4Misc_Start^4Platform^@B9VersionCheck xHH%.7@gyHHdh xHH%.7@gyHHdh x HH%.7@gyHHdh ^Graph*0WDashSettings#  ! 6Normal@ Lucida Console<HHHH$$4 4 4 4 4 4 homedZ:Documents:forwa:Documents:Aspirantura:Conferences:Hyperpolarization_Perspectives:Nottingham:Software:IgorPro:semilog_T2_fitting:Z:Documents:forwa:Documents:Aspirantura:Conferences:Hyperpolarization_Perspectives:Nottingham:Software:IgorPro:semilog_T2_fitting3RecentWindowsGraph0:Intensity vs time_v;...Graph1:LogarithmIntensity1 vs time_v;...Graph2:LogarithmIntensity2 vs time_v;...Graph3:LogarithmIntensity3 vs time_v;...Graph4:LogarithmIntensity4 vs time_v;...Graph5:LogarithmIntensity5 vs time_v;...Igor Reference.ihf 4Misc_End^TXOPState_Start ^PeakFunctions2-64;Graph0;,4XOPState_End^lV_chisqv @V_numNaNsV_numINFsV_npntsY@V_nterms@V_nheldV_startRowV_endRowX@V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunk •Make/D/N=100 time_v=0.001*p •Make/D/N=100 Intensity=70*exp(-time_v/0.005)+30*exp(-time_v/0.02) •Duplicate Intensity, LogarithmIntensity1 •LogarithmIntensity1=ln(Intensity) •Duplicate LogarithmIntensity1, LogarithmIntensity2, LogarithmIntensity3, LogarithmIntensity4 •Display Intensity vs time_v •ModifyGraph mode=3,marker=19,msize=1,rgb=(0,0,65535) •Make/D/N=4/O W_coef •W_coef[0] = {60,40,7E-3,30E-3} •FuncFit/TBOX=768 biexp W_coef Intensity /X=time_v /D 9 iterations with no decrease in chi square fit_Intensity= biexp(W_coef,x) W_coef={70,30,0.005,0.02} V_chisq= 0;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 99; W_sigma={0,0,0,0} Coefficient values ± one standard deviation I1 =70 ± 0 I2 =30 ± 0 T2f =0.005 ± 0 T2s =0.02 ± 0 •Display LogarithmIntensity1 vs time_v •ModifyGraph mode=3,marker=8,msize=1,rgb=(3,52428,1) •Make/D/N=4/O W_coef •W_coef[0] = {60,40,7E-3,25E-3} •FuncFit/TBOX=768 mylog W_coef LogarithmIntensity1 /X=time_v /D 9 iterations with no decrease in chi square fit_LogarithmIntensity1= mylog(W_coef,x) W_coef={70,30,0.005,0.02} V_chisq= 0;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 99; W_sigma={0,0,0,0} Coefficient values ± one standard deviation I1 =70 ± 0 I2 =30 ± 0 T2f =0.005 ± 0 T2s =0.02 ± 0 •Display LogarithmIntensity2 vs time_v •ModifyGraph mode=3,marker=8,msize=1,rgb=(3,52428,1) •showinfo •Make/D/N=2/O W_coef •W_coef[0] = {4,25E-3} •FuncFit/TBOX=768 myline W_coef LogarithmIntensity2[17,] /X=time_v /D Fit converged properly Curve fit with data subrange: LogarithmIntensity2[17,*] fit_LogarithmIntensity2= myline(W_coef,x) W_coef={3.469,0.019643} V_chisq= 0.055197;V_npnts= 83;V_numNaNs= 0;V_numINFs= 0; V_startRow= 17;V_endRow= 99; W_sigma={0.00751,4.61e-05} Coefficient values ± one standard deviation C =3.469 ± 0.00751 T2 =0.019643 ± 4.61e-05 •Make/D/N=2/O W_coef •W_coef[0] = {4,25E-3} •FuncFit/TBOX=768 myline W_coef LogarithmIntensity2[19,] /X=time_v /D Fit converged properly Curve fit with data subrange: LogarithmIntensity2[19,*] fit_LogarithmIntensity2= myline(W_coef,x) W_coef={3.4548,0.019719} V_chisq= 0.030823;V_npnts= 81;V_numNaNs= 0;V_numINFs= 0; V_startRow= 19;V_endRow= 99; W_sigma={0.00596,3.65e-05} Coefficient values ± one standard deviation C =3.4548 ± 0.00596 T2 =0.019719 ± 3.65e-05 •Display LogarithmIntensity3 vs time_v •ModifyGraph mode=3,marker=8,msize=1,rgb=(3,52428,1) •HideInfo •ShowInfo •Make/D/N=2/O W_coef •W_coef[0] = {4,7E-3} •FuncFit/TBOX=768 myline W_coef LogarithmIntensity3[0,8] /X=time_v /D Fit converged properly Curve fit with data subrange: LogarithmIntensity3[0,8] fit_LogarithmIntensity3= myline(W_coef,x) W_coef={4.58,0.0074609} V_chisq= 0.00229604;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0111,0.00013} Coefficient values ± one standard deviation C =4.58 ± 0.0111 T2 =0.0074609 ± 0.00013 •HideInfo •ShowInfo •HideInfo •Display LogarithmIntensity4 vs time_v •ModifyGraph mode=3,marker=8,msize=1,rgb=(3,52428,1) •ShowInfo •HideInfo •Make/D/N=9 Difference •Difference=LogarithmIntensity4[p]-(3.4548-time_v[p]/0.019719) •AppendToGraph/W=Graph4 Difference vs time_v[0,8] •RemoveFromGraph Difference •AppendToGraph/W=Graph4 Difference vs time_v •ModifyGraph mode=3,msize=1,marker(Difference)=19,rgb(Difference)=(52428,17472,1) •ModifyGraph rgb(Difference)=(0,0,0) •Make/D/N=2/O W_coef •W_coef = {1,7E-3} •FuncFit/TBOX=768 myline W_coef Difference /X=time_v[0,8] /D Fit converged properly fit_Difference= myline(W_coef,x) W_coef={1.1252,0.012002} V_chisq= 0.00229604;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0111,0.000337} Coefficient values ± one standard deviation C =1.1252 ± 0.0111 T2 =0.012002 ± 0.000337 •Duplicate LogarithmIntensity1, LogarithmIntensity5 •Display LogarithmIntensity5 vs time_v •ModifyGraph mode=3,marker=8,msize=1,rgb=(3,52428,1) •Make/D/N=2/O W_coef •W_coef[0] = {4,20E-3} •FuncFit/TBOX=768 myline W_coef LogarithmIntensity5 /X=time_v /D Fit converged properly fit_LogarithmIntensity5= myline(W_coef,x) W_coef={3.7991,0.01794} V_chisq= 3.76405;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 99; W_sigma={0.0389,0.000219} Coefficient values ± one standard deviation C =3.7991 ± 0.0389 T2 =0.01794 ± 0.000219 •Make/D/N=2/O W_coef •W_coef[0] = {4,20E-3} •FuncFit/TBOX=768 myline W_coef LogarithmIntensity5 /X=time_v /D Fit converged properly fit_LogarithmIntensity5= myline(W_coef,x) W_coef={3.7991,0.01794} V_chisq= 3.76405;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 99; W_sigma={0.0389,0.000219} Coefficient values ± one standard deviation C =3.7991 ± 0.0389 T2 =0.01794 ± 0.000219 •ShowInfo •ShowInfo !OI`  dtime_vd????MbP?Mb`?~jth?Mbp?{Gzt?~jtx?y&1|?Mb?A@R{#>@W5];@009@O6@:KIK4@}'3@{1@CޢNU0@"R0Q.@Y(318,@ֵ4OV*@(@<|'@7q%@y!og$@6L9#@d'3""@\P!@1~/ @O·@> @$HӓϹ@O_@a@@oa@$@T;>?YpB4?5B?2k?IA!?ҷ?s.?l Ӡ?fFܢ?=?@}9?}?f?aYC? cz?NE(?“?e;?Bl?(~D? ?y?-U[m?}n?D|?_SP?!jƹ?=O?Wz^ɘD? ?&'4c?A ?4E?􋕒?-,DEl?;ZOT?J?"L?G&i[?-v?||?.Z.??㈓K?=r۳G3?`u> J dLogarithmIntensity1d????Uk@ɪp@JKK8@J@`;@YE'@&AǏ%@ PY/ @p8vD @3d @{v @ &e @JD @uɈM@*[Ş@;@xyX@:P)˟@,@1W@gϻ@m{Zl@\@l[f̔@,8@D:@I-@$u@H@8`?z?&? ? H?oiq?}&?3q?!Ұ?Oy@$?.`\S?E"o.?l2*#ز?Iԗ7?&u?A#E?zv?|%?=x?3m ?{|?S,?݉sF?|EL@:YdHyE=@?G;@"t/t:@x\O29@Ǹ>8@Y6@|1qNL5@@A4@Ӭa4@^_D3@cܭ}2@ F51@z:j1@R o0@p?/@`Y.@El-@ދEW`f,@8.m+@Xz*@iKGY)@(@(@*;sb@'@&@NT%@1Z/.%@>1i$@UGP#@z\#@qm"@xJfD"@TNӿ!@ׅsx@!@|M @\O @3=<@$Ѷ@|f%S@- [!:@jr@Uq@-B@XPA@kS@`R@yB@@Z/X@HYwn@P6B@z| 1M@CNx@ݸЛ;@sjw@m9+8@ύԼ@ìD@!P"@=\@'.X@3݆@rz@^g`@@z0@i* @D c. @B^ @\ @PD @YrcN @@Vߧ @>7 @f@\&@E5@zl@@4@@E@U~?{@$k@ ү{@@K@@D@u#2@oa3V@ju_\@`4?fE!?vtӫ]? j^?Ⱂn? [-?_|?{ߘJ?ީQ{&?Łxց?&:hA?G,D?`]߫?ʧ?q?q?٪2im?o?O/c?::?t:e?|?&.t?y:? U/K?  ?A?_K?:x?WjsY?7C??+?,?K? Ab?ւ?[ ?;j?e*>?t/H4P.?l\7?I~? %q??Q?ACO)MZ?Ew?xP?d6??T?%?2&{dd?Qֶ?G???-t?sil=?Q**?Zf?o$%?٠6g?C?0ٍ?DJ??dd?EGD1T?IҦ?7 ?k?1:?&*]?J81?SG?I;"?/??,5k]:?-rD?◭?pT?P+b\?Lp?D͗6?SF7?/?_9?D#pz?K$- ?UWN? et?"d?Dr۳G3?fit_Intensity= biexp(W_coef,x) W_coef={70,30,0.005,0.02} V_chisq= 0;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 99; W_sigma={0,0,0,0} Coefficient values ± one standard deviation I1 =70 ± 0 I2 =30 ± 0 T2f =0.005 ± 0 T2s =0.02 ± 0 [P6W_sigma????P>,?3;  fit_LogarithmIntensity1r":M@????Uk@qrrV@6@\HZ@y9@ a@Ƨ@!b@T@%' @Qd-@Z@)-@C1 @bP7 @Kr$2c @"mxM @]o @΀ n @IDL @=/y @F)84 @4Q}{ @l!z/o @COC @Xۖ@t7q>Y@!E=@יm̪@)1V@.֚H@l6X˳@ e@{4@۠Q6p@erl@~b79@';Չ@^F@{Ug@}B$@F,C @hPm&3@ _@?a?/4q?YC ??"'?aJ=?ٷ?Q?:N?Ɇ~H?N \{?˲n?V{??d9J?,5ZB}?83ᢱ?{e?9E1?\M?g߀?Yp?$p?6Ե?EOP??1q?忤?~^̂A?sy%?|ZQq@?tay?x?<;I?.'?|B?K]?=1?Bݷ?KEv?h+F?..?GL*з?Y8vq?c%?|¨В?P=Mz:\AϬu ƴ7J$ٿrq{ۿQSubݿV޿K0VB!]; ޺gҸῙ׀]bP5Wx)rd aEKAĺ 追3#n-ow`zr&F;LRW쿸Gy|?u( Aᅥ f_qIl(+-n8R8{Ѭi88򿠈`i}5X;B`=Cjc\%gh732QΘYQњdvogY0#(<1bbfit_LogarithmIntensity1= mylog(W_coef,x) W_coef={70,30,0.005,0.02} V_chisq= 0;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 99; W_sigma={0,0,0,0} Coefficient values ± one standard deviation I1 =70 ± 0 I2 =30 ± 0 T2f =0.005 ± 0 T2s =0.02 ± 0  ՀL6 ٻ fit_LogarithmIntensity2 X:????~jt?@3 cS@Hǒ@\^+p@p G@#P@V@/h@µ*@;Nv@L@HrI"@4 @)TL@>ڹt@R`|{@f>< R@zlI(@@xg@H@̄ /G@ ΒW@-@ SZ@=:+|?fFCa?R5 ?^?j?f? wa?2I)?[l?S??ֳ]G}q??(gz?Qv?zqex#?,?{u|?(?s?G! K?p-q.?9?En?Qi3?^0l??d?0G?ZlbD?Q4?_?[I?]?&eRܢ?P[O?xp? X?,zpT?87V?Eԭ?FQ SZ?p]?iVQ?u_?N ?(EYq?t4O?LYw#?ec|?p}m?w$.? ?`ƋB?ޕч9?`?T?'~D?? ~?LXȜ{?p+yO?ܺv?@It?qZ?go?8l ?je?h?,3#e?K-3cp?n?HD?(?Y޲?8Z?غ ?8? Vp?Lu"?`}$?8?Lϋ8? ?9? S?pB;?cd??@fC,? !?Q x?@[k?WѰ?e?Քp?>"l͢{>o׳@M0CG>Gr[Ŀ5ƿ0ȓɿ#/̿tο0"пҿp}OӿОiԿ(nUտ=A :׿ -nؿ@Pٿ2$ۿzrܿPJ#ݿ(߿.4Mž|ῐ/#@ z#q㿘b%HJ'1d*f忠, XuF/j1[翰`(4`V6L 9PB{;ho8=W.]@E>$Bp&?E G:!JL(O/جsQDn>*+dcȥߛ-9񿠙ZԮx 0LPE3$u}2hF\4.P<'D_7X82(0,9| ( A<#zv>d<#Aq \ʄCkzFp=DpvHfɹfJ Curve fit with data subrange: LogarithmIntensity2[19,*] fit_LogarithmIntensity2= myline(W_coef,x) W_coef={3.4548,0.019719} V_chisq= 0.030823;V_npnts= 81;V_numNaNs= 0;V_numINFs= 0; V_startRow= 19;V_endRow= 99; W_sigma={0.00596,3.65e-05} Coefficient values ± one standard deviation C =3.4548 ± 0.00596 T2 =0.019719 ± 3.65e-05  &D  fit_LogarithmIntensity3????@R԰Q@4lL@jsF@C@/8@zPv3@-@~'@8nz"@Ͳ=@bK q@܍@|h @ |@K_@JF@ V@tw@(M@Y@2A)0D@@\r7;@ @g?2@<7í@G)@Dmʤ@N @muқ@7EV@ڒ@,h]@ቘ@Ue@1S逍@"m@cw@t|@=nw@,a|q@g0fl@]f@]a@%[@'oTV@O>P@XKK@xݚE@ B@@"}:@7L&95@S/@`-0*@$@5'@Z@N*=@H@D @rȐ@bј@8p@a@@&N@W@@1+ٮ@[У@jǘ@M 徍@~쵂@Gw@+l@Ta@~C% V@tK@ѥc@@"w5@$)n*@N9A1e@xj8\@@S @HJ@OA@/]W8@H`^/@qf&@:n@u@$y} @V@B@kV@@y@K4n@}Ӳc@;rX@eºM@ɱB@APѨ7@r؟,@ !@5-@^ @7l{@h r @ۙj @Ia @.X @X-O @^'%F @,= @e44 @<+ @(#C" @RTCK @{R| @Zq @ be @iZ @"J_qO @K{xD @u9 @<. @܏# @?{ @q @E @nX @ @5 @f6ʼn @̀ @?tw @hn @+e @\R\ @S @J @8/B~ @b! 9s @Rn0h @ '] @޴ R @K(G @2/ < @\H71 @y)?% @F @gN @Curve fit with data subrange: LogarithmIntensity3[0,8] fit_LogarithmIntensity3= myline(W_coef,x) W_coef={4.58,0.0074609} V_chisq= 0.00229604;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0111,0.00013} Coefficient values ± one standard deviation C =4.58 ± 0.0111 T2 =0.0074609 ± 0.00013 ' ٖ  Difference ????qg?$ܠ?$?7Y yl?$Aw?Dt= i?VC\?PnN?a@?\)3?7b%?hй?R ?uJ:?m?2?K?djY?|2?1? 0?LƊx?,R?gs?8Oe?(W?DAsI?ʝY;'?! $Ή?.(]n?:CGER?F^x|7?Rye ?^?k +?x<?mJ?6ڒ?iw?6W[?Q2@?lcw%?͇ ?ڢŗ7?'?'V?XH? u?*he?#EI?0`$.?;{N?HC?T9?`b?lZ?xDꁉ?uzn?8 R?Sך07?n+?9O?¤jK?οn?k??/w?,`[? G<@?b<$?%}[ ?1$]?=Uz?IΆ} ?V ?b)?n.d?{:KHI?U|N-?pg?n??@?q?5??m?-TR?H6`6?dgs???&"?3+1??\A?KQv?W!`[?dǻ??(H?>mc?tE~e?2?qS?-N?h騉'?$đ-?`Z?3:fJ?\ u?:g?O? %?Pn`y? G?> M/??BK"L?r?-h?x[`?447˅?` r5?欟?lؾ 1?("t?Op]M? IH?`!Ӳj?8:?}?,W+?l }H? e?[lh`?4?JS ?€?92??㴆?p(*[/?F/L?di?؅?X[?} w?LU?T?A+?pe?hO?Xjr?H]?@s0IJL?8b4?(Q?0?^xe?<>-?L?qѿ?Ff?@g>L?@Fng?{ gh?T>,b3c2?K@vd ]{*@SKſ`|Xȿ)e̿cϴϿO|1ѿ쐈ӿ%Kտ7&6׿H΍ؿY`ڿ j;eܿ0{ +޿@7!߿N (8%L῰_w89㿸p$h@rNKȁ%/P cQؒ^|`wԻh,J+x=Ve5+HN+?￐_! 7*jP8_-|MyY>0XI򿜍#J$rSFhZhqL4'htk6-3/]Ƞ^<8||A g"̵LIIKJpVїw- XZ楢 k8fit_LogarithmIntensity5= myline(W_coef,x) W_coef={3.7991,0.01794} V_chisq= 3.76405;V_npnts= 100;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 99; W_sigma={0.0389,0.000219} Coefficient values ± one standard deviation C =3.7991 ± 0.0389 T2 =0.01794 ± 0.000219 *// Platform=WindowsNT, IGORVersion=8.030, architecture=Intel, systemTextEncoding="Windows-1251", historyTextEncoding="UTF-8", procwinTextEncoding="UTF-8", recreationTextEncoding="UTF-8", build=33570 #pragma TextEncoding = "UTF-8" Silent 101 // use | as bitwise or -- not comment. DefaultFont "Arial" MoveWindow/P 5.25,44.75,705,500 Graph0() Graph4() MoveWindow/C 7.5,546.5,1432.5,720.5 Graph5() Graph1() Graph2() Graph3() KillStrings/Z root:gWMSetNextTextFilesTextEncoding Window Graph3() : Graph PauseUpdate; Silent 1 // building window... Display /W=(677.25,293,1071.75,501.5) LogarithmIntensity3 vs time_v AppendToGraph fit_LogarithmIntensity3 ModifyGraph mode(LogarithmIntensity3)=3 ModifyGraph marker(LogarithmIntensity3)=8 ModifyGraph rgb(LogarithmIntensity3)=(3,52428,1) ModifyGraph msize(LogarithmIntensity3)=1 Cursor/P A LogarithmIntensity3 0;Cursor/P B LogarithmIntensity3 8 ShowInfo TextBox/C/N=CF_LogarithmIntensity3 "Coefficient values ± one standard deviation\r\tC \t=4.58 ± 0.0111\r\tT2\t=0.0074609 ± 0.00013" EndMacro Window Graph2() : Graph PauseUpdate; Silent 1 // building window... Display /W=(270,290,664.5,498.5) LogarithmIntensity2 vs time_v AppendToGraph fit_LogarithmIntensity2 ModifyGraph mode(LogarithmIntensity2)=3 ModifyGraph marker(LogarithmIntensity2)=8 ModifyGraph rgb(LogarithmIntensity2)=(3,52428,1) ModifyGraph msize(LogarithmIntensity2)=1 Cursor/P A LogarithmIntensity2 19;Cursor/P/A=0 B LogarithmIntensity2 99 ShowInfo TextBox/C/N=CF_LogarithmIntensity2 "Coefficient values ± one standard deviation\r\tC \t=3.4548 ± 0.00596\r\tT2\t=0.019719 ± 3.65e-05" EndMacro Window Graph1() : Graph PauseUpdate; Silent 1 // building window... Display /W=(713.25,45.5,1107.75,254) LogarithmIntensity1 vs time_v AppendToGraph fit_LogarithmIntensity1 ModifyGraph mode(LogarithmIntensity1)=3 ModifyGraph marker(LogarithmIntensity1)=8 ModifyGraph rgb(LogarithmIntensity1)=(3,52428,1) ModifyGraph msize(LogarithmIntensity1)=1 TextBox/C/N=CF_LogarithmIntensity1/X=0.46/Y=0.00 "Coefficient values ± one standard deviation\r\tI1 \t=70 ± 0\r\tI2 \t=30 ± 0\r\tT2f\t=0.005 ± 0\r\tT2s\t=0.02 ± 0" EndMacro Window Graph5() : Graph PauseUpdate; Silent 1 // building window... Display /W=(1038.75,47,1433.25,255.5) LogarithmIntensity5 vs time_v AppendToGraph fit_LogarithmIntensity5 ModifyGraph mode(LogarithmIntensity5)=3 ModifyGraph marker(LogarithmIntensity5)=8 ModifyGraph rgb(LogarithmIntensity5)=(3,52428,1) ModifyGraph msize(LogarithmIntensity5)=1 TextBox/C/N=CF_LogarithmIntensity5 "Coefficient values ± one standard deviation\r\tC \t=3.7991 ± 0.0389\r\tT2\t=0.01794 ± 0.000219" EndMacro Window Graph4() : Graph PauseUpdate; Silent 1 // building window... Display /W=(1061.25,296,1455.75,504.5) LogarithmIntensity4 vs time_v AppendToGraph Difference vs time_v AppendToGraph fit_Difference ModifyGraph mode(LogarithmIntensity4)=3,mode(Difference)=3 ModifyGraph marker(LogarithmIntensity4)=8,marker(Difference)=19 ModifyGraph rgb(LogarithmIntensity4)=(3,52428,1),rgb(Difference)=(0,0,0) ModifyGraph msize(LogarithmIntensity4)=1,msize(Difference)=1 TextBox/C/N=CF_Difference "Coefficient values ± one standard deviation\r\tC \t=1.1252 ± 0.0111\r\tT2\t=0.012002 ± 0.000337" EndMacro Window Graph0() : Graph PauseUpdate; Silent 1 // building window... Display /W=(317.25,41.75,711.75,250.25) Intensity vs time_v AppendToGraph fit_Intensity ModifyGraph mode(Intensity)=3 ModifyGraph marker(Intensity)=19 ModifyGraph rgb(Intensity)=(0,0,65535) ModifyGraph msize(Intensity)=1 TextBox/C/N=CF_Intensity "Coefficient values ± one standard deviation\r\tI1 \t=70 ± 0\r\tI2 \t=30 ± 0\r\tT2f\t=0.005 ± 0\r\tT2s\t=0.02 ± 0" EndMacro #pragma TextEncoding = "UTF-8" #pragma rtGlobals=3 // Use modern global access method and strict wave access. Function myline(w,t) : FitFunc Wave w Variable t //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(t) = C-t/T2 //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ t //CurveFitDialog/ Coefficients 2 //CurveFitDialog/ w[0] = C //CurveFitDialog/ w[1] = T2 return w[0]-t/w[1] End Function biexp(w,t) : FitFunc Wave w Variable t //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(t) = I1*exp(-t/T2f)+I2*exp(-t/T2s) //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ t //CurveFitDialog/ Coefficients 4 //CurveFitDialog/ w[0] = I1 //CurveFitDialog/ w[1] = I2 //CurveFitDialog/ w[2] = T2f //CurveFitDialog/ w[3] = T2s return w[0]*exp(-t/w[2])+w[1]*exp(-t/w[3]) End Function mylog(w,t) : FitFunc Wave w Variable t //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(t) = ln(I1*exp(-t/T2f)+I2*exp(-t/T2s)) //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ t //CurveFitDialog/ Coefficients 4 //CurveFitDialog/ w[0] = I1 //CurveFitDialog/ w[1] = I2 //CurveFitDialog/ w[2] = T2f //CurveFitDialog/ w[3] = T2s return ln(w[0]*exp(-t/w[2])+w[1]*exp(-t/w[3])) End