CONTENTS

サンプルの Experiment – Single Factor ANOVA Example2
クイックノート
手順2
StatsAnova1Test コマンドのヘルプ5

クイックノート

メニュー File \rightarrow Example Experiments \rightarrow Statistics \rightarrow ANOVA1 Demo

この Experiment は、単一要因分散分析/一元配置分散分析を説明するデモです。

サンプルの Experiment 内のクイックノートではコマンドウィンドウでの処理として書かれていますが、GUI を使ってより分かりやすく処理できるため、それを主として説明します。

手順

次の 4 つの列(ウェーブ f1-f4 に格納)は、6 つのサンプルの任意の特性を計測機器で測定したものを示したものです。

新しい Experiment を作成したところからの手順で確認します。		Data	Analysis	Statistics	Macı
1. メニュー Data → Make Waves を選択します。		La Sa M	oad Waves ave Waves lake Waves		Þ
2. f1~f4 の4つのウェーブを作成します。	Make Waves				×
Rows は 6 を指定します。	f1 f2 Overwrife existing waves Type: Double Float 64 bit Complex Mske/N=6/D f1,12,f3f4 Do It To Cmd Line	∽ To Clip	13	f4 Dimensions: 1 (Vectora) Rows: 6 Help C	~ ~
3. Data Browser で4つのウェーブを選択し、右クリックして ポップアップメニューから Edit を選択します。	Data Browser Current Data Folder Display Wares Variables Strines Info Plot New Data Folder Save Copy Browse Expt Delete Execute Ornd.	root Name → v san r	incot f1 f2 f3 f4	Display Edit Append to Table Copy Full Paths Delete Objects Adopt Waves	→ →

4. テーブルに次のように入力します。

	f1	f2	f3	f4
1	19	22	20	21
2	21	21	22	19
3	19	20	20	22
4	20	22	22	19
5	19	22	21	20
6	18	19	20	18

R5	18				Ę
Point	f1	f2	f3	f4	
0	19	22	20	21	
1	21	21	22	19	
2	19	20	20	22	
3	20	22	22	19	
4	19	22	21	20	
5	18	19	20	18	
6					

このドキュメントではあまり使いませんが、定義を少ししておきます。

H₀ (null hypothesis/帰無仮説): 4つの機器で記録された値に違いはない。

Ha(alternative hypothesis/対立仮設): 4つの機器で記録された値には十分な違いがある。

5. メニュー Statistics → One-way ANOVA を選択します。	Stati	istics	Macros	Windows
One-way ANOVA Test ダイアログが表示されます。	Wave Stats T-Test			
		F-Test		
		Chi Squ	ared-Test	
		Varianc	es Test	
		One-wa	ay ANOVA	
		Two-wa	y ANOVA	

6. Waves で4つのウェーブを選択し、Brown and Forsythe test と Welch test チェックボックスをチェックします。

Alpha はデフォルトのままにしておきます。

Result Table ポップアップメニューから Display table with closing dialog を選択します。

Do It をクリックします。

7. 3つのテーブルが作成されます。

7. 3つのテーブルが作成されます。	ANOVA1 R	esuits 0 Label	Groups	_	_	_	
· · · · · · · · · · · · · · · · · · ·	Row	M_ANOVA1.I	M_ANOVA1[[0].	M_ANOVA1[][1]	d M_ANOVA1[][2].c	M_ANOVA1[][3].c	M_ANOV
ANOVA のストレートな結果は ANOVA1 Results テーフルに表	0	Groups	3	11.5	5 3.83333 9 1.45	1	
示されます。	2	Total	23	40.5	5 1.76087	2.64368	

	DF	SS	MS	F	Fc	Р
Groups	3	11.5	3,83333			
Error	20	29	1.45			
Total	23	40.5	1,76087	2.64368	3.09839	0.077207
ここでは、Fc>F	という臨界	界値である	るため、H ₀ は棄却 ⁻	できません。		
また、P>alpha は	tデフォル	レトで 0.0	5 に設定されてい	る点にも注意してく	ください。	
DF : Degrees of	Freedom	(自由度))			
SS : Sum of Squ	ares(平	方和)				
MS : Mean sum o	of Square	es(平均平	平方)			
Fc : F Critical val	ue(臨界·	値)				
F: <i>F</i> -statistic (F	統計量)					
P: <i>P</i> -value(P 亻	直)					

8. Welch Test には次の結果が含まれています。

			Welch Test			X		
N1	3		R0			N1		
	10		Point	W_A	NOVA	1Welc	W_ANOVA1Welch	
NZ	10		0			N1	3	
En	2 80288		1			N2	10	
ιp	2.00200		2			Fp	2.80288	
Fpc	3,70826		3			Fpc	3.70826	
	517 0020		4			Pp	0.0945161	
Pp	0.0945161		5					
•							1 1	

ここで、Fp は自由度 N1 と N2 に関連する Welch 検定統計量、 Fpc は臨界値、Pp は P 値です。

0 २ ≖					
9. 3 住	旧のテーノル Brown and Forsythe Test には次の結果				
が含まれ	しています。				
		Brown and	Forsythe Test		
N1	3	R0	N1		ê
ND	10	Point	W_ANOVA1BnF.I	W_ANOVA1BnF.d	1
NZ	18	0	N1	3	
Fp	2.64368	1	N2	18	
_		2	Fp	2.64368	
Fpc	3.15991	3	Fpc	3.15991	
Dn	0.0005162	4	Pp	0.0805162	
rp	0.0003102	5			

ここでも、Fp は自由度 N1 と N2 に関連する検定統計量であり、 Fpc は臨界値、Pp は P 値です。

サンプルの Experiment では、ステップ5以降の操作がコマンドウィンドウでの操作となっています。 その時の手順は次のようになります。

5'. 検定を実行するには、コマンドウィンドウで次を実行します。

StatsAnovalTest/T=1/Q/W/BF f1,f2,f3,f4

3つのテーブルが作成されます。

ANOVA のストレートな結果は ANOVA1 Results テーブルに表示されます。

(各テーブルウィンドウには列や行にタイトルがないため、前掲の ように読み取ります)

Row	M_ANOVA1[][0]	M_ANOVA1[][1]	M_ANOVA1[][2]	M_ANOVA1[][3]	M_ANOVA1[][4]	M_ANOVA1[][5]
	0	1	2	3	4	6
0	3	11.5	3.83333			
1	20	29	1.45			
2	23	40.5	1.76087	2.64368	3.09839	0.077207
3						
Untitled						

6'. 2番目のテーブル Welch Test には右図の結果が含まれてい ます。

Welch Test		- 🗆 🗙
R5		Ø
Point	W_ANOVA1Welch	
0	3	
1	10	
2	2.80288	
3	3.70826	
4	0.0945161	
5		

7'. 3番目のテーブル Brown and Forsythe Test には右図の 結果が含まれています。

Brown and	Forsythe Test	
R5		\$
Point	W_ANOVA1BnF	
0	3	
1	18	
2	2.64368	
3	3.15991	
4	0.0805162	
5		

StatsAnova1Test コマンドのヘルプ

StatsANOVAlTest [/ALPH=significance /BF/Q/Z/T=k /W/WSTR=wList] [wave1, wave2,... wave100]

StatsANOVA1Test コマンドは、一元配置分散分析(固定効果モデル)を実行します。 標準的な分散分析の結果は、現在のデータフォルダー内の M_ANOVA1 ウェーブに保存されます。

フラグ

/ALPH= <i>val</i>	有意水準を設定します(デフォルトは 0.05)。
/BF	Brown and Forsythe 検定を実行し、F'' と自由度を計算します。 現在のデータフォルダー内の W_ANOVA1BnF ウェーブに結果が出力されています。
/Q	コマンドウィンドウの履歴領域に結果を表示しません。
/T=k	結果をテーブル形式で表示します。 追加のテーブルは、/BF および /W で作成されます。 k は、それを閉じるときのテーブルの動作を指定します。 k =0: ダイアログを表示(デフォルト) k =1: ダイアログを表示せずに Kill k =2: Kill を不可能にする
/W	Welch 検定 F' を実行し、自由度を計算します。 現在のデータフォルダー内の W ANOVA1Welch ウェーブに結果が出力されます

現在のテータノオルター内の W_ANOVA1Welch ワエーノに結果が出力されます。

/WSTR=*waveListString*

サンプルデータを含む、セミコロンで区切られた複数のウェーブのリストを含む文字列 を指定します。 フラグの後に各ウェーブを列挙する代わりに、waveListStringを使います。

詳細

StatsANOVA1Test への入力は、2つ以上の1次元数値ウェーブ(サンプルのグループごとに1つのウェ ーブ)です。

欠損値には NaN を使うか、異なるポイント数のウェーブを使います。

標準的な ANOVA の結果は、対応する行と列のラベルが付いた M_ANOVA1 ウェーブに表示されます。 /T を使うと、結果をテーブル形式で表示できます。

いずれの場合も、2つの自由度の値、F 値、アルファと自由度の選択のための臨界値 Fc、結果の P 値が得られます。

V_flag は、エラーが発生した場合は -1 に、それ以外はゼロに設定されます。

場合によっては、ANOVA 検定が適切でないこともあります。

例えば、グループ間で分散の均一性が十分に認められない場合などです。

ANOVA 検定にとっては致命的ではないかもしれませんが、StatsVariancesTest で分散分析を行うことで、より深い洞察が得られるかもしれません。

2つのグループしかない場合、この検定は StatsTTest と同じです。

指定した自由度と非心パラメーターの組に対して、次を使って ANOVA 検定の検出力を評価できます。

power=1-StatsNCFCDF(StatsInvFCDF((1-alpha),n1,n2),n1,n2,delta)

ここで、n1 はグループの自由度、n2 は誤差の自由度、delta は非心パラメーターです。

参照

Zar, J.H., Biostatistical Analysis, 4th ed., 929 pp., Prentice Hall, Englewood Cliffs, New Jersey, 1999.

関連するヘルプ、コマンド

Statistical Analysis (ヘルプ Statistics.ihf 内)

StatsVariancesTest, StatsTTest, StatsNCFCDF, StatsInvFCDF