?k|R?R?=R?\L0R?x]R?R?рJ R??3R?zR?vc2R?0<;YR?/#R?JO1R?u3R?rR?{ R?-7R?ƭR?-XsUR?_R?= R?Y\R?䁡R?HR?L4@R?q6ުR?qR?cR?ְR?F5R?jwըR?P}iR?yR?@R§R?]WR?&R?Z@jR?Ihژ$R?oDޥR?LˣR?u:R?0ªHҤR?7[8uR?A, R?xbR?fAJR?R?]`VR?YCDR?R?8ɘR?CAR?ܠR?!~R? R?uǻR?Qg,R?CdBR?fQ|ߞR?kR?Vݨ%R?eTÝR?6!mR?; R?%͉`˜R?vR?&[~dUR?TީAR?RR?Ak`R?`/0R?լR?ENR? R?vܻR?`}R?dR?ȿ)͘R?i=_pR?LȮR?A —R?;fR?\P R?'J(R?*}R?n"R?lPҕR?5OLR?3QقR?MR?+QR?4!R?`$1R?qpR?^lR?2MDR?SR?k/R?6R?8bR?4R?,R?R?ƉR?~ .>R?a4R?~R?[$~R?[c4i~R?m%~R?Z%}R?Q}R?=o}R?7M}R?'}R?[D|R?7|R?#|R?2 Q:R|R?ȢR&|R?+{R?p{R?/{R?={R?i`{R?=m^zR?+zR?_zR?ܮ!5zR?*QyR?nWʼyR?TJxyR?MSyR?QOyR?wxR?xR?XZ{xR?&7QxR? %xR?XwR?LsNwR?y,hwR?z^+wR?ˋvR? !vR?DKvR?ySvR?#A~2vR?<|(TAŠAW_AutoPeakInfoȴ????@2CCDQGBBB3&Ci}]<;<ARA=)ChARA=)Cۿ RAXA0ExpGaussian_Resultsȴ????'T`*Se@0Ƭu@qIK@e@0Ƭu@qIK@A7?D @"@A7?D @"@U= ?J@z`V@U= ?J@z`V@}Ɩ t?PPO?>_;t?}Ɩ t?PPO?>_;t?YAZ~S@Dp_@fJ "@YAZ~S@Dp_@fJ "@m~?K_@Qݾ)@m~?K_@Qݾ)@ku?LXq?BsYpR:?ku?LXq?BsYpR:?XQF?vg%$1?E>XQF?vg%$1?E>Peak 0Peak 1Peak 2Peak 0Peak 1Peak 2positionposition sigmaareaarea sigmaGauss widthGauss width sigmaexp constexp const sigma.GAXAExpGaussian_Infoȴ????WNPKS:3;YDATA:X025_modified;XDATA:TimeW;X0:0;X1:2583;BL:0;1WIDTH:0;1SHAPE:0;NPKS:3;YDATA:X025_modified;XDATA:TimeW;X0:0;X1:2583;BL:0;1WIDTH:0;1SHAPE:0;KKK PackagesoV WMmpFittinggChiSquareL@z,A?gSaveSetgDoBaselineg1Widthg1ShapegCurPeak?gNumPeaks@gFitType@gPeakAmpkrIؿ?gPeakPose@gPeakWidthc:@@gVoigtShapeku?gUseXFUNCs?gPeakWidthFactor@gFirstCoef@gNumCoef@gWantResultsTable?gIndPeakOffsetPercent$@gDoBaselineOffset?gDoBaselineTracegDoAutoPeakFind?gMinPeakFraction{Gz?gMinPeakNoiseFactorgNoiseEstFromAutoFind+87>gSmoothEstFromAutoFind@gYDataName|PR X025_modifiedgFitDataName|PRfit_X025_modifiedgXDataNamee|PRTimeWgResidsName|PRres_X025_modifiedgCurDataFolder|PRroot:gCurPeakUpdateDummyUpdateCurPeakTag(gCurPeak) ManualPeaks%gLastClickYyL?gLastClickXv{%@gModegIsEditMode?gThePeakNum@inited?gMessageߐ|lߐ||UserCallbackߐ||MB_PeakEditCallbackTheGraphackߐ||O PTEAžApeakNameList R????h,SPeak1Peak2Peak3 |(,SAApeakCoefArray R????"~~v;*C<:.AtmpPeak,$@AA'wcoef?AAv;y<ϷD=PD'?wcoefsav?AA Lj<Ƈ0<ϷDUC WMPeakFitsyDataNameUpdateCurPea X025_modifiedxDataNameUpdateCurPeaTimeW CurrenttsLgRangeBegingRangeEnd.@gRangeReversedgXMinY@gXMax@V_chisqL@z,A?V_numNaNsV_numINFsV_npnts0@V_nterms*@V_nheldV_startRowV_endRow.@V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkX025_modified_HoldStr 0000000000000S_infodified_HoldStrwDATE=Thu, Nov 13, 2008;TIME=2:18:12 PM;FUNCTION=ExpGaussFit;YDATA=root:X025_modified[0,2583];XDATA=root:TimeW[0,2583],;masterCoef?AA@m@-o6R?>n2?>n2?>n2?krIؿ?e@c:@@ku?@#?0Ƭu@m,J@LXq?#K&?qIK@ۿ8Ax@BsYpR:?rmasterCoefHold?AAAcoef ?AA-o6R?krIؿ?e@c:@@ku?@#?0Ƭu@m,J@LXq?#K&?qIK@ۿ8Ax@BsYpR:?,coefHold ?AA* zPeak1dn]?Y@AA[]mT8榹6-P5>99(:S:|4:(:::$ ;9!;o'7;=xM;|d;2m|;Fu;;;s;;;F;d;};:;< <<<<<>#<:(::99=99{G992|8_Э"~-<5|lDL*Ĺ#ܹ:OEɕ!#CENTX:420.66;+ DPeak3dƕroT@Y@AAα?^8q:$ ;k;P;(;4)$<7<՛0<)dYb=ya=gݜl#i>$;=Q=|F3_>Ao>|:?DT>Bs([ l(5Y$Q:C ,Q-n{?ޑ܇xo &:cAo>={V?QIm赿pC?U1MT2c{xв/ÿfX*2vܾᮂ*8?!{0пgLLTpُ|:?QIm赿0D?F+hՆTMݴҷ}9:Iʋᾲ:??q5LԿD1]!dy?MDT>pC?FGa>zHFIK zNԾ[茬V5])Hly@?0>eh$ѽQ1Bs([ U1MzHFI8:>zB?!MƼq0W> 6VNhhA?ϸs=P $>l(5YT2c+hՆK zB?FWN @v~3/?k[8Τ=?c(?:" ,@E>dY$Q:C{xв/ÿTMݴzNԾ!M!zC'C??J{b= ,fXҷ}9:[茬Vl+"u>k[8Τ=?&63 $?5&cs>}mR˔`>zYLIR? T=ya=Q-*2vܾIʋ5])HƼq0W>c(??7>}mR˔`>,V>fFVF?raW=gݜl#n{?ᮂ*8?:??ly@? 6V:"!zYfFC@eH:;ڙO|i>ޑ܇x!{0пq5LԿ0>NhhA? ,@zC'C?LIR?VF?eH:;^PK<@C?;4`>$;=Q=o &gLLTD1]!deh$ѽϸs=E>?J{ T=raW=ڙO|C?;4`>$$؁=@W_sigma ?AA,'"n> b?A7?:#v&?XQF?PӐ;:?D @ O?vg%$1?),}#?"@)gAo@E>masterCoefManBak?AA(@@>n2?>n2?>n2?>n2?@b?@f@`vG@?@?a{@c@??@@?:CoefHoldSetManBak?AARAAmasterCoefManRecentS????(@@>n2?>n2?>n2?>n2?@b?@f@`vG@?@?a{@c@?9? @G@?yRAACoefHoldSetManRecentS???? a// Platform=WindowsNT, IGORVersion=6.040, architecture=Intel Silent 101 // use | as bitwise or -- not comment. DefaultFont "Arial" MoveWindow/P 5.25,40.25,504.75,335 MoveWindow/C 5.25,428.75,707.25,523.25 FitSetupPanel() Graph0() Window Graph0() : Graph PauseUpdate; Silent 1 // building window... Display /W=(9.75,47,404.25,255.5) X025_modified vs TimeW AppendToGraph :WMPeakFits:Current:Peak1,:WMPeakFits:Current:Peak2,:WMPeakFits:Current:Peak3 AppendToGraph fit_X025_modified vs TimeW AppendToGraph/L=lr res_X025_modified vs TimeW ModifyGraph mode(res_X025_modified)=2 ModifyGraph marker(res_X025_modified)=19 ModifyGraph lSize(fit_X025_modified)=2,lSize(res_X025_modified)=2 ModifyGraph rgb(fit_X025_modified)=(0,0,65535) ModifyGraph msize(res_X025_modified)=2 ModifyGraph log(bottom)=1 ModifyGraph nticks(left)=4,nticks(lr)=2 ModifyGraph minor(left)=1 ModifyGraph sep(left)=10 ModifyGraph highTrip(bottom)=100000 ModifyGraph lowTrip(left)=0.01,lowTrip(lr)=0.001 ModifyGraph standoff(left)=0,standoff(bottom)=0 ModifyGraph lblPosMode(lr)=1 ModifyGraph lblPos(left)=54 ModifyGraph freePos(lr)=0 ModifyGraph axisEnab(left)={0,0.75} ModifyGraph axisEnab(lr)={0.8,1} Label lr "Residuals, \\U" SetAxis left 0,0.03 SetAxis bottom 100,20000 SetAxis/A/N=1/E=2 lr Tag/C/N=text0/F=0/S=3/B=1/A=MB/X=0.00/Y=8.64/P=10 Peak1, 185.933225942741785, "\\JCcurrent\rpeak" EndMacro Window FitSetupPanel() : Panel PauseUpdate; Silent 1 // building window... NewPanel /K=1 /W=(659,52,887,512) ModifyPanel fixedSize=1, noEdit=1 GroupBox gb0,pos={5,0},size={215,100},title="Data",fStyle=1,fColor=(0,0,65535) PopupMenu popupYData,pos={17,21},size={125,23},title="Y: " PopupMenu popupYData,mode=2,popvalue="X025_modified",value= #"WaveList(\"*\",\";\",\"\")" PopupMenu popupXData,pos={17,48},size={89,23},title="X: " PopupMenu popupXData,mode=2,popvalue="TimeW",value= #"\"_calculated_;\"+WaveList(\"*\",\";\",\"\")" Button button0,pos={73,72},size={60,20},proc=ButtonProcNewGraph,title="Graph" Button button1,pos={14,72},size={50,20},proc=ButtonProcSet,title="Set" Button button2,pos={141,72},size={70,20},proc=MakeFitTweaksPanel,title="Tweaks..." GroupBox gb1,pos={4,103},size={217,200},title="Initial Values",fStyle=1 GroupBox gb1,fColor=(0,0,65535) Button buttonAuto,pos={22,123},size={60,20},proc=ShowAutoBP,title="Auto..." Button buttonMan,pos={91,123},size={60,20},proc=ShowManBP,title="Man..." GroupBox gb1sep0,pos={5,147},size={214,4} SetVariable SetPkNum,pos={25,154},size={85,16},bodyWidth=35,proc=SetPeakNumProc,title="For Peak #" SetVariable SetPkNum,fSize=9 SetVariable SetPkNum,limits={1,3,1},value= root:Packages:WMmpFitting:gCurPeak SetVariable setvar0,pos={117,154},size={38,16},bodyWidth=25,proc=SetVarProcNPeaks,title="of" SetVariable setvar0,fSize=9 SetVariable setvar0,limits={1,1000,0},value= root:Packages:WMmpFitting:gNumPeaks TitleBox hold,pos={189,155},size={26,15},title="Hold",frame=0 GroupBox gb1sep3,pos={5,174},size={214,4} SetVariable setvar2,pos={40,182},size={146,18},bodyWidth=87,proc=SetVarProcCoef,title="Amplitude" SetVariable setvar2,limits={-inf,inf,0},value= root:Packages:WMmpFitting:gPeakAmp SetVariable setvar3,pos={47,201},size={139,18},bodyWidth=87,proc=SetVarProcCoef,title=" Position" SetVariable setvar3,format="%g" SetVariable setvar3,limits={-inf,inf,0},value= root:Packages:WMmpFitting:gPeakPos SetVariable setvar4,pos={54,222},size={132,18},bodyWidth=87,proc=SetVarProcCoef,title="G width" SetVariable setvar4,format="%g" SetVariable setvar4,limits={-inf,inf,0},value= root:Packages:WMmpFitting:gPeakWidth SetVariable setvar5,pos={61,242},size={125,18},bodyWidth=87,proc=SetVarProcCoef,title="Decay" SetVariable setvar5,limits={0,inf,0},value= root:Packages:WMmpFitting:gVoigtShape CheckBox checkAmp,pos={190,182},size={16,14},proc=CheckProcHold,title="" CheckBox checkAmp,value= 0 CheckBox checkPos,pos={190,201},size={16,14},proc=CheckProcHold,title="" CheckBox checkPos,value= 0 CheckBox checkWid,pos={190,222},size={16,14},proc=CheckProcHold,title="" CheckBox checkWid,value= 0 CheckBox checkVS,pos={190,242},size={16,14},proc=CheckProcHold,title="",value= 0 GroupBox gb1sep2,pos={5,263},size={214,4} Button bSave,pos={16,274},size={50,20},proc=BProcSaveSet,title="Save" SetVariable setvar1,pos={70,275},size={65,18},title="Set",format="%d" SetVariable setvar1,limits={0,10,1},value= root:Packages:WMmpFitting:gSaveSet PopupMenu popRecall,pos={144,274},size={67,21},proc=PProcRecall,title="Recall" PopupMenu popRecall,mode=0,value= #"ListCoefSetWaves()" GroupBox gb2,pos={4,309},size={218,108},title="Fitting Function",fStyle=1 GroupBox gb2,fColor=(0,0,65535) PopupMenu popupFunc,pos={21,330},size={154,23},proc=PopProcFunc,title="Function:" PopupMenu popupFunc,mode=4,popvalue="ExpGaussian",value= #"\"Gaussian;Lorentzian;Voigt;ExpGaussian;ExpConvExp\"" CheckBox checkBL,pos={22,353},size={67,15},title="Baseline" CheckBox checkBL,variable= root:Packages:WMmpFitting:gDoBaseline CheckBox checkCW,pos={124,353},size={57,15},disable=1,proc=CheckProc1Width,title="1 width" CheckBox checkCW,variable= root:Packages:WMmpFitting:g1Width CheckBox checkCS,pos={124,375},size={60,15},proc=CheckProc1Shape,title="1 decay" CheckBox checkCS,variable= root:Packages:WMmpFitting:g1Shape CheckBox checkUseX,pos={22,375},size={90,15},proc=CheckProcUseXFUNCs,title="use XFUNCs" CheckBox checkUseX,variable= root:Packages:WMmpFitting:gUseXFUNCs ValDisplay valdisp0,pos={48,399},size={152,17},title="Chi Square" ValDisplay valdisp0,limits={0,0,0},barmisc={0,1000} ValDisplay valdisp0,value= #"root:Packages:WMmpFitting:gChiSquare" Button DoFitButton,pos={51,427},size={114,25},proc=fitProc,title="Do Fit" EndMacro #pragma rtGlobals=1 // Use modern global access method. #include Window Table_1() : Table PauseUpdate; Silent 1 // building window... Edit/W=(5.25,41.75,510,234.5) TimeW,X025_modified ModifyTable format(Point)=1 EndMacro